Is That Planet Habitable? Look To The Star First, New Study Cautions

Finding Earth 2.0, in the words of noted SETI researcher Jill Tarter, is something a lot of exoplanet searchers are hoping for one day. They’re trying not to narrow down their search to Sun-like stars, but also examine stars that are smaller, like red dwarfs.

A new study, however, cautions that the X-ray environment of these dwarfs may give us false positives. They looked at Earth-mass planets in the neighborhood of four stars, such as GJ 667 (which has three planets that could be habitable), and concluded it’s possible for oxygen to reside in these planets even in the absence of life.

The work builds on a published paper in the Astrophysical Journal that argues that GJ 876, studied by the Hubble Space Telescope, could allow a hypothetical planet to have plenty of oxygen in its atmosphere, even without the presence of life.

This artist's conception shows the newly discovered super-Earth GJ 1214b, which orbits a red dwarf star 40 light-years from our Earth. Credit: Credit: David A. Aguilar, CfA
This artist’s conception shows the newly discovered super-Earth GJ 1214b, which orbits a red dwarf star 40 light-years from our Earth. Credit: Credit: David A. Aguilar, CfA

The researchers themselves, however, caution that the results are preliminary and there is a lot more to study before coming to a definitive conclusion.

For example: “The effects of stellar flares on the atmosphere of the hypothetical Earth-like planet around GJ 876 have not been considered in this work,” stated Kevin France, who is with the University of Colorado at Boulder and also a co-author.

“At this point, we do not have a sufficient understanding of the amplitude and frequency of such flares on older, low-mass exoplanet host stars to make predictions about their impact on the production of biomarker signatures.”

The report was presented at the American Astronomical Society division for planetary sciences meeting in Denver today (Oct. 7). It was not immediately clear from a press release if the newer study has been submitted for peer review.

Source: AAS Division for Planetary Sciences

Weekly Space Hangout – July 19, 2013

Here’s our Weekly Space Hangout for July 19, 2013. Watch as a team of space and astronomy journalists discuss the big space stories of the week. We do this every Friday at 12:00 pm Pacific Time / 3:00 pm Eastern Time. You can join us live, or watch the archive here or on Google+.

Host: Fraser Cain

Participants: Sondy Springmann, Amy Shira Teitel, Jason Major, David Dickenson, Dr. Matthew Francis

And here are the stories that we covered.

Famed Pair of Stars Closer To Earth Than We Imagined

If you’re a semi-serious amateur astronomer, chances are you’ve heard of a variable pair of stars called SS Cygni. When you watch the system for long enough, you’re rewarded with a brightness outburst that then fades away and then returns, regularly, over and over again.

Turns out this bright pair is even closer to us than we imagined — 370 light-years away, to be precise.

Before we get into how this was discovered, a bit of background on what SS Cygni is. As the name of the system implies, it’s in the constellation of Cygnus (the Swan). The pair consists of a cooling white dwarf star that is locked in a 6.6-hour orbit with a red dwarf.

The white dwarf’s gravity, which is much stronger than that of the red dwarf, is bleeding material from its neighbor. This interaction causes outbursts — on average, about once every 50 days.

Previously, the Hubble Space Telescope put the distance to these stars much further away, at 520 light-years. But that caused some head-scratching among astronomers.

Hubble Against Earth's Horizon (1997)
Hubble Against Earth’s Horizon (1997)

“That was a problem. At that distance, SS Cygni would have been the brightest dwarf nova in the sky, and should have had enough mass moving through its disk to remain stable without any outbursts,” stated James Miller-Jones, of the Curtin University node of the International Centre for Radio Astronomy Research in Perth, Australia.

Astronomers call SS Cygni a dwarf nova. When comparing it to similar systems, astronomers said the outbursts happen as matter changes its flow speed through the disc of material surrounding the white dwarf.

“At high rates of mass transfer from the red dwarf, the rotating disk remains stable, but when the rate is lower, the disk can become unstable and undergo an outburst,” stated the National Radio Astronomy Observatory. So what was happening?

