This is how you get Tatooines. Binary Star Planet Formation

One of the less appreciated aspects of George Lucas’ vision for Star Wars was that he predicted the existence of planets in binary star systems years before we saw even the first exoplanet.  Now a team from the University of Cambridge and the Max Planck Institute for Extra-terrestrial Physics have found how exactly those planets can form without being torn apart by their accompanying suns.

Continue reading “This is how you get Tatooines. Binary Star Planet Formation”

The Sun is Mellow Yellow Today. Billions of Years Ago? Not So Much

Planetary formation theory has been undergoing a lot of changes recently, with an ever expanding litany of events that can potentially impact it.  Everything from gravity to magnetic fields seems to impact this complex process.  Now scientists want to add another confounding factor – massive solar flares thousands of times more powerful than the most powerful we have ever observed from the Sun.

Continue reading “The Sun is Mellow Yellow Today. Billions of Years Ago? Not So Much”

Does Mercury Have a big Iron Core Because it’s so Close to the Sun’s Magnetic Field?

Magnetic fields are great for lots of things – directing explorers, levitating trains, and containing nuclear fusion reactions are just an example of what these invisible forces can do.  Now we can ascribe another feature to magnetic fields – they can give planets a rocky core.

Continue reading “Does Mercury Have a big Iron Core Because it’s so Close to the Sun’s Magnetic Field?”

Astronomers see an Accretion Disk Where Planets are About to Form

Planet formation is notoriously difficult to study.  Not only does the process take millions of years, making it impossible to observe in real time, there are myriad factors that play into it, making it difficult to distinguish cause and effect.  What we do know is that planets form from features known as protoplanetary disks, which are made up of gas and dust surrounding young stars.  And now a team using ALMA have found a star system that has a protoplanetary disk and enough variability to help them nail down some details of how exactly the process of planet formation works.

Continue reading “Astronomers see an Accretion Disk Where Planets are About to Form”

Magnetic Fields Help Shape the Formation of New Planets

In all of scientific modeling, the models attempting to replicate planetary and solar system formation are some of the most complicated.  They are also notoriously difficult to develop.  Normally they center around one of two formative ideas: planets are shaped primarily by gravity or planets are shaped primarily by magnetism.  Now a new theoretical model has been developed by a team at the University of Zurich (UZH) that uses math from both methodologies to inform the most complete model yet of planetary formation.

Continue reading “Magnetic Fields Help Shape the Formation of New Planets”

Exoplanetary System Found With 6 Worlds in Orbital Resonance

This artist’s impression shows the view from the planet in the TOI-178 system found orbiting furthest from the star. New research by Adrien Leleu and his colleagues with several telescopes, including ESO’s Very Large Telescope, has revealed that the system boasts six exoplanets and that all but the one closest to the star are locked in a rare rhythm as they move in their orbits. Image Credit: ESO/L. Calçada/spaceengine.org

200 light-years away from Earth, there’s a K-type main-sequence star named TOI (TESS Object of Interest) 178. When Adrian Leleu, an astrophysicist at the Center for Space and Habitability of the University of Bern, observed it, it appeared to have two planets orbiting it at roughly the same distance. But that turned out to be incorrect. In fact, six exoplanets orbit the smallish star.

And five of those six are locked into an unexpected orbital configuration.

Continue reading “Exoplanetary System Found With 6 Worlds in Orbital Resonance”

Pluto and Other Kuiper Belt Objects Started Out With Water Oceans, and Have Been Slowly Freezing Solid for Billions of Years

Far left: The New Horizons team informally named Pluto’s heart-shaped feature “Tombaugh Regio” in honor of astronomer Clyde Tombaugh, who discovered the dwarf planet. The bright expanse of the western lobe of Pluto’s “heart” is informally called Sputnik Planum. Above left: Pluto’s surface sports a remarkable range of landforms that have their own distinct colors, telling a complex geological and climatological story. Credit: Courtesy NASA / JHUAPL / SwRI Table of Contents page 2015 Annual Report Division: (15)

It seems unlikely that an ocean could persist on a world that never gets closer than 30 astronomical units from the Sun. But that’s the case with Pluto. Evidence shows that it has a sub-surface ocean between 100 to 180 km thick, at the boundary between the core and the mantle. Other Kuiper Belt Objects may be similar.

But time might be running out for these buried oceans, which will one day turn to ice.

Continue reading “Pluto and Other Kuiper Belt Objects Started Out With Water Oceans, and Have Been Slowly Freezing Solid for Billions of Years”

More Pictures of Planet-Forming Disks Around Young Stars

The fifteen images of protoplanetary disks, captured with ESO's Very Large Telescope Interferometer. CREDIT Jacques Kluska et al.

Astronomy is advancing to the point where we can see planets forming around young stars. This was an unthinkable development only a few years ago. In fact, it was only two years ago that astronomers captured the first image of a newly-forming planet.

Now there are more and more studies into how planets form, including a new one with fifteen images of planet-forming disks around young stars.

Continue reading “More Pictures of Planet-Forming Disks Around Young Stars”

Are the Gaps in These Disks Caused by Planets?

Are baby planets responsible for the gaps and rings we’ve spotted in the disks that surround distant, young stars? Image Credit: C. Pinte et al, 2020

Astronomers like observing distant young stars as they form. Stars are born out of a molecular cloud, and once enough of the matter in that cloud clumps together, fusion ignites and a star begins its life. The leftover material from the formation of the star is called a circumstellar disk.

As the material in the circumstellar disk swirls around the now-rotating star, it clumps up into individual planets. As planets form in it, they leave gaps in that disk. Or so we think.

Continue reading “Are the Gaps in These Disks Caused by Planets?”

Mars Was Hit By a Lot of Protoplanets Early in its History, Taking Longer to Form than Previously Thought.

Scientists developed this illustration of how early Mars may have looked, showing signs of liquid water, large-scale volcanic activity and heavy bombardment from planetary projectiles. SwRI is modeling how these impacts may have affected early Mars to help answer questions about the planet’s evolutionary history. Image Credit: SwRI/Marchi

There are around 61,000 meteorites on Earth, or at least that’s how many have been found. Out of those, about 200 of them are very special: they came from Mars. And those 200 meteorites have been important clues to how Mars formed in the early Solar System.

Continue reading “Mars Was Hit By a Lot of Protoplanets Early in its History, Taking Longer to Form than Previously Thought.”