Where The Heck Did Philae Land? Rosetta Team Narrows The Cometary Search

The first soft comet landing Nov. 12 showed us how space missions can quickly drift to the unexpected. Philae’s harpoons to secure it failed to fire, and the spacecraft drifted for an incredible two hours across Comet 67P/Churyumov–Gerasimenko before coming to rest … somewhere. But where? And can the orbiting Rosetta spacecraft find it?

That’s been the obsession of the European Space Agency for the past couple of weeks. Controllers have pictures from Philae during its descent and brief science operations on the surface. They’ve managed to capture the little lander in incredible photographs from Rosetta. But the key to finding Philae will likely come from a different experiment altogether.

The experiment is called the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) and is a piece of work between both lander and orbiter. Rosetta sent radio signals to Philae on the surface to get a better sense of what the insides of 67P are made of. But it turns out it can also be used to pinpoint the lander.

ESA recently released a landing zone of where, based on CONSERT data, it believes the lander came to rest. The next step will be to get the Rosetta spacecraft to examine the area in high-definition.

An estimation of Philae's landing site on Comet 67P/Churyumov–Gerasimenko, based on data from the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) experiment. Credit: ESA/Rosetta/Philae/CONSERT
An estimation of Philae’s landing site on Comet 67P/Churyumov–Gerasimenko, based on data from the Comet Nucleus Sounding Experiment by Radio wave Transmission (CONSERT) experiment. Credit: ESA/Rosetta/Philae/CONSERT

“By making measurements of the distance between Rosetta and Philae during the periods of direct visibility between orbiter and lander, as well as measurements made through the core, the team have been able to narrow down the search to the strip presented in the image shown above,” ESA stated. “The determination of the landing zone is dependent on the underlying comet shape model used, which is why there are two candidate regions marked.”

Finding Philae is not only a goal to fulfill curiosity, but also to learn more about the comet itself. The team needs to know where the lander is sitting before they can fully analyze the CONSERT data, they said. So the search continues for the hibernating lander, which right now is in a shady spot and unable to transmit status updates since it can’t get enough sunlight to recharge. (This could change as 67P gets closer to the Sun, but nobody knows for sure.)

Rosetta, meanwhile, is in perfect health and continues to transmit incredible pictures of the comet, such as this one below released a couple of days ago. The montage you see includes the zone where Philae was supposed to have touched down, but it will take higher-resolution images from the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) to get a better look.

Source: European Space Agency (here and here)

A montage of four images of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
A montage of four images of Comet 67P/Churyumov–Gerasimenko taken by the Rosetta spacecraft on Nov. 20, 2014. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

 

Weekly Space Hangout – Nov. 21, 2014: New Images of Europa

Host: Fraser Cain (@fcain)

Guests:
Morgan Rehnberg (cosmicchatter.org / @cosmic_chatter)
Brian Koberlein (@briankoberlein)
Ramin Skibba (@raminskibba)
Dave Dickinson (@astroguyz / www.astroguyz.com)

Continue reading “Weekly Space Hangout – Nov. 21, 2014: New Images of Europa”

With Philae Delivered, Rosetta Will Play ‘Comet Escort’ Through 2015

With the Philae mission down on the comet and preliminary science results coming from its brief science surge on the surface, little has been said about the delivery vehicle. But while Philae is in hibernation, the Rosetta spacecraft remains quietly in orbit around Comet 67P/Churyumov–Gerasimenko for what will prove to be a dramatic 2015.

Should the orbiter remain healthy, it will be the first to be a “comet escort” — to watch a comet changing from up close as the celestial body draws closer to the Sun. And to stay out of the debris field, Rosetta will have some fancy footwork to perform in the next few months, says the European Space Agency (ESA).

“Burns” with the comet are planned on Saturday (Nov. 22) and Wednesday (Nov. 26) to bring it up about 30 kilometers (19 miles) above, and then it will scoot down closer to about 20 kilometers (12.5 miles) on Dec. 3. Rosetta will remain in this orbit for a while to look at the comet’s nucleus, as well as to measure plasma, dust and gas that is expected to increase as the comet gets closer to the Sun.

