James Webb is a GO for Cycle 2 Observations!

Artist conception of the James Webb Space Telescope. Credit: NASA GSFC/CIL/Adriana Manrique Gutierrez

The James Webb Space Telescope (JWST) has accomplished some amazing things during its first year of operations! In addition to taking the most detailed and breathtaking images ever of iconic celestial objects, Webb completed its first deep field campaign, turned its infrared optics on Mars and Jupiter, obtained spectra directly from an exoplanet’s atmosphere, blocked out the light of a star to reveal the debris disk orbiting it, detected its first exoplanet, and spotted some of the earliest galaxies in the Universe – those that existed at Cosmic Dawn.

Well, buckle up! The Space Telescope Science Institute (STScI) has just announced what Webb will be studying during its second year of operations – aka. Cycle 2! According to a recent STScI statement, approximately 5,000 hours of prime time and 1,215 hours of parallel time were awarded to General Observer (GO) programs. The programs allotted observation time range from studies of the Solar System and exoplanets to the interstellar and intergalactic medium, from supermassive black holes and quasars to the large-scale structure of the Universe.

Continue reading “James Webb is a GO for Cycle 2 Observations!”

eROSITA Sees Changes in the Most Powerful Quasar

Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva
Artist’s impression of a quasar. These all have supermassive black holes at their hearts. Credit: NOIRLab/NSF/AURA/J. da Silva

After almost seventy years of study, astronomers are still fascinated by active galactic nuclei (AGN), otherwise known as quasi-stellar objects (or “quasars.”) These are the result of supermassive black holes (SMBHs) at the center of massive galaxies, which cause gas and dust to fall in around them and form accretion disks. The material in these disks is accelerated to close to the speed of light, causing it to release tremendous amounts of radiation in the visible, radio, infrared, ultraviolet, gamma-ray, and X-ray wavelengths. In fact, quasars are so bright that they temporarily outshine every star in their host galaxy’s disk combined.

The brightest quasar observed to date, 100,000 billion times as luminous as our Sun, is known as SMSS J114447.77-430859.3 (J1144). This AGN is hosted by a galaxy located roughly 9.6 billion light years from Earth between the constellations Centaurus and Hydra. Using data from the eROSITA All Sky Survey and other space telescopes, an international team of astronomers conducted the first X-ray observations of J1144. This data allowed the team to investigate prevailing theories about AGNs that could provide new insight into the inner workings of quasars and how they affect their host galaxies.

Continue reading “eROSITA Sees Changes in the Most Powerful Quasar”

Galactic Black Hole Winds Blow Up to a Third the Speed of Light. The Impact on Their Galaxies is Impressive.

An artist’s impression of what the dust around a quasar might look like from a light year away. Credit Peter Z. Harrington

They are known as ultra-fast outflows (UFOs), powerful space winds emitted by the supermassive black holes (SMBHs) at the center of active galactic nuclei (AGNs) – aka. “quasars.” These winds (with a fun name!) move close to the speed of light (relativistic speeds) and regulate the behavior of SMBHs during their active phase. These gas emissions are believed to fuel the process of star formation in galaxies but are not yet well understood. Astronomers are interested in learning more about them to improve our understanding of what governs galactic evolution.

This is the purpose of the SUper massive Black hole Winds in the x-rAYS (SUBWAYS) project, an international research effort dedicated to studying quasars using the ESA’s XMM-Newton space telescope. The first results of this project were shared by a group of scholars led by the University of Bologna and the National Institute for Astrophysics (INAF) in Italy. In the paper that describes their findings, the team presented X-ray spectroscopic data to characterize the properties of UFOs in 22 luminous galaxies.

Continue reading “Galactic Black Hole Winds Blow Up to a Third the Speed of Light. The Impact on Their Galaxies is Impressive.”

Black Hole Event Horizons Can Get So Big it'll Boggle Your Imagination

An artist’s impression of an accretion disk rotating around an unseen supermassive black hole. Credit: Mark A. Garlick/Simons Foundation

In honor of Black Hole Week, NASA’s Scientific Visualization Studio has released an amazing video showing how several supermassive black holes scale with our solar system. It’s definitely worth checking out because it’s an excellent example of just how overwhelmingly huge some black holes are.

NASA Animation Sizes Up the Biggest Black Holes
Continue reading “Black Hole Event Horizons Can Get So Big it'll Boggle Your Imagination”

Hubble Sees Two Quasars Side by Side in the Early Universe

When it comes to the brightest, most powerful objects in the Universe, not much can beat a Quasar. A Gamma Ray Burst from a supernova might be more energetic, but doesn’t last very long. Quasars, by comparison, can churn out 1000 times the radiation of the Milky Way, and keep doing it for hundreds of millions of years.

They get all this energy from the supermassive black holes that live at the center of galaxies. As material falls towards the black hole, an accretion disk forms around it: a swirling cloud of energetic material which heats up through friction and releases electromagnetic radiation. The resulting Quasar can be so bright it drowns out the light from the rest of its galaxy from our perspective.

