Scientists Propose a New Kind of Planet: A Smashed Up Torus of Hot Vaporized Rock

Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone
Artist's impression of a Mars-sized object crashing into the Earth, starting the process that eventually created our Moon. Credit: Joe Tucciarone

There’s a new type of planet in town, though you won’t find it in well-aged solar systems like our own. It’s more of a stage of formation that planets like Earth can go through. And its existence helps explain the relationship between Earth and our Moon.

The new type of planet is a huge, spinning, donut-shaped mass of hot, vaporized rock, formed as planet-sized objects smash into each other. The pair of scientists behind the study explaining this new planet type have named it a ‘synestia.’ Simon Lock, a graduate student at Harvard University, and Sarah Stewart, a professor in the Department of Earth and Planetary Sciences at the University of California, Davis, say that Earth was at one time a synestia.

Rocky planets like Earth are accreted from smaller bodies over time. Objects with high energy and high angular momentum could form a synestia, a transient stage in planetary formation where vaporized rock orbits the rest of the body. In this image, each of the three stages has the same mass. Image: Simon Lock, Harvard University
Rocky planets like Earth are accreted from smaller bodies over time. Objects with high energy and high angular momentum could form a synestia, a transient stage in planetary formation where vaporized rock orbits the rest of the body. In this image, each of the three stages has the same mass. Image: Simon Lock, Harvard University

The current theory of planetary formation goes like this: When a star forms, the left-over material is in motion around the star. This left-over material is called a protoplanetary disk. The material coagulates into larger bodies as the smaller ones collide and join together.

As the bodies get larger and larger, the force of their collisions becomes greater and greater, and when two large bodies collided, their rocky material melts. Then, the newly created body cools, and becomes spherical. It’s understood that this is how Earth and the other rocky planets in our Solar System formed.

Lock and Stewart looked at this process and asked what would happen if the resulting body was spinning quickly.

When a body is spinning, the law of conservation of angular momentum comes into play. That law says that a spinning body will spin until an external torque slows it down. The often-used example from figure skating helps explain this.

If you’ve ever watched figure skaters, and who hasn’t, their actions are very instructive. When a single skater is spinning rapidly, she stretches out her arms to slow the rate of spin. When she folds her arms back into her body, she speeds up again. Her angular momentum is conserved.

This short video shows figure skaters and physics in action.

If you don’t like figure skating, this one uses the Earth to explain angular momentum.

Now take the example from a pair of figure skaters. When they’re both turning, and the two of them join together by holding each other’s hands and arms, their angular momentum is added together and conserved.

Replace two figure skaters with two planets, and this is what the two scientists behind the study wanted to model. What would happen if two large bodies with high energy and high angular momentum collided with each other?

If the two bodies had high enough temperatures and high enough angular momentum, a new type of planetary structure would form: the synestia. “We looked at the statistics of giant impacts, and we found that they can form a completely new structure,” Stewart said.

“We looked at the statistics of giant impacts, and we found that they can form a completely new structure.” – Professor Sarah Stewart, Department of Earth and Planetary Sciences at the University of California, Davis.

As explained in a press release from the UC Davis, for a synestia to form, some of the vaporized material from the collision must go into orbit. When a sphere is solid, every point on it is rotating at the same rate, if not the same speed. But when some of the material is vaporized, its volume expands. If it expands enough, and if its moving fast enough, it leaves orbit and forms a huge disc-shaped synestia.

Other theories have proposed that two large enough bodies could form an orbiting molten mass after colliding. But if the two bodies had high enough energy and temperature to vaporize some of the rock, the resulting synestia would occupy a much larger space.

“The main issue with looking for synestias around other stars is that they don’t last a long time. These are transient, evolving objects that are made during planet formation.” – Professor Sarah Stewart, UC Davis.

These synestias likely wouldn’t last very long. They would cool quickly and condense back into rocky bodies. For a body the size of Earth, the synestia might only last one hundred years.

The synestia structure sheds some light on how moons are formed. The Earth and the Moon are very similar in terms of composition, so it’s likely they formed as a result of a collision. It’s possible that the Earth and Moon formed from the same synestia.