Rosetta will stay as close to 67P as possible, but if activity heats up to an unacceptable risk, it will jump to a “high-activity” trajectory that will keep it away from the worst of the debris. And it’s also going to keep an ear out for Philae, just in case more sunlight on the comet ends up recharging the hibernating lander’s battery. “Early next year, Rosetta will be switched into a mode that allows it to listen periodically for beacon signals from the surface.,” ESA wrote.

There has been some discussion about the magnitude of Philae’s success given that it did land on the comet as planned, but the harpoons (which had travelled a decade in space at that point) did not fire on to the surface as planned. This meant that the lander drifted for about two hours before settling far from its prime landing spot, mostly outside of the sunlight it needs to recharge its batteries.

But in a science marathon, researchers got as much as they could out of the instruments and have already released preliminary results, such as how the sound of Philae’s landing revealed the comet’s interior structure, and the discovery of organic materials on the surface.

Source: European Space Agency

Thud! Sound Of Philae’s Comet Landing Shows Signs Of Possible Ice

And we have touchdown! This is what the feet of the Philae lander experienced as the spacecraft touched down on its cometary destination last week. You can hear the brief sound from the Cometary Acoustic Surface Sounding Experiment (CASSE) above. What’s even cooler is the scientific data that short noise reveals.

CASSE is embedded in the three legs of Philae and recorded the first of three landings for the spacecraft, which bounced for about two hours before coming to rest somewhere on Comet 67P/Churyumov–Gerasimenko (where is still being determined).

About that first touchdown: “The Philae lander came into contact with a soft layer several centimetres thick. Then, just milliseconds later, the feet encountered a hard, perhaps icy layer on 67P/Churyumov-Gerasimenko,” stated German Space Agency (DLR) researcher Klaus Seidensticker. He is the lead for the Surface Electric Sounding and Acoustic Monitoring Experiment (SESAME), which includes CASSE.

CASSE also recorded information from the lander’s feet from Philae’s final resting spot, and transmitted information about the MUlti PUrpose Sensor (MUPUS) as the latter instrument drilled into the surface. Other instruments on SESAME found no dust particles nearby the lander (which scientists say means the landing site is quiescent) and also sensed water ice beneath the lander.

Philae is now in hibernation as its final resting spot does not include a lot of sunlight to recharge the solar panels, but the researchers are hoping that more energy might be available as 67P draws closer to the Sun in 2015. The orbiting Rosetta spacecraft is continuing to collect data on the comet.

Source: DLR

Philae Lander Early Science Results: Ice, Organic Molecules and Half a Foot of Dust

An uncontrolled, chaotic landing.  Stuck in the shadow of a cliff without energy-giving sunlight.  Philae and team persevered.  With just 60 hours of battery power, the lander drilled, hammered and gathered science data on the surface of comet 67P/Churyumov-Gerasimenko before going into hibernation. Here’s what we know. 

Despite appearances, the comet’s hard as ice. The team responsible for the MUPUS (Multi-Purpose Sensors for Surface and Sub-Surface Science) instrument hammered a probe as hard as they could into 67P’s skin but only dug in a few millimeters:

Close-up of the first touchdown site before Philae landed (left) and after clearly shows the impressions of its three footpads in the comet’s dusty soil. Times are CST. Philae’s 3.3 feet (1-m) across. Credit: ESA
Close-up of the first touchdown site before Philae landed (left) and after clearly shows the impressions of its three footpads in the comet’s dusty soil. At the final landing site, it’s believed that Times are CST. Philae’s 3.3 feet (1-m) across. Credit: ESA

“Although the power of the hammer was gradually increased, we were not able to go deep into the surface,” said Tilman Spohn from the DLR Institute of Planetary Research, who leads the research team. “If we compare the data with laboratory measurements, we think that the probe encountered a hard surface with strength comparable to that of solid ice,” he added. This shouldn’t be surprising, since ice is the main constituent of comets, but much of 67P/C-G appears blanketed in dust, leading some to believe the surface was softer and fluffier than what Philae found.