On April 5th, researchers announced the discovery of a rare double quasar in the early Universe. The two quasars are gravitationally bound, spiraling in towards each other. Their host galaxies are in the process of merging, and the supermassive black holes generating the quasars will also eventually collide and merge.

Continue reading “Hubble Sees Two Quasars Side by Side in the Early Universe”

Warm Carbon Increased Suddenly in the Early Universe. Made by the First Stars?

While previous studies have suggested a rise in warm carbon, much larger samples – the basis of the new study – were needed to provide statistics to accurately measure the rate of this growth.

According to the most widely-accepted model of cosmology, the Universe began roughly 13.8 billion years ago with the Big Bang. As the Universe cooled, the fundamental laws of physics (the electroweak force, the strong nuclear force, and gravity) and the first hydrogen atoms formed. By 370,000 years after the Big Bang, the Universe was permeated by neutral hydrogen and very few photons (the Cosmic Dark Ages). During the “Epoch of Reionization” that followed, the first stars and galaxies formed, reoinizing the neutral hydrogen and causing the Universe to become transparent.

For astronomers, the Epoch of Reionization still holds many mysteries, like when certain heavy elements formed. This includes the element carbon, a key ingredient in the formation of planets, an important element in organic processes, and the basis for life as we know it. According to a new study by the ARC Center of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), it appears that triply-ionized carbon (C iv) existed far sooner than previously thought. Their findings could have drastic implications for our understanding of cosmic evolution.

Continue reading “Warm Carbon Increased Suddenly in the Early Universe. Made by the First Stars?”

Ultra-Massive Black Holes: How Does the Universe Produce Objects So Massive?

Illustration of the supermassive black hole at the center of the Milky Way. Credit: NRAO/AUI/NSF
Illustration of the supermassive black hole at the center of the Milky Way. It's huge, with over 4 times the mass of the Sun. But ultramassive black holes are even more massive and can contain billions of solar masses. Image Credit: Credit: NRAO/AUI/NSF

Black holes are the most massive objects that we know of in the Universe. Not stellar mass black holes, not supermassive black holes (SMBHs,) but ultra-massive black holes (UMBHs.) UMBHs sit in the center of galaxies like SMBHs, but they have more than five billion solar masses, an astonishingly large amount of mass. The largest black hole we know of is Phoenix A, a UMBH with up to 100 billion solar masses.

How can something grow so massive?

Continue reading “Ultra-Massive Black Holes: How Does the Universe Produce Objects So Massive?”

For the First Time, Astronomers Spot Stars in Galaxies that Existed Just 1 Billion Years After the Big Bang

Artist impression of a powerful young quasar. Credit: ESO/M. Kornmesser Credit: ESO/M. Kornmesser

Since it launched on December 25th, 2021 (quite the Christmas present!), the James Webb Space Telescope (JWST) has taken the sharpest and most detailed images of the Universe, surpassing even its predecessor, the venerable Hubble Space Telescope! But what is especially exciting are the kinds of observations we can look forward to, where the JWST will use its advanced capabilities to address some of the most pressing cosmological mysteries. For instance, there’s the problem presented by high-redshift supermassive black holes (SMBHs) or brightly-shining quasars that existed during the first billion years of the Universe.

To date, astronomers have not been able to determine how SMBHs could have formed so soon after the Big Bang. Part of the problem has been that, until recently, stars in host galaxies with redshift values of Z>2 (within 10.324 billion light-years) have been elusive. But thanks to the JWST, an international team of astronomers recently observed stars in quasars at Z>6 (within 12.716 billion light-years) for the first time. Their observations could finally allow astronomers to assess the processes in early quasars that governed the formation and evolution of the first SMBHs.

Continue reading “For the First Time, Astronomers Spot Stars in Galaxies that Existed Just 1 Billion Years After the Big Bang”

Quasars Produce Giant Jets That Focus Like Lasers. Why They Focus is Still a Mystery, but it’s not Coming From the Galaxy Itself

New technologies bring new astronomical insights, which is especially satisfying when they help answer debates that have been ongoing for decades. One of those debates is why exactly the plasma emitted from pulsars “collimates” or is brought together in a narrow beam. While it doesn’t provide a definitive answer to that question, a new paper from an international group of scientists points to a potential solution, but it will require even more advanced technologies.

Continue reading “Quasars Produce Giant Jets That Focus Like Lasers. Why They Focus is Still a Mystery, but it’s not Coming From the Galaxy Itself”

A Black Hole is Hurling a jet of Material at its Neighboring Galaxy

Artist view of an active supermassive black hole. Credit: ESO/L. Calçada

It’s been a banner time for black hole research! In recent months, astrophysicists have announced the discovery of the most powerful gamma-ray burst ever recorded (due to the formation of a black hole), a monster black hole in our cosmic backyard, the frame-dragging effects of a binary black hole, and the remains of the 2017 Kilonova event (spoiler alert: it was a black hole). And with the help of citizen scientists, a team of astronomers recently discovered a unique black hole in a galaxy roughly one billion light-years away that’s hurling a relativistic jet at another galaxy.

Continue reading “A Black Hole is Hurling a jet of Material at its Neighboring Galaxy”