These synestias have been modelled, but they haven’t been observed. However, the James Webb Space Telescope will have the power to peer into protoplanetary disks and watch planets forming. Will it observe a synestia?

“These are transient, evolving objects that are made during planet formation.” – Professor Sarah Stewart, UC Davis

In an email exchange with Universe Today, Dr. Sarah Stewart of UC Davis, one of the scientists behind the study, told us that “The main issue with looking for synestias around other stars is that they don’t last a long time. These are transient, evolving objects that are made during planet formation.”

“So the best bet for finding a rocky synestia is young systems where the body is close to the star. For gas giant planets, they may form a synestia for a period of their formation. We are getting close to being able to image circumplanetary disks in other star systems.”

Once we have the ability to observe planets forming in their circumstellar disks, we may find that synestias are more common than rare. In fact, planets may go through the synestia stage multiple times. Dr. Stewart told us that “Based on the statistics presented in our paper, we expect that most (more than half) of rocky planets that form in a manner similar to Earth became synestias one or more times during the giant impact stage of accretion.”

Finally, the Missing Link in Planetary Formation!

This artist's illustration shows planetisimals around a young star. New research shows that planetesimals are blasted by headwind, losing debris into space. Image Credit: NASA/JPL

The theory of how planets form has been something of an enduring mystery for scientists. While astronomers have a pretty good understanding of where planetary systems comes from – i.e. protoplanetary disks of dust and gas around new stars (aka. “Nebular Theory“) – a complete understanding of how these discs eventually become objects large enough to collapse under their own gravity has remained elusive.

But thanks to a new study by a team of researchers from France, Australia and the UK, it seems that the missing piece of the puzzle may finally have been found. Using a series of simulations, these researchers have shown how “dust traps” – i.e. regions where pebble-sized fragments could collect and stick together – are common enough to allow for the formation of planetesimals.

Their study, titled “Self-Induced Dust Traps: Overcoming Planet Formation Barriers“, appeared recently in the Monthly Notices of the Royal Astronomical Society. Led by Dr. Jean-Francois Gonzalez – of the Lyon Astrophysics Research Center (CRAL) in France – the team examined the troublesome middle-stage of planetary formation that has plagued scientists.

An image of a protoplanetary disk, made using results from the new model, after the formation of a spontaneous dust trap, visible as a bright dust ring. Gas is depicted in blue and dust in red. Credit: Jean-Francois Gonzalez.

Until recently, the process by which protoplanetary disks of dust and gas aggregate to form peddle-sized objects, and the process by which planetesimals (objects that are one hundred meters or more in diameter) form planetary cores, have been well understood. But the process that bridges these two – where pebbles come together to form planetesimals – has remained unknown.

Part of the problem has been the fact that the Solar System, which has been our only frame of reference for centuries, formed billions of years ago. But thanks to recent discoveries (3453 confirmed exoplanets and counting), astronomers have had lots of opportunities to study other systems that are in various stages of formation. As Dr. Gonzalez explained in a Royal Astronomical Society press release:

“Until now we have struggled to explain how pebbles can come together to form planets, and yet we’ve now discovered huge numbers of planets in orbit around other stars. That set us thinking about how to solve this mystery.”

In the past, astronomers believed that “dust traps” – which are integral to planet formation – could only exist within certain environments. In these high-pressure regions, large grains of dust are slowed down to the point where they are able to come together. These regions are extremely important since they counteract the two main obstacles to planetary formation, which are drag and high-speed collisions.

Artist’s impression of the planets in our solar system, along with the Sun (at bottom). Credit: NASA

Drag is caused by the effect gas has on dust grains, which causes them to slow down and eventually drift into the central star (where they are consumed). As for high-speed collisions, this is what causes large pebbles to smash into each other and break apart, thus reversing the aggregation process. Dust traps are therefore needed to ensure that dust grains are slowed down just enough so that they won’t annihilate each other when they collide.

To see just how common these dust traps were, Dr. Gonzalez and his colleagues conducted a series of computer simulations that took into account how dust in a protoplanetary disk could exert drag on the gas component – a process known as “aerodynamic drag back-reaction”. Whereas gas typically has an arresting influence on dust particles, in particularly dusty rings, the opposite can be true.