This finding was confirmed by the SESAME experiment (Surface Electrical, Seismic and Acoustic Monitoring Experiment) where the strength of the dust-covered ice directly under the lander was “surprisingly high” according to Klaus Seidensticker from the DLR Institute. Two other SESAME instruments measured low vaporization activity and a great deal of water ice under the lander.

As far as taking the comet’s temperature, the MUPUS thermal mapper worked during the descent and on all three touchdowns. At the final site, MUPUS recorded a temperature of –243°F (–153°C) near the floor of the lander’s balcony before the instrument was deployed. The sensors cooled by a further 10°C over a period of about a half hour:

The location of Philae's first touchdown on the surface of Comet 67P/C-G. Although covered in dust in many areas, Philae found strong evidence for firm ice beneath. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The location of Philae’s first touchdown on the surface of Comet 67P/C-G. Although covered in dust in many areas, Philae found strong evidence for firm ice beneath the comet’s surface. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

“We think this is either due to radiative transfer of heat to the cold nearby wall seen in the CIVA images or because the probe had been pushed into a cold dust pile,” says Jörg Knollenberg, instrument scientist for MUPUS at DLR. After looking at both the temperature and hammer probe data, the Philae team’s preliminary take is that the upper layers of the comet’s surface are covered in dust 4-8 inches (10-20 cm), overlaying firm ice or ice and dust mixtures.

The ROLIS camera (ROsetta Lander Imaging System) took detailed photos during the first descent to the Agilkia landing site. Later, when Philae made its final touchdown, ROLIS snapped images of the surface at close range. These photos, which have yet to be published, were taken from a different point of view than the set of panorama photos already received from the CIVA camera system.

During Philae’s active time, Rosetta used the CONSERT (COmet Nucleus Sounding Experiment by Radio wave Transmission) instrument to beam a radio signal to the lander while they were on opposite sides of the comet’s nucleus. Philae then transmitted a second signal through the comet back to Rosetta. This was to be repeated 7,500 times for each orbit of Rosetta to build up a 3D image of 67P/C-G’s interior, an otherworldly “CAT scan” as it were.  These measurements were being made even as Philae lapsed into hibernation. Deeper down the ice becomes more porous as revealed by measurements made by the orbiter.

Rosetta’s Philae lander includes a carefully selected set of instruments and is being prepared for a November 11th dispatch to analyze a comet’s surface. Credit: ESA, Composite – T.Reyes
Rosetta’s Philae lander includes a carefully selected set of instruments to analyze a comet’s surface. Credit: ESA, Composite – T.Reyes

The last of the 10 instruments on board the Philae lander to be activated was the SD2 (Sampling, Drilling and Distribution subsystem), designed to provide soil samples for the COSAC and PTOLEMY instruments. Scientists are certain the drill was activated and that all the steps to move a sample to the appropriate oven for baking were performed, but the data right now show no actual delivery according to a tweet this morning from Eric Hand, reporter at Science Magazine. COSAC worked as planned however and was able to “sniff” the comet’s rarified atmosphere to detect the first organic molecules. Research is underway to determine if the compounds are simple ones like methanol and ammonia or more complex ones like the amino acids.

Stephan Ulamec, Philae Lander manager, is confident that we’ll resume contact with Philae next spring when the Sun’s angle in the comet’s sky will have shifted to better illuminate the lander’s solar panels. The team managed to rotate the lander during the night of November 14-15, so that the largest solar panel is now aligned towards the Sun. One advantage of the shady site is that Philae isn’t as likely to overheat as 67P approaches the Sun en route to perihelion next year. Still, temperatures on the surface have to warm up before the battery can be recharged, and that won’t happen until next summer.

Let’s hang in there. This phoenix may rise from the cold dust again.