A star's distance is measured by observing a slight shift in position that occurs, from Earth's perspective, on opposite sides of our planet's orbit. Credit: Bill Saxton, NRAO/AUI/NSF
A star’s distance is measured by observing a slight shift in position that occurs, from Earth’s perspective, on opposite sides of our planet’s orbit. Credit: Bill Saxton, NRAO/AUI/NSF

To again look at the distance of the star, astronomers used two sets of radio telescopes, the Very Large Baseline Array and the European VLBI Network. Each set has a bunch of telescopes working together as an interferometer, allowing for precise measurements of star distances.

Scientists then took measurements at opposite ends of the Earth’s orbit, using the planet itself as a tool. By measuring the star’s distance at opposite sides of the orbit, we can calculate its parallax or apparent movement in the sky from the perspective of Earth. It’s an old astronomical tool used to pin down distances, and still works.

“This is one of the best-studied systems of its type, but according to our understanding of how these things work, it should not have been having outbursts. The new distance measurement brings it into line with the standard explanation,” stated Miller-Jones.

And where did Hubble go wrong? Here’s the theory:

“The radio observations were made against a background of objects far beyond our own Milky Way Galaxy, while the Hubble observations used stars within our galaxy as reference points,” NRAO stated. “The more-distant objects provide a better, more stable, reference.”

The results were published in Science on May 24.

Source: National Radio Astronomy Observatory

Earthlike Exoplanets Are All Around Us

Artist’s impression of a rocky planet orbiting a red dwarf. Credit: David A. Aguilar (CfA)

We may literally be surrounded by potentially habitable exoplanets, according to new research by a team from the Harvard-Smithsonian Center for Astrophysics.

Using data gathered by NASA’s exoplanet-hunting Kepler spacecraft, the CfA researchers discovered that many red dwarf stars harbor planets, and some of those planets are rocky, Earth-sized worlds. Considering that red dwarfs, albeit optically dim, are the most abundant type of stars in our galaxy, this means that even a small percentage of them being host to Earthlike exoplanets puts the total number of potentially habitable worlds very high — and some of them could be right next door.

“We thought we would have to search vast distances to find an Earth-like planet,” said CfA astronomer and the paper’s lead author Courtney Dressing. “Now we realize another Earth is probably in our own backyard, waiting to be spotted.”

And our own backyard, in cosmic terms, could mean a mere 13 light-years away.

Our solar system is surrounded by red dwarfs. You can’t see them in the night sky because they are much too dim — less than a thousandth the brightness of the Sun. But they make up 75% of the stars in the local neighborhood, and based on the Kepler data the CfA team estimates that 6% of those red dwarfs likely have an Earth-sized planet in orbit around them.

And with at least 75 billion red dwarfs scattered across the galaxy… well, you do the math.*

“We now know the rate of occurrence of habitable planets around the most common stars in our galaxy,” said co-author David Charbonneau (CfA). “That rate implies that it will be significantly easier to search for life beyond the solar system than we previously thought.”

Red-Dwarfs

A visualization of the “unseen” red dwarfs in the night sky. Credit: D. Aguilar & C. Pulliam (CfA) See original here.

The conditions on a planet orbiting a red dwarf wouldn’t be exactly like Earth, of course. The planet would have to orbit rather closely to its star to be within its habitable zone, and would have to have a reasonably thick atmosphere to regulate heat and protect it from stellar outbursts. But one benefit to orbiting a red dwarf is that they have very long life spans — potentially longer than the current age of the Universe! So a habitable world around a red dwarf would literally have billions of years for life to evolve, thrive and develop on it.

“We might find an Earth that’s 10 billion years old,” Charbonneau said.

The team’s findings were presented today, Feb. 6, by Dressing during a press conference at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. The results will be published in The Astrophysical Journal. (Added 2/7/13: here’s the video of the press conference.)

press_conference_d+c2013.pptxCfA astronomers identified 95 planetary candidates circling red dwarf stars. Of those, three orbit within the habitable zone (marked in green) – the distance at which they should be warm enough to host liquid water on the surface. Those three planetary candidates (marked with blue dots) are 0.9, 1.4, and 1.7 times the size of Earth. Credit: C. Dressing (CfA)

Read more on the CfA news release here.

*Ok, I did the math. That’s 4,500,000,000 Earth-like exoplanets around red dwarfs alone!