This effect has been largely ignored by astronomers up until recently, since its generally quite negligible. But as the team noted, it is an important factor in protoplanetary disks, which are known for being incredibly dusty environments. In this scenario, the effect of back-reaction is to slow inward-moving dust grains and push gas outwards where it forms high-pressure regions – i.e. “dust traps”.

Once they accounted for these effects, their simulations showed how planets form in three basic stages. In the first stage, dust grains grow in size and move inwards towards the central star. In the second, the now pebble-sized larger grains accumulate and slow down. In the third and final stage, the gas is pushed outwards by the back-reaction, creating the dust trap regions where it accumulates.

Illustration showing the stages of the formation mechanism for dust traps. Credit: © Volker Schurbert.

These traps then allow the pebbles to aggregate to form planetesimals, and eventually planet-sized worlds. With this model, astronomers now have a solid idea of how planetary formation goes from dusty disks to planetesimals coming together. In addition to resolving a key question as to how the Solar System came to be, this sort of research could prove vital in the study of exoplanets.

Ground-based and space-based observatories have already noted the presence of dark and bright rings that are forming in protoplanetary disks around distant stars – which are believed to be dust traps. These systems could provide astronomers with a chance to test this new model, as they watch planets slowly come together. As Dr. Gonzalez indicated:

“We were thrilled to discover that, with the right ingredients in place, dust traps can form spontaneously, in a wide range of environments. This is a simple and robust solution to a long standing problem in planet formation.”

Further Reading: Royal Astronomical Society, MNRAS

Surprise! Fomalhaut’s Kid Sister Has a Debris Disk Too

Image Credit: Amanda Smith

The bright star Fomalhaut hosts a spectacular debris disk: a dusty circling plane of small objects where planets form. At a mere 25 light-years away, we’ve been able to pinpoint detailed features: from the warm disk close by to the further disk that is comparable to the Solar System’s Kuiper belt.

But Fomalhaut never ceases to surprise us. At first we discovered a planet, Fomalhaut b, which orbits in the clearing between the two disks. Then we discovered that Fomalhaut was not a single star or a double star, but a triplet.  The breaking news today, however, is that we have discovered a mini debris disk around the third star.

Fomalhaut is massive, weighing in at 1.9 times the mass of the Sun. And at such a close distance it’s one of the brightest stars in the southern sky. But its two companions are much smaller. The second star, Fomalhaut B, is 0.7 times the mass of the Sun and the third star, Fomalhaut C, a small red dwarf, is 0.2 times the mass of the Sun.

Fomalhaut C orbits Fomalhaut A at a distance of 2.5 light-years, or roughly half the distance from the Sun to the closest neighboring star.  It was only confirmed to be gravitationally bound to Fomalhaut A and Fomalhaut B in October of last year.

“The disk around Fomalhaut C was a complete surprise,” lead researcher Grant Kennedy of the University of Cambridge told Universe Today. “This is only the second system in which disks around two separate stars have been discovered.”

Relatively cool dust and ice particles are much brighter at long wavelengths, allowing telescopes like the Herschel Space Telescope, to pick up the excess infrared light. However, Herschel has a much poorer resolution than an optical telescope so the image of Fomalhaut C’s disk is not spatially resolved — meaning the brightness of the disk could be measured but not its structure.

Kennedy’s team’s best guess is that the disk is quite cold, around 24 degrees Kelvin and pretty small, orbiting to and extent of 10 times the distance from the Earth to the Sun. But it’s likely that it’s similar to Fomalhaut A’s disk in that it’s bright, elliptical, and slightly offset from its host star. All three characteristics suggest that gravitational perturbations may be destabilizing the cometary orbits within the disks.

“As a stellar system Fomalhaut’s gotten very interesting in the last year,” Kennedy said. With two wide companions “it’s not obvious how the configuration came about. Forming one wide companion is not so hard, but getting a second is very unlikely. So we need to come up with a new mechanism.”

Kennedy is currently working on figuring out what exactly this “new mechanism” is and he thinks the debris disk around Fomalhaut C will provide a few helpful hints. His best guess is still under construction but it’s likely that a small star is disturbing the system.

