Building the Future of Spaceflight

Here’s a very cool “music video” showing the ongoing progress being made on the Orion Multi-Purpose Crew Vehicle, the next-generation vehicle for human space travel beyond low-Earth orbit.

Although the MPCV may resemble Apollo-era capsules, its technology and capability are light years apart. The MPCV features dozens of technology advancements and innovations incorporated into the spacecraft’s subsystem and component design.

From careful assembly of the smallest parts to the dramatic tests of the rocket launch abort system, this video shows how much expertise, talent and just plain hard work is being invested in the future of human spaceflight by NASA as well as many industry-leading experts around the country!

Read more about the Orion MPCV program here.

Construction Begins on the 1st Space-Bound Orion Crew Module

Construction on the first space-bound Orion Multi-Purpose Crew Module began with the first weld at the Michoud Assembly Facility on Sept. 9. 2011. This capsule will be used during Orion’s first test flight in space which could occur as early as 2013, possibly atop a Delta 4 Heavy booster. Credit: NASA

[/caption]

Production of NASA’s first space-bound Orion crew module has at last begun at NASA’s Michoud Assembly Facility (MAF) in New Orleans – that’s the same facility that for more than three decades was responsible for manufacturing the huge orange colored External Tanks for the just retired Space Shuttle Program.

The first weld of structural elements of the Orion crew cabin was completed by Lockheed Martin engineers working at Michoud on Sept. 9, 2011. This marks a major milestone on the path toward the full assembly and first test flight of an Orion capsule.

This state of the art Orion vehicle also holds the distinction of being the first new NASA spacecraft built to blast humans to space since Space Shuttle Endeavour was assembled at a California manufacturing facility in 1991.

This capsule will be used during Orion’s first test flight in space which could occur as early as 2013. Credit: NASA

Eventually, Orion crew modules with astronaut crews will fly atop NASA’s newly announced monster rocket – the SLS – to exciting new deep space destinations beyond low Earth Orbit; such as the Moon, Asteroids and Mars.

“This marks the beginning of NASA’s next step to send humans far beyond Earth orbit,” said Orion program manager Mark Geyer. “The Orion team has maintained a steady focus on progress, and we now are beginning to build hardware for spaceflight. With this milestone, we enter the home stretch toward our first trip to space in this new vehicle.”

The first unmanned Orion test flight – dubbed OFT-1 – could come as early as 2013 depending on the funding available from NASA and the US Federal Government.

Welding the First Space-Bound Orion at NASA’s Michoud Assembly Facility in New Orleans by NASA and Lockheed Martin contractor team. Credit: NASA

NASA is still deciding which rocket to use for the initial test flight – most likely a Delta 4 Heavy but possibly also the new Liberty rocket proposed by ATK and EADS.

The framework welds were completed using the same type of friction stir welding (FSW) process that was implemented to construct the last several of the 135 Space Shuttle External Tanks at MAF that flew during the shuttle program.

Friction Stir Welding creates seamless welds in the Aluminum – Lithium alloys used for construction that are far stronger and more reliable and reproducible compared to conventional welding methods.

The first Space-Bound Orion will look similar to this initial Orion Ground Test Article (GTA) prototype crew cabin built in 2010 at NASA’s Michoud Assembly Facility, New Orleans, LA after individual segments were bound together by Friction Stir Welding techniques. Note the astronaut crew hatch and windows. The GTA is now undergoing testing and integration at Lockheed’s facilities in Denver, Colorado. Credit: Ken Kremer

Orion spacecraft will be manufactured at Michoud in New Orleans, Louisiana, then sent to the Operations & Checkout Facility at Kennedy Space Center for final assembly and integration prior to launch.

Lockheed Martin is the prime contractor for Orion. The vehicle was recently renamed the Orion Multipurpose Crew Vehicle (MPCV) after being resurrected following its cancellation by President Obama as a key element of NASA’s now defunct Project Constellation “Return to the Moon” program.

NASA's Orion Multi Purpose Crew Vehicle
The Orion MPVC Multi Purpose Crew Vehicle ground test article (GTA) is shown at the Lockheed Martin Vertical Test Facility in Colorado. The GTA’s heat shield and thermal protection backshell was completed in preparation for environmental testing. Credit: NASA/Lockheed Martin

The first crewed Orion won’t launch until the 2nd flight of the SLS set for around 2020 said William Gerstenmaier, NASA Associate Administrator for Human Exploration and Operations (HEO) Mission Directorate, at an SLS briefing for reporters on Sept. 14.

Lockheed has already built an initial version of the Orion crew capsule known as the Orion Ground Test Article (GTA) and which is currently undergoing stringent vibration and acoustics testing to mimic the harsh environments of space which the capsule must survive.

Watch for my upcoming Orion GTA status report.

Sketch of the Orion Multipurpose Crew Vehicle. Credit: NASA
Artists concept of the STS blasting off with the Orion Crew Module from the Kennedy Space Center. Credit: NASA

Read Ken’s continuing features about the Orion project and Orion GTA starting here:
First Orion Assembled at Denver, Another Orion Displayed at Kennedy Space Center
Lockheed Accelerates Orion to Achieve 2013 launch and potential Lunar Flyby

SLS: NASA’s Next Big Thing

Artist's concept of the new SLS on the launch pad. Credit: NASA

[/caption]

NASA has officially unveiled the plan for their next large-scale rocket: the Space Launch System, or SLS, will provide heavy-lift capabilities for cargo and spacecraft to go beyond low-Earth orbit and is proposed as a safe, sustainable and efficient way to open up the next chapter in US space exploration.

SLS is designed to carry the Orion Multi-Purpose Crew Module, NASA’s next-generation human spaceflight vehicle that is specifically designed for long-duration missions. (Construction of the first space-bound MPCV began last week on September 9.)