Closely-Orbiting Stellar Companions Surrounded by “Mystery Dust”

Artist’s concept showing a dust disk around a binary system containing a white dwarf and a less-massive M (red) dwarf companion. (P. Marenfeld and NOAO/AURA/NSF)

Even though NASA’s Wide-field Infrared Survey Explorer spacecraft — aka WISE — ran out of coolant in October 2010, bringing its infrared survey mission to an end, the data that it gathered will be used by astronomers for decades to come as it holds clues to some of the most intriguing and hard-to-find objects in the Universe.

Recently astronomers using WISE data have found evidence of a particularly curious disk of dust and gas surrounding a pair of stars — one a dim red dwarf and the other the remains of a dead Sun-sized star — a white dwarf. The origin of the gas is a mystery, since based on standard models of stellar evolution it shouldn’t be there… yet there it is.

The binary system (which has the easy-to-remember name SDSS J0303+0054) consists of a white dwarf and a red dwarf separated by a distance only slightly larger than the radius of the Sun — about 700,000 km — which is incredibly close for two whole stars. The stars orbit each other quickly too: once every 3 hours.

The stars are so close that the system is referred to as a “post-common envelope” binary, because at one point the outer material of one star expanded out far enough to briefly engulf the other completely in what’s called a “common envelope.” This envelope of material brought the stars even closer together, transferring stellar material between them and ultimately speeding up the death of the white dwarf.

The system was first spotted during the Sloan Digital Sky Survey (hence the SDSS prefix) and was observed with WISE’s infrared abilities during a search for dust disks or brown dwarfs orbiting white dwarf stars. To find both a red (M) dwarf star 40-50 times the mass of Jupiter and a disk of dust orbiting the white dwarf in this system was unexpected — in fact, it’s the only known example of a system like it.

The entire mass of the dust (termed an infrared excess) is estimated to be “equivalent to the mass of an asteroid a few tens of kilometers in radius” and extends out to about the same distance as Venus’ orbit — just over 108 million kilometers, or 0.8 AU.

Why is the dust so unusual? Because, basically, it shouldn’t even be there. At that distance from the white dwarf, positioned just out of reach (but not terribly far away at all) anything that was within that zone when the original Sun-sized star swelled into its red giant phase should have spiraled inwards, getting swallowed up by the expanding stellar atmosphere.

Such is the fate that likely awaits the inner planets of our own Solar System — including Earth — when the Sun reaches the final phases of its stellar life.

So this requires that there are other sources of the dust. According to the WISE science update, “One possibility is that it is caused by multiple asteroids that orbit further away and somehow are perturbed close to the binary and collide with each other. [Another] is that the red dwarf companion releases a large amount of gas in a stellar wind that is trapped by the gravitational pull of its more massive white dwarf companion. The gas then condenses and forms the dust disk that is observed.

“Either way, this new discovery provides an interesting laboratory for the study of binary star evolution.”

See the team’s paper here, and read more on Berkeley’s WISE mission site here.

WISE launched into space on Dec. 14, 2009 on a mission to map the entire sky in infrared light with greatly improved sensitivity and resolution over its predecessors. From its polar orbit 525 kilometers (326 miles) in altitude it scanned the skies, collecting images taken at four infrared wavelengths of light. WISE took more than 2.7 million images over the course of its mission, capturing objects ranging from faraway galaxies to asteroids relatively close to Earth before exhausting the supply of coolant necessary to mask its own heat from its ultra-sensitive sensors.

Inset:  Infrared images of SDSS J0303+0054.  (NASA/JPL and  John H. Debes et. al.)

Red Dwarf Discovery Changes Everything!

[/caption]

Its often said that the number of grains of sand on Earth equals the number of stars in the Universe. Well it looks like a recent study by astronomers working at the Keck Observatory in Hawaii have found that its more like three times the number of grains of sand on Earth! Working with some of the most sophisticated equipment available, astronomers from Yale University have been counting the number of dim red dwarf stars in nearby galaxies which has led to a dramatic rethink of the number of stars in the Universe.

Red dwarfs are small, faint stars compared to most others and until now, have not been detected in nearby galaxies. Pieter van Dokkum and his team from Yale University studied eight massive elliptical galaxies between 50 and 300 million lights years from us and discovered that these tiny stars are much more bountiful than first thought. “No one knew how many of these stars there were,” said Van Dokkum. “Different theoretical models predicted a wide range of possibilities, so this answers a long standing question about just how abundant these stars are.”