The next step will be to watch the stellar system over the next few years in order to measure their orbits exactly. With precise motions we just might be able to see what is interrupting the system.

“We think these observations will provide a good test of the theory,” Kennedy told Universe Today. They just might “solve the mystery of why the Fomalhaut system looks like it does.”

The paper has been published in the Monthly Notices of the Royal Astronomical Society and is available for download here.

Rogue Planets Can Find Homes Around Other Stars

In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)
In this artist's conception, a rogue planet drifts through space. Credit: Christine Pulliam (CfA)

[/caption]

As crazy as it sounds, free-floating rogue planets have been predicted to exist for quite some time and just last year, in May 2011, several orphan worlds were finally detected. Then, earlier this year, astronomers estimated that there could be 100,000 times more rogue planets in the Milky Way than stars. Now, the latest research suggests that sometimes, these rogue, nomadic worlds can find a new home by being captured into orbit around other stars. Scientists say this finding could explain the existence of some planets that orbit surprisingly far from their stars, and even the existence of a double-planet system.

“Stars trade planets just like baseball teams trade players,” said Hagai Perets of the Harvard-Smithsonian Center for Astrophysics.

Astronomers now understand that rogue planets are a natural consequence of both star and planetary formation. Newborn star systems often contain multiple planets, and if two planets interact, one can be ejected in a form of planetary billiards, kicked out of the star system to become an interstellar traveler.

But later, if a rogue planet encounters a different star moving in the same direction at the same speed, be captured into orbit around that star, say Perets and Thijs Kouwenhoven of Peking University, China, the authors of a new paper in The Astrophysical Journal.

A captured planet tends to end up hundreds or thousands of times farther from its star than Earth is from the Sun. It’s also likely to have a, orbit that’s tilted relative to any native planets, and may even revolve around its star backward.

Perets and Kouwenhoven simulated young star clusters containing free-floating planets. They found that if the number of rogue planets equaled the number of stars, then 3 to 6 percent of the stars would grab a planet over time. The more massive a star, the more likely it is to snag a planet drifting by.

While there haven’t actually been planets found yet that are definitely a ‘captured’ world, the best bet would perhaps be a planet in a distant orbit around a low-mass star. The star’s disk wouldn’t contain enough material to form a planet that distant, Perets and Kouwenhoven said.

The best evidence of a captured planet comes from the European Southern Observatory, which announced in 2006 the discovery of two planets (weighing 14 and 7 times Jupiter) orbiting each other without a star.

“The rogue double-planet system is the closest thing we have to a ‘smoking gun’ right now,” said Perets. “To get more proof, we’ll have to build up statistics by studying a lot of planetary systems.”

As for our own solar system, there’s no evidence at this time that our Sun could have captured an alien world, which would lie far beyond Pluto.

“There’s no evidence that the Sun captured a planet,” said Perets. “We can rule out large planets. But there’s a non-zero chance that a small world might lurk on the fringes of our solar system.”

Read the team’s paper.

Source: CfA

‘Nomad’ Planets Could Outnumber Stars 100,000 to 1

An artistic rendition of a nomad object wandering the interstellar medium. Credit: Greg Stewart / SLAC National Accelerator Laboratory

[/caption]

Could the number of wandering planets in our galaxy – planets not orbiting a sun — be more than the amount of stars in the Milky Way? Free-floating planets have been predicted to exist for quite some time and just last year, in May 2011, several orphan worlds were finally detected. But now, the latest research concludes there could be 100,000 times more free-floating planets in the Milky Way than stars. Even though the author of the study, Louis Strigari from the Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), called the amount “an astronomical number,” he said the math is sound.

“Even though this is a large number, it is actually consistent with the amount of mass and heavy elements in our galaxy,” Strigari told Universe Today. “So even though it sounds like a big number, it puts into perspective that there could be a lot more planets and other ‘junk’ out in our galaxy than we know of at this stage.”

And by the way, these latest findings certainly do not lend any credence to the theory of a wandering planet named Nibiru.