Sources: 1, 2

No ‘Rubber Duckie’! Rosetta’s Comet Looks Weird In Decade-Old Hubble Model

Okay, let’s take a deep breath about Rosetta and remember just how far we’ve come since the mission arrived at its target comet in August. Lately we’ve been focused on reporting on the Philae landing, but remember how we barely knew how the comet looked until this summer? How much of a surprise the rubber duckie shape was to us?

This Hubble Space Telescope model from 2003 shows us why. From afar, Comet 67P/Churyumov-Gerasimenko is a tiny object to image, even for the NASA probe’s powerful lens. Back then, the telescope was tasked with examining the comet to look at its size and shape to better design the Philae lander spacecraft. And the model reveals no duckie; it looks more like a sombrero from some angles.

The main concern of scientists back then was redirecting Rosetta to a new target when its original comet (46P/Wirtanen) fell out of reach due to a launch delay. 67P was bigger and had a higher gravity, requiring scientists to make adjustments to Philae before landing, according to the release. So Hubble sprung into action to look at 67P. Below are the release images from that time.

A 2003 illustration of Comet 67P/Churyumov-Gerasimenko based on Hubble Space Telescope observations. Credit: NASA, ESA and Philippe Lamy (Laboratoire d'Astronomie Spatiale)
A 2003 illustration of Comet 67P/Churyumov-Gerasimenko based on Hubble Space Telescope observations. Credit: NASA, ESA and Philippe Lamy (Laboratoire d’Astronomie Spatiale)

And here’s a fun quote from 2003 that finally came last Wednesday, when Philae touched down for its (sadly brief, so far) mission on the comet: “Although 67P/C-G is roughly three times larger than the original Rosetta target, its elongated shape should make landing on its nucleus feasible, now that measures are in place to adapt the lander package to the new configuration before next year’s launch,” stated Philippe Lamy of the Space Astronomy Laboratory (Laboratoire d’Astronomie Spatiale) in France.

We’ve sure come a long way since then. Below are some of the pictures Rosetta caught of 67P as it made its approach to its target this year, after a decade flying through space. While Philae is in what could be permanent hibernation, Rosetta is orbiting, working well and expected to keep up observations when the comet draws closer to the sun in 2015.

(h/t Reddit)

Animation of Comet 67P/Churyumov-Gerasimenko as seen by Rosetta on June 27-28, 2014
Animation of Comet 67P/Churyumov-Gerasimenko as seen by Rosetta on June 27-28, 2014
Comet 67P/C-G photographed on July 14, 2014 from a distance of approximately 12 000 km. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Comet 67P/C-G photographed on July 14, 2014 from a distance of approximately 12 000 km.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Raw pixelated image of the comet (left) and after smoothing. Credit: ESA
Raw pixelated image of the comet (left) and after smoothing. Credit: ESA
Comet 67P/Churyumov-Gerasimenko at 621 miles (1,000 km) on August 1. Wow! Look at that richly-textured surface. This photo has higher resolution than previous images because it was taken with Rosetta's narrow angle camera. The black spot is an artifact. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Comet 67P/Churyumov-Gerasimenko at 621 miles (1,000 km) on August 1. Wow! Look at that richly-textured surface. This photo has higher resolution than previous images because it was taken with Rosetta’s narrow angle camera. The black spot is an artifact. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Photo of Comet 67P/C-G taken  by Rosetta on August 6, 2014. Credit: ESA
Photo of Comet 67P/C-G taken by Rosetta on August 6, 2014. Credit: ESA

Philae’s Incredible Comet-Landing Sequence Shows Up In Fresh Rosetta Images

Wow! New images released from the Rosetta spacecraft orbiting Comet 67P/Churyumov–Gerasimenko show the spacecraft coming in for its (first) landing on Wednesday (Nov. 12). “The mosaic comprises a series of images captured by Rosetta’s OSIRIS camera over a 30 minute period spanning the first touchdown,” wrote the European Space Agency in a blog post today (Monday).

This is just the latest in a series of images coming from the orbiting Rosetta spacecraft showing the Philae lander coming in for its rendezvous with 67P. A major next step for the mission will be figuring out where the lander actually came for a rest, but there’s plenty of data from both Rosetta and Philae to comb through for this information, ESA said.

