The Early Solar System Had a Gap Where the Asteroid Belt is Today

An MIT study suggests that a mysterious gap existed within the solar system’s protoplanetary disk around 4.567 billion years ago, and likely shaped the composition of the solar system’s planets. This image shows an artist’s interpretation of a protoplanetary disk. Image Credit: National Science Foundation, A. Khan

Wind the cosmic clock back a few billion years and our Solar System looked much different than it does today. About 4.5 billion years ago, the young Sun shone much like it does now, though it was a little smaller. Instead of being surrounded by planets, it was ensconced in a swirling disk of gas and dust. That disk is called a protoplanetary disk and it’s where the planets eventually formed.

There was a conspicuous gap in the early Solar System’s protoplanetary disk, between where Mars and Jupiter are now, and where the modern-day asteroid belt sits. What exactly caused the gap is a mystery, but astronomers think it’s a sign of the processes that governed planet formation.

Continue reading “The Early Solar System Had a Gap Where the Asteroid Belt is Today”

The Early Solar System was Messier and More Violent Than Previously Believed

This artwork shows a rocky planet being bombarded by comets. Image credit: NASA/JPL-Caltech

Our conventional models of planet formation may have to be updated, according to a pair of new papers.

Accretion is the keyword in current planet formation theory. The idea is that the planets formed out of the solar nebula, the material left over after the Sun formed. They did this through accretion, where small particles accumulate into more massive objects. These massive boulder-sized objects, called planetesimals, continued to merge together into larger entities, sometimes through collisions. Eventually, through repeated mergers and collisions, the inner Solar System was populated by four rocky planets.

But the new research suggests that the collisions played out much differently than thought and that objects collided with each other several times, in a series of hit and runs, before merging. This research fills some stubborn holes in our current understanding.

Continue reading “The Early Solar System was Messier and More Violent Than Previously Believed”

There Should be More Material Left Over From Bombardment Eras. Maybe the Sun Blew it all Away?

This artwork shows a rocky planet being bombarded by comets. Image credit: NASA/JPL-Caltech

The early solar system was an especially violent place. The terrestrial planets (Mercury, Venus, Earth, and Mars) likely formed by suffering countless collisions between planetesimals. But the material left over from all those collisions should have remained in orbit around the sun, where it would’ve eventually found itself in the asteroid belt. But the belt contains no such record of that process.

Continue reading “There Should be More Material Left Over From Bombardment Eras. Maybe the Sun Blew it all Away?”

Many Sunlike Stars Gobbled up Some of Their Planets

New research shows that other sunlike stars in our galaxy aren’t so kind to their planets. Up to a quarter of them may consume planets before they even establish a solar system. That consumption leaves behind a distinct chemical fingerprint in the stars, which can help researchers understand how common planetary systems are…and how often they get destroyed.

Continue reading “Many Sunlike Stars Gobbled up Some of Their Planets”

This is how you get Tatooines. Binary Star Planet Formation

One of the less appreciated aspects of George Lucas’ vision for Star Wars was that he predicted the existence of planets in binary star systems years before we saw even the first exoplanet.  Now a team from the University of Cambridge and the Max Planck Institute for Extra-terrestrial Physics have found how exactly those planets can form without being torn apart by their accompanying suns.

Continue reading “This is how you get Tatooines. Binary Star Planet Formation”

The Sun is Mellow Yellow Today. Billions of Years Ago? Not So Much

Planetary formation theory has been undergoing a lot of changes recently, with an ever expanding litany of events that can potentially impact it.  Everything from gravity to magnetic fields seems to impact this complex process.  Now scientists want to add another confounding factor – massive solar flares thousands of times more powerful than the most powerful we have ever observed from the Sun.

Continue reading “The Sun is Mellow Yellow Today. Billions of Years Ago? Not So Much”

Does Mercury Have a big Iron Core Because it’s so Close to the Sun’s Magnetic Field?

Magnetic fields are great for lots of things – directing explorers, levitating trains, and containing nuclear fusion reactions are just an example of what these invisible forces can do.  Now we can ascribe another feature to magnetic fields – they can give planets a rocky core.

Continue reading “Does Mercury Have a big Iron Core Because it’s so Close to the Sun’s Magnetic Field?”

Astronomers see an Accretion Disk Where Planets are About to Form

Planet formation is notoriously difficult to study.  Not only does the process take millions of years, making it impossible to observe in real time, there are myriad factors that play into it, making it difficult to distinguish cause and effect.  What we do know is that planets form from features known as protoplanetary disks, which are made up of gas and dust surrounding young stars.  And now a team using ALMA have found a star system that has a protoplanetary disk and enough variability to help them nail down some details of how exactly the process of planet formation works.

Continue reading “Astronomers see an Accretion Disk Where Planets are About to Form”

Magnetic Fields Help Shape the Formation of New Planets

In all of scientific modeling, the models attempting to replicate planetary and solar system formation are some of the most complicated.  They are also notoriously difficult to develop.  Normally they center around one of two formative ideas: planets are shaped primarily by gravity or planets are shaped primarily by magnetism.  Now a new theoretical model has been developed by a team at the University of Zurich (UZH) that uses math from both methodologies to inform the most complete model yet of planetary formation.

Continue reading “Magnetic Fields Help Shape the Formation of New Planets”

Exoplanetary System Found With 6 Worlds in Orbital Resonance

This artist’s impression shows the view from the planet in the TOI-178 system found orbiting furthest from the star. New research by Adrien Leleu and his colleagues with several telescopes, including ESO’s Very Large Telescope, has revealed that the system boasts six exoplanets and that all but the one closest to the star are locked in a rare rhythm as they move in their orbits. Image Credit: ESO/L. Calçada/spaceengine.org

200 light-years away from Earth, there’s a K-type main-sequence star named TOI (TESS Object of Interest) 178. When Adrian Leleu, an astrophysicist at the Center for Space and Habitability of the University of Bern, observed it, it appeared to have two planets orbiting it at roughly the same distance. But that turned out to be incorrect. In fact, six exoplanets orbit the smallish star.

And five of those six are locked into an unexpected orbital configuration.

Continue reading “Exoplanetary System Found With 6 Worlds in Orbital Resonance”