Several studies have suggested that our galaxy could perhaps be swarming with billions of these wandering “nomad” planets, and the research that actually found a dozen or so of these objects in 2011 used microlensing to identify Jupiter-sized orphan worlds between 10,000 and 20,000 light-years away. That research concluded that based on the number of planets identified and the area studied, they estimated that there could literally be hundreds of billions of these lone planets roaming our galaxy….literally twice as many planets as there are stars.

But the new study from Kavli estimates that lost, homeless worlds may be up to 50,000 times more common than that.

Using mathematical extrapolations and relying on theoretical variables, Strigari and his team took into account the known gravitational pull of the Milky Way galaxy, the amount of matter available to make such objects and how that matter might be distributed into objects ranging from the size of Pluto to larger than Jupiter.

“What we did was we put together the observations of what the galaxy is made of, what kind of elements it has, as well as how much mass there could possibly be that has been deduced from the gravitational pull from the stars we observed,” Stigari said via phone. “There are a couple of general bounds we used: you can’t have more nomads in the galaxy than the matter we observe, as well as you probably can’t have more than the amount of so called heavy elements than we observe in the galaxy (anything greater that helium on the periodic table).”

But any study of this type is limited by the lack of understanding of planetary formation.

“We don’t at this stage have a good theory that tells us how planets form,” Strigari said, “so it is difficult to predict from a straight theoretical model how many of these objects might be wandering around the galaxy.”

Strigari said their approach was largely empirical. “We asked how many could there possibly be, consistent with the broad constraints, that gives us a limit to how many these objects could possibly exist.”

So, in absence of any theory that really predicts how many of these things should exist, the estimate of 100,000 times the amount of stars in the Milky Way is an upper limit.

“A lot of times in science and astronomy, in order to learn what the galaxy and universe is made of, we first have to ask questions, what is it not made of, and so you start from an upper bound of how many of these planets there could be,”Strigari said. “Maybe when our data gets better we will start reducing this limit and then we can start learning from empirical observations and start having more constrained observations that go into your theoretical models.”

In other words, Strigari said, it doesn’t mean this is the final answer, but this is the state of our knowledge right now. “It kind of quantifies our ignorance, you could say,” he said.

A good count, especially of the smaller objects, will have to wait for the next generation of big survey telescopes, especially the space-based Wide-Field Infrared Survey Telescope and the ground-based Large Synoptic Survey Telescope, both set to begin operation in the early 2020s.

So, where did all these potential free range planets come from? One option is that they formed like stars, directly from the collapse of interstellar gas clouds. According to Strigari some were probably ejected from solar systems. Some research has indicated that ejected planets could be rather common, as planets tend to migrate over time towards the star, and as they plow through the material left over from the solar system’s formation, any other planet between them and their star will be affected. Phil Plait explained it as, “some will shift orbit, dropping toward the star themselves, others will get flung into wide orbits, and others still will be tossed out of the system entirely.”

Don’t worry – our own solar system is stable now, but it could have happened in the past, and some research has suggested we originally started out with more planets in our solar system, but some may have been ejected.

Of course, when discussing planets, the first thing to pop into many people’s minds is if a wandering planet could be habitable.

“If any of these nomad planets are big enough to have a thick atmosphere, they could have trapped enough heat for bacterial life to exist,” Strigari said. Although nomad planets don’t bask in the warmth of a star, they may generate heat through internal radioactive decay and tectonic activity.

As far as a Nibiru-type wandering world in our solar system right now the answer is no. There is no evidence or scientific basis whatsoever for such a planet. If it was out there and heading towards Earth for a December 21, 2012 meetup, we would have seen it or its effects by now.

Sources: Stanford University, conversation with Louis Strigari

Scientists Find New Clues About the Interiors of ‘Super-Earth’ Exoplanets

Artist's conception of "Super-Earth" exoplanet Kepler-22b, which is about 2.4 times larger than Earth. Credit: NASA.

[/caption]

As we learned in science class in school, the Earth has a molten interior (the outer core) deep beneath its mantle and crust. The temperatures and pressures are increasingly extreme, the farther down you go. The liquid magmas can “melt” into different types, a process referred to as pressure-induced liquid-liquid phase separation. Graphite can turn into diamond under similar extreme pressures. Now, new research is showing that a similar process could take place inside “Super-Earth” exoplanets, rocky worlds larger than Earth, where a molten magnesium silicate interior would likely be transformed into a denser state as well.