What’s known for sure is Philae made three touchdowns on the comet — making history as humanity’s first soft-lander on such an object — stopping in a shady area that will make recharging its solar panels difficult. The spacecraft is in hibernation as of Friday (Nov. 14) and scientists are really, really hoping it’s able to charge up for another science session soon. Rosetta, meanwhile, is hard at work above and will continue to follow the comet in 2015.

In case you missed it, below are some of the pictures over the last few days that could be used to help pinpoint the landing location.

Source: European Space Agency

A still of the Philae spacecraft bouncing off Comet 67P/Churyumov–Gerasimenko in an animation of Rosetta spacecraft images. The image was taken Nov. 12, 2014 at 10:35 a.m. EDT (3:35 p.m. UTC). Credit: ESA/Rosetta/NAVCAM; pre-processed by Mikel Canania
A still of the Philae spacecraft bouncing off Comet 67P/Churyumov–Gerasimenko in an animation of Rosetta spacecraft images. The image was taken Nov. 12, 2014, at 10:35 a.m. EDT (3:35 p.m. UTC). Credit: ESA/Rosetta/NAVCAM; pre-processed by Mikel Canania
Our last panorama from Philae?  This image was taken with the CIVA camera; at center Philae has been added to show its orientation on the surface. Credit: ESA
Our last panorama from Philae? This image was taken with the CIVA camera; at center Philae has been added to show its orientation on the surface. Credit: ESA
The animated image below provides strong evidence that Philae touched down for the first time almost precisely where intended. The animation comprises images recorded by Rosetta's navigation camera as the orbiter flew over the (intended) Philae landing site on November 12th. The dark area is probably dust raised by the craft on touchdown. The boulder to the right of the circle is seen in detail in the photo below. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
The animated image below provides strong evidence that Philae touched down for the first time almost precisely where intended. The animation comprises images recorded by Rosetta’s navigation camera as the orbiter flew over the (intended) Philae landing site on November 12th. The dark area is probably dust raised by the craft on touchdown. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Infographic: The Rosetta Comet-Probing Mission Cost As Much As Four Jetliners

What price do you put on scientific discovery? From the way Twitter lit up last week when the Philae spacecraft touched down on Comet 67P/Churyumov–Gerasimenko — it was a top-trending topic for a while — it appears there’s a lot of discussion going on about the Rosetta mission and its value to humanity.

A recent infographic (which you can see below) points out that the Rosetta mission, which included the now-hibernating Philae lander, cost as much as about four Airbus 380 jetliners. Is US$1.75 billion (€1.4 billion) a bargain for letting us explore further into the universe, or could the money have been better-served elsewhere?

This is a question often brought up about the value of space exploration, or what is called “blue-sky” research in general. The first developers of lasers, for example, could not have predicted how consumers would use them millions of times over to watch DVDs and Blu-Rays. Or in a more practical use, how medical lasers are used today for surgeries.

An infographic of Rosetta spacecraft spending. Credit: Scienceogram.org (infographic), ESA/Rosetta/NAVCAM (comet image), ESA (Rosetta graphic), ESA/Airbus (data), Scienceogram.org (other data).
An infographic of Rosetta spacecraft spending. Credit: Scienceogram.org (infographic), ESA/Rosetta/NAVCAM (comet image), ESA (Rosetta graphic), ESA/Airbus (data), Scienceogram.org (other data).

“Like a lot of blue-skies science, it’s very hard to put a value on the mission,” wrote Scienceogram.org, the organization that produced the infographic. “First, there are the immediate spin-offs like engineering know-how; then, the knowledge accrued, which could inform our understanding of our cosmic origins, amongst other things; and finally, the inspirational value of this audacious feat in which we can all share, including the next generation of scientists.”

To put the value of the Rosetta mission in more everyday terms, Scienceogram points out that the comet landing cost (per European citizen and per year between 1996 and 2015) was less than half the ticket price for Interstellar. That said, it appears that figure does not take into account inflation, so the actual cost per year may be higher.