For years astronomers have assumed that the number of red dwarfs in any galaxy was in the same proportion that we find here in the Milky Way but surprisingly the study revealed there are about 20 times more in the target galaxies. According to Charlie Conroy of the Harvard-Smithsonian Center who also worked on the project, “not only does this affect our understanding of the number of stars in the Universe but the discovery could have a major impact on our understanding of galaxy formation and evolution.” Knowing that there are now more stars than previously thought, this lowers the amount of dark matter (a mysterious substance that cannot be directly observed but its presence inferred from its gravitational influence) needed to explain the observed gravitational influence on surrounding space.

Not only has the discovery affected the amount of dark matter we expect to find but it also changes the quantity of planets that may exist in the Universe. Planets have recently been discovered orbiting around other red dwarf stars such as the system orbiting around Gliese 581, one which may harbour life. Now that we know there are a significantly higher number of red dwarfs in the Universe, the potential number of planets in the Universe has increased too. Van Dookum explains “There are possibly trillions of Earth’s orbiting these stars, since the red dwarfs they have discovered are typically more than 10 billion years old, so have been around long enough for complex life to evolve, its one reason why people are interested in this type of star.”

It seems then that this discovery, which on the face of it seems quite humdrum, actually has far reaching consequences that not only affect our view of the number of stars in the Universe but has dramatically changed our understanding of the distribution of matter in the Universe and the number of planets that may harbour intelligent life.

The new findings appear in the Dec. 1st online issue of the journal Nature.

Source: from the Harvard Smithsonian Center for Astrophysics.

Mark Thompson is a writer and the astronomy presenter on the BBC One Show. See his website, The People’s Astronomer, and you can follow him on Twitter, @PeoplesAstro

Proxima Centauri

[/caption]As the nearest star from our Solar System, Proxima Centauri is a prime candidate for future interstellar travel and space colonization missions.

In the meantime, scientists are trying to determine whether this star has super Earths orbiting within its habitable zone. Habitable zones are regions around a star where planets are believed to receive just the right amount of heat. For instance, Earth is within the Sun’s habitable zone.

If we were slightly nearer, say on Venus’ orbit, the heat would have evaporated all our oceans. On the other hand, if we were slightly farther, the temperature would have been too cold to support life.

So far, searches in the neighborhood of Proxima Centauri have revealed nothing. Even companion stars or supermassive planets that may be accompanying the star have not yet been discovered (if they are ever there at all). Although the search continues, some scientists believe Proxima Centauri’s flares can be a big obstacle for life even inside the star’s habitable zone.

Proxima Centauri’s flares are believed to be caused by magnetic activity. When a flare occurs, the brightness of all electromagnetic waves emitted by the star increases. This includes radio waves as well as harmful X-rays. The most common flare stars are red dwarfs, just like Proxima Centauri.

Now, even if Proxima Centauri is the nearest star, it is still 4.2 light years away. That’s about 4 x 10 13 km. The spacecraft that would take the first explorers to that system would have to rely on a virtually unlimited supply of energy. Furthermore, sufficient shielding against cosmic radiation should be in place.

Proxima Centauri is smaller than our Sun with a mass of approximately 0.123 solar masses and a radius of only about 0.145 solar radii. Its interior is believed to be totally dependent on convection when it comes to transferring heat from the core to the exterior.

Discovered in 1915 by Robert Innes, the Director of the Union Observatory in Johannesburg, South Africa, the star was observed to have the same proper motion as Alpha Centauri. Further studies confirmed that it was in fact very close to Alpha Centauri. The current distance between the two is estimated to be about only 0.21 light years.

Here are some articles in Universe Today that talk about Proxima Centauri:

What is the nearest star to the Sun?

How far is the nearest star?

Can’t get enough of stars? Here’s Hubblesite’s News Releases about Stars, and here’s the stars and galaxies homepage..

We have recorded several episodes of Astronomy Cast about stars. Here are two that you might find helpful: Episode 12: Where Do Baby Stars Come From, and Episode 13: Where Do Stars Go When they Die?

Source: Wikipedia