Simply put, the magnesium silicate undergoes what’s called a phase change while in the liquid state. The scientists were able to replicate the extreme temperatures and pressures that would be found inside those exoplanets by using the Janus laser at the Lawrence Livermore National Laboratory and OMEGA at the University of Rochester. A powerful laser pulse generated a shock wave as it passed through the samples. Changes in the velocity of the shock and the temperature of the sample indicated when a phase change was detected.

Interestingly, the different liquid states of the silicate magma in the experiments showed different physical properties under high pressures and temperatures, even though they were still of the same composition. Due to varying densities, the different liquid states tended to want to separate, much like oil and water.

The findings should help to better understand the interiors of terrestrial-type exoplanets, whether they are “Super-Earths” or smaller, like Earth or Mars.

Lead scientist Dylan Spaulding, at the University of California, Berkeley, states: “Phase changes between different types of melts have not been taken into account in planetary evolution models. But they could have played an important role during Earth’s formation and may indicate that extra-solar ‘Super-Earth’ planets are structured differently from Earth.”

The paper was published in the February 10, 2012 edition of the journal Physical Review Letters.

Carbon “Super Earths” – Diamond Planets

Iron, carbon, and oxygen subjected to intense temperatures and pressures form a pocket of iron oxide (bottom, center) and a darker pocket of diamond (bottom, right). Electron micrograph courtesy of Ohio State University

[/caption]During a laboratory experiment at Ohio State University, researchers were simulating the pressures and conditions necessary to form diamonds in the Earth’s mantle when they came across a surprise… A carbon “Super Earth” could exist. While endeavoring to understand how carbon might behave in other solar systems, they wondered if planets high in this element could be pressurized to the point of producing this valuable gemstone. Their findings point to the possibility that the Milky Way could indeed be home to stars where planets might consist of up to 50% diamond.

The research team is headed by Wendy Panero, associate professor in the School of Earth Sciences at Ohio State, and doctoral student Cayman Unterborn. As part of their investigation they incorporated their findings from earlier experiments into a computer modeling simulation. This was then used to create scenarios where planets existed with a higher carbon content than Earth..

The result: “It’s possible for planets that are as big as fifteen times the mass of the Earth to be half made of diamond,” Unterborn said. He presented the study Tuesday at the American Geophysical Union meeting in San Francisco.

“Our results are striking, in that they suggest carbon-rich planets can form with a core and a mantle, just as Earth did,” Panero added. “However, the cores would likely be very carbon-rich – much like steel – and the mantle would also be dominated by carbon, much in the form of diamond.”

At the center of our planet is an assumed molten iron core, overlaid with a mantle of silica-based minerals. This basic building block of Earth is what condensed from the materials in our solar cloud. In an alternate situation, a planet could form in a carbon-rich environment, thereby having a different planet structure – and a different potential for life. (Fortunately for us, our molten interior provides geothermal energy!) On a diamond planet, the heat would dissipate quickly – leading to a frozen core. On this basis, a diamond planet would have no geothermal resources, lack plate tectonics and wouldn’t be able to support either an atmosphere or a magnetic field.

“We think a diamond planet must be a very cold, dark place,” Panero said.

How did they come up with their findings? Panero and former graduate student Jason Kabbes took a miniature sample of iron, carbon, and oxygen and subjected it to pressures of 65 gigapascals and temperatures of 2,400 Kelvin (close to 9.5 million pounds per square inch and 3,800 degrees Fahrenheit – conditions similar to the Earth’s deep interior). As they observed the experiment microscopically, they saw oxygen bonding with iron to create rust… but what was left turned to pure carbon and eventually formed diamond. This led them to wonder about planetary formation implications.

“To date, more than five hundred planets have been discovered outside of our solar system, yet we know very little about their internal compositions,” said Unterborn, who is an astronomer by training.

“We’re looking at how volatile elements like hydrogen and carbon interact inside the Earth, because when they bond with oxygen, you get atmospheres, you get oceans – you get life,” Panero said. “The ultimate goal is to compile a suite of conditions that are necessary for an ocean to form on a planet.”