The Rosetta spacecraft is still working well and is expected to observe its target comet through 2015. The Philae lander did perform the incredible feat of landing on 67P on Wednesday, but it ended up in a shadowy spot that prevented it from gathering sunlight to stay awake. The lander is now in hibernation, perhaps permanently, but scientists have reams of data from the lander mission to pore over.

It’s been said that Rosetta, in following 67P as it gets closer to the Sun, will teach us more about cometary behavior and the origins of our Solar System. Is the mission and its social-media-sensation pictures worth the price? Let us know in the comments. More information on the infographic (and the spreadsheet of data) are available here.

Comet-Bouncing Philae Spacecraft Caught On Camera In Newly Enhanced Images

When the Philae lander arrived at its target comet last week, the little spacecraft landed three times in two hours before coming to a rest. While controllers could see this information from data coming in, they didn’t have any photographic proof — until now.

The animation above, an enhancement of images from the orbiting Rosetta spacecraft released late last week, show Philae and its shadow –mid-bounce! — very shortly after landing on Wednesday (Nov. 12). Philae’s first jump lasted nearly two hours before it took off again, flew for another few minutes, and landed in a shady spot where its batteries drained on Friday.

Here’s another cool thing about these images — some of the credit to Philae’s discovery comes through crowdsourcing! This is what the European Space Agency’s Rosetta blog said about who found this:

Credit for the first discovery goes to Gabriele Bellei, from the interplanetary division of Flight Dynamics, who spent hours searching the NAVCAM images for evidence of the landing.

Once the images were published, blog reader John Broughton posted a comment to report that he had spotted the lander in them (thank you, John). There was also quite some speculation by Rosetta blog readers in the comments section, wondering which features might be attributable to the lander. Martin Esser, Henning, and Kasuha in particular were among the first to make insightful observations on the topic, although many others have since joined in.

Last but not least, a careful independent review of the images was made by Mikel Catania from the earth observation division of Flight Dynamics, with the same conclusion. He also made the annotated animation shown here.

This goes to show you that while there is disappointment that Philae is in a long (perhaps permanent) sleep sooner than scientists hoped, data from the spacecraft will continue to be analyzed in the coming months and years. And don’t forget that the orbiting Rosetta spacecraft is in good health and will continue to return data on 67P as it draws closer to the Sun through 2015.

A still of the Philae spacecraft bouncing off Comet 67P/Churyumov–Gerasimenko in an animation of Rosetta spacecraft images. The image was taken Nov. 12, 2014 at 10:35 a.m. EDT (3:35 p.m. UTC). Credit: SA/Rosetta/NAVCAM; pre-processed by Mikel Catania
A still of the Philae spacecraft bouncing off Comet 67P/Churyumov–Gerasimenko in an animation of Rosetta spacecraft images. The image was taken Nov. 12, 2014 at 10:35 a.m. EDT (3:35 p.m. UTC). Credit: SA/Rosetta/NAVCAM; pre-processed by Mikel Catania

Alone and Confused, Philae Breaks our Hearts

I was twelve years old when Columbia disintegrated. Space exploration was not even a particular interest of mine at the time, but I remember exactly where I was when the news came.  My dad and I were sitting in the living room of my childhood home, listening to NPR. I don’t really recall how I felt when they broke into our program with the news, but I remember well the two emotions that seemed to permeate the coverage that soon become constant: confusion and sadness. As I watched the almost surreal saga of ESA’s Philae this week, I found my mind wandering back to that day eleven years ago. That confusion rang out was hardly surprising; after all, things weren’t going right and we didn’t know why. But it was the sadness, I think, that drew my mind into the past. Many of the countless people watching Philae’s distress unfold before us weren’t merely disappointed that a decades-in-the-making experiment wasn’t going as planned. The word heartbroken kept springing to mind.

Let me be unequivocal: the loss of a machine, no matter how valuable or beloved, pales in comparison to the forfeit of human life. The astronauts lost on Columbia, like those snatched from us before and since, left behind families, friends, and a grateful world. But, why, then, did it seem to feel so similar to so many people?

 “This is legitimately upsetting” a friend and colleague texted me on Friday as it became clear that the tiny lander’s batteries were beginning to run dry. She was far from alone in her sentiment. Across Twitter, people from around the world seemed to be lashing out against the helplessness of the situation.

And, in conversations I had with other scientists at the 46th annual Division for Planetary Sciences meeting in Tucson, AZ this week, people seemed almost mournful at the prospect of the lander’s loss. These same researchers had laughed and cheered just days earlier when shown the crater made by NASA’s LADEE spacecraft upon its crash into the lunar surface.

 The questions in my mind are numerous. What’s the cause of this inequity? Why do we seem to latch onto certain spacecraft and blithely ignore others? What is it that makes us become emotionally attached to machines in the first place? 

In part, I think, our attachment comes from the unprecedented view offered to us by social media. In 1990, an event not so dissimilar from this one beset NASA’s Galileo spacecraft. Flying by the Earth on its way to Jupiter, Galileo had just attempted to unfurl its main antenna, a maneuver critical to the mission’s success.  In mission control, they received the bad news: the antenna was stuck. But, the world did not break down in despair. In the days to come, stories would appear in newspapers and on the nightly news, but a world where even email was in its infancy lacked a means for the average citizen to follow along with every detail. 

Nineteen years later, this would not be the case. As soon as it became clear to those in ESA headquarters that something had gone very wrong during Philae’s descent, we all knew. And, as data began to trickle in about one bounce off the surface and then another, we all cringed. When the last power drained from the lander’s batteries, we followed along, one volt after another. Philae may have been the pride of the ESA scientists and engineers who designed it, but it felt like it was ours. 

But, it didn’t feel like ours in the way that a car or a plane or even a space station does. It felt like our friend. No doubt, this can be directly linked to the first person point of view employed for its Twitter account. Instead of the @Phillae2014 account reporting “the Ptolemy instrument has made a measurement,” we get “I just completed a @Philae_Ptolemy measurement!!” It seems like a small change, but it opens up a whole new world of connection with this distant traveler. At no time was this clearer than when things started to go wrong.

 How poignant is that? Two travelers talking to one another from across the solar system. But, as Philae’s time began to wind down, the messages tugged even more urgently on our heartstrings.

And, it all pales in comparison to the way China’s Yutu rover signed off when it looked like a malfunction might cause it to freeze to death on the Moon (original Chinese, CNN translation):

… my masters discovered something abnormal with my mechanical control system. …I’m aware that I might not survive this lunar night…

The sun has fallen, and the temperature is dropping so quickly… to tell you all a secret, I don’t feel that sad. I was just in my own adventure story – and like every hero, I encountered a small problem.

Goodnight, Earth. Goodnight, humanity.

Talk about heartbreaking.

This personal point of view combines particularly effectively with landers and rovers. These craft seem more human than ships like Cassini or Galileo, with their silent glide through deep space. When something goes wrong with a surface explorer, as it did with Philae or Yutu, it plays on our deepest fears. Every time we’re lost, the little voice of panic begins to creep into our thoughts: “what if this is the time that I can’t get back?” Reading the “thoughts” of a tiny spacecraft, lost and alone and confused, puts us right there ourselves. As mission controllers edged towards desperation in their attempts to save the stricken explorer, we knew how that delirious urgency felt. Our attachment becomes almost unavoidable. 

So, what does this all mean? I think it’s a clear signal that people are engaged by the exploration of space. When it comes to us in the right way, on our terms, it’s a big hit. By anthropomorphizing these robots, we humanize the science that they do. Suddenly a machine more than 500 million kilometers away becomes more relatable than the scientists next door who control it. Perhaps ESA, NASA, and other space agencies can extend this relationship even further. Rather than springing to “life” upon liftoff, spacecraft can share with us their view of the entire process, starting not from space, but from the first drawings on an engineer’s blackboard.

One thing’s for sure, though. A relationship like that won’t make times like these any easier to handle.