But don’t confuse their findings with recent, unrelated studies which involves the remnants of an expired star from a binary system. The OSU team’s finding simply suggest this type of planet could form in our galaxy, but how many or where they might be is still very open to interpretation. It’s a question that’s being investigated by Unterborn and Ohio State astronomer Jennifer Johnson.

Because diamonds are forever…

Original Story Source: Ohio State Research News.

Asteroid Lutetia… A Piece Of Earth?

This image of the unusual asteroid Lutetia was taken by ESA’s Rosetta probe during its closest approach in July 2010. Lutetia, which is about 100 kilometres across, seems to be a leftover fragment of the same original material that formed the Earth, Venus and Mercury. It is now part of the main asteroid belt, between the orbits of Mars and Jupiter, but its composition suggests that it was originally much closer to the Sun. Credit: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/UPM/DASP/IDA

[/caption]

According to data received from ESA’s Rosetta spacecraft, ESO’s New Technology Telescope, and NASA telescopes, strange asteroid Lutetia could be a real piece of the rock… the original material that formed the Earth, Venus and Mercury! By examining precious meteors which may have formed at the time of the inner Solar System, scientists have found matching properties which indicate a relationship. Independent Lutetia must have just moved its way out to join in the main asteroid belt…

A team of astronomers from French and North American universities have been hard at work studying asteroid Lutetia spectroscopically. Data sets from the OSIRIS camera on ESA’s Rosetta spacecraft, ESO’s New Technology Telescope (NTT) at the La Silla Observatory in Chile, and NASA’s Infrared Telescope Facility in Hawaii and Spitzer Space Telescope have been combined to give us a multi-wavelength look at this very different space rock. What they found was a very specific type of meteorite called an enstatite chondrite displayed similar content which matched Lutetia… and what is theorized as the material which dates back to the early Solar System. Chances are very good that enstatite chondrites are the same “stuff” which formed the rocky planets – Earth, Mars and Venus.

“But how did Lutetia escape from the inner Solar System and reach the main asteroid belt?” asks Pierre Vernazza (ESO), the lead author of the paper.

It’s a very good question considering that an estimated less than 2% of the material which formed in the same region of Earth migrated to the main asteroid belt. Within a few million years of formation, this type of “debris” had either been incorporated into the gelling planets or else larger pieces had escaped to a safer, more distant orbit from the Sun. At about 100 kilometers across, Lutetia may have been gravitationally influenced by a close pass to the rocky planets and then further affected by a young Jupiter.

“We think that such an ejection must have happened to Lutetia. It ended up as an interloper in the main asteroid belt and it has been preserved there for four billion years,” continues Pierre Vernazza.

Asteroid Lutetia is a “real looker” and has long been a source of speculation due to its unusual color and surface properties. Only 1% of the asteroids located in the main belt share its rare characteristics.

“Lutetia seems to be the largest, and one of the very few, remnants of such material in the main asteroid belt. For this reason, asteroids like Lutetia represent ideal targets for future sample return missions. We could then study in detail the origin of the rocky planets, including our Earth,” concludes Pierre Vernazza.

Original Story Source: ESO News Release.

Planetary Pinball – Uranus Gets The “Tilt”

Between 3 to 4 billion years ago, a body twice the size of Earth impacted Uranus, knocking the ice giant onto its side. Image Credit: Jacob A. Kegerreis/Durham University
Near-infrared views of Uranus reveal its otherwise faint ring system, highlighting the extent to which it is tilted. Credit: Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.

[/caption]

Popular theory on how Uranus ended up with a highly eccentric axis has always been pretty standard – one giant blow. However, at today’s (October 6) EPSC-DPS Joint Meeting in Nantes, astronomers are thinking things may have occurred slightly differently. Instead of a singular impact, the glowing blue-green gas giant may have been the victim of a series of smaller punches.

At a 98 degree inclination, Uranus and its satellites have always been somewhat of a mystery to planetary scientists. While many of the Solar Systems planets have an inclined axis, none can compare with nearly being on its side. It has always been popular conjecture that Uranus was plastered that way at some point in its evolution by a body a few times larger than Earth. While this seems plausible, only one hole remains in the theory. Why did its moons take on the same inclination instead of staying in their original position?

This long-standing puzzle may have been solved by an international team of scientists led by Alessandro Morbidelli (Observatoire de la Cote d’Azur in Nice, France). Their theory relies on computer modeling – and the thought the impact might have occurred while Uranus was still forming. If the simulations are correct and the strike happened when the planet was still surrounded by a protoplanetary disk, ” the disk would have reformed into a fat doughnut shape around the new, highly-tilted equatorial plane. Collisions within the disk would have flattened the doughnut, which would then go onto form the moons in the positions we see today.”

But that’s not a neat answer. Just like throwing a tilt into pinball, the game changes. In this new scheme, the moons displayed retrograde motion – precisely the opposite of the way things are now. So what’s a player to do? Change the game again by re-arranging the parameters. By adding multiple strikes to Uranus – instead of just one large – the satellites now behave as we observe them.

Of course, when you “tilt” the game is over, and the new research doesn’t jive with current theories of planetary formation. This may mean re-writing the rules again. Morbidelli elaborates: “The standard planet formation theory assumes that Uranus, Neptune and the cores of Jupiter and Saturn formed by accreting only small objects in the protoplanetary disk. They should have suffered no giant collisions. The fact that Uranus was hit at least twice suggests that significant impacts were typical in the formation of giant planets. So, the standard theory has to be revised.”

That deaf, dumb and blind kid… Sure plays a mean pinball!

Original Story Source: Europlanet News Release.

Zooming in on Proto-Planetary Disks

On the road to planetary formation, the first step is an accretion disk around a proto-star. Such disks, known as proplyds, are frequently detected in star forming regions like the Orion nebula providing an understanding of the early life of planetary systems. The telltale hint that they exist is the warm infrared glow of the forming (or perhaps nearly formed) star heating the gas and dust, but although many have been detected this way, few have been observed with resolution that makes out any details on the disk itself. A new study aims to help add to the understanding of these systems with spatially resolved observations of two proplyds, including one already known to be host to a multiple planet system.

The two new systems under study are HD 107146 and HR 8799. The latter of these two systems is notable for having four known planets which have been directly imaged previously. HD 107146 is relatively close to our solar system, being only 28.5 pc away. This young star is similar to the Sun in mass and composition and is estimated to be somewhere between 80 and 200 million years young. Previous studies have examined this system’s disk and revealed that it is composed of nearly as much dust as there is gas, which means that much of the gas has likely been either accreted or stripped. Although not directly detected, the earlier studies have also suggested that the system may be hiding young planets. The evidence for this comes from possible banding in the disk. This is interpreted as similar to the rings and gaps in Saturn’s system, caused by shepherding moons, except in this case, the moon’s role would be fulfilled by planets creating resonances.

The new research, led by Meredith Hughes from the University of California, Berkeley, confirmed the presence of the disk around the star and found its brightness peaked at a distance of about 100 AU from the parent star (more than twice the average orbital distance of Pluto). Overall, their observations match models with a “broad ring extending from 50 to 170 AU”.

When looking at HR 8799’s disk, the team was given four nights, but due to poor weather, only one night’s worth of data from the Submillimeter Array atop Mauna Kea. The reduced amount of data left high uncertainties in the subsequent analysis. While the team attempted to search for banding that could induced by planets, the team was unable to find any. A study published earlier this year by a team at the University of Exeter also examined the HR 8799 disk and reported a slightly brighter clump on one side. The new study finds a similar clump but cautions that, due to the still poor observations of this system, the result may be suspect. A similar case happened when astronomers studied Vega’s dust disk and reported finding clumpy structure when it was, in reality, it was nothing but statistical noise.

These results, as well as the previous ones from the Exeter team and observations from Spitzer have suggested that the dust ring extends out to as far as 250 AU, and as far inwards as 80, but it is likely the inner radius is closer to 150 AU. If the inner radius is the correct value, this places it at roughly the limit that it could be shaped by the outermost planet HR 8799b which lies at just under 70 AU.