Utilizing a modular design that can accommodate varying mission needs, SLS will also be able to provide service to the International Space Station.

“President Obama challenged us to be bold and dream big, and that’s exactly what we are doing at NASA. While I was proud to fly on the space shuttle, tomorrow’s explorers will now dream of one day walking on Mars.”

– NASA Administrator Charles Bolden

SLS will have an initial lift capacity of over 70 metric tons – about 154,000 pounds (70,000 kg). That’s three times the lift capability of the space shuttles! In the event of a Mars mission that can be upgraded to 130 metric tons – about the weight of 75 SUVs.

Artist image of SLS launch. Credit: NASA

The first developmental flight is targeted for the end of 2017.

SLS will be the first exploration-class vehicle since the giant Saturn V rockets that carried the Apollo astronauts to the Moon. Using rocket technology developed during the shuttle era and modified for the canceled Constellation program, combined with cutting-edge manufacturing processes, SLS will expand the boundaries of human spaceflight and extend our reach into the solar system.

“This launch system will create good-paying American jobs, ensure continued U.S. leadership in space, and inspire millions around the world,” NASA Administrator Charles Bolden said. “President Obama challenged us to be bold and dream big, and that’s exactly what we are doing at NASA. While I was proud to fly on the space shuttle, tomorrow’s explorers will now dream of one day walking on Mars.”

Read the NASA news release here.

(And check out this “Fun Facts” sheet on SLS.)

Human Mission to an Asteroid: The Orion MPCV

The Orion casule in an Acoustic Chamber for testing at Lockheed Martin. Credit: Lockheed Martin

Back in 2007, when the Constellation program to return to the Moon was still the program of record for NASA, a group from Lockheed Martin began investigating how they might be able to use the Orion lunar capsule to send humans on a mission to an asteroid. Originally, this plan — called Plymouth Rock — was just a study to see how an asteroid mission with Orion could possibly serve as a complement to the baseline of Constellation’s lunar mission plans.

Now, it has turned into much more.

The Orion MPCV being built and tested at Lockheed Martin in Boulder, Colorado. Credit: John O'Connor, NASATech.net. Click for super-large, pan-able image.

Thanks to John O’Connor from NASATech.net, we are able to show you some views of the Orion MPCV inside Lockheed Martin’s facilities in Boulder, Colorado. If you click on the images, you’ll be taken to the NASATech website and extremely large versions of the images that you can pan around and see incredible details of the MPCV and the building.

After canceling Constellation in February of 2010, two months later President Obama outlined sending astronauts to a nearby asteroid by 2025 and going to Mars by the mid-2030’s.

In May of 2011, NASA confirmed that the centerpiece of those missions will be the Orion – now called the Orion MultiPurpose Crew Vehicle. The repurposed Orion lunar vehicle would now be going to an asteroid, just like Josh Hopkins and his team from Lockheed Martin envisioned in their Plymouth Rock study.

Hopkins is the Principal Investigator for Advanced Human Exploration Missions, a team of engineers who develop plans and concepts for a variety of future human exploration missions.

“Normally when you take a spacecraft or a piece of hardware that has been designed for one job and you try to figure out how to use it for a different job, you discover there are all these details that don’t work out quite right,” Hopkins told Universe Today. “But we were pleasantly surprised that when we took this lunar version of Orion and applied it to an asteroid mission, it is a really flexible and capable vehicle and a lot of the requirements for the lunar mission match pretty well with the asteroid mission.”

Concept drawing of the Plymouth Rock mission to an asteroid. Credit: Lockheed Martin.

The Plymouth Rock design called for using two specially modified Orion spacecraft docked nose to nose in order to provide enough living space, propulsion, and life-support for two astronauts heading to an asteroid. But NASA has said the MPCV will be used primarily for launch and entry while a larger habitation module would be docked to the MPCV to enable a crew of 4 to travel to deep space.

Shuttle astronaut Tom Jones was impressed with the Plymouth Rock concept, but knows a larger companion vehicle will be needed for a trip to an asteroid. “Plymouth Rock is the minimalist approach to do an asteroid mission,” he said. “That’s one way to solve the redundancy problem in the short-term.”

But even developing an in-space habitat could be a matter of repackaging things we already have. “The hab module could be derived directly from what we’ve done for space station, or it could be a commercial inflatable like from Bigelow, so that might be tried out by a commercial station or hotel in the next 10 years, so that would be demonstrated technology,” Jones said.

The Orion MPCV along with some of the people on the team that is developing and testing the capsule at the Lockheed Martin facility in Boulder, Colorado. Credit: John O'Connor, NASATech.net. Click for large, pan-able image.

“Basically the tradeoff between a larger in-space habitat module versus the dual Orion approach is that by having a separate habitat you have more living space, more storage space, and there is the potential that it would be better for performing spacewalks,” said Hopkins. “But then you have to invest the costs for developing that system.”

Hopkins added that when he and his team initially conceived the Plymouth Rock mission, they were trying to figure out how to do an asteroid mission for as little as possible. Using two Orions was cheaper than developing a module specific to an asteroid mission.

“For Plymouth Rock, we had spelled out the need to basically increase the amount of food, water, oxygen and storage in the spacecraft, and some of that is accomplished by the fact of having two spacecraft,” Hopkins said.

For now, NASA hasn’t yet changed many of the requirements for the MPCV from what they previously were for the lunar vehicle, and as the mission design evolves, so might the MPCV. But so far, the lunar design seems to be working, and Hopkins said there are several design features already in Orion that make it very capable as a deep space vehicle.

For lunar missions, Orion was designed for basically 21 days with a crew on board going from Earth to the Moon and back and having a roughly have a six month “loiter period” while the crew was down on the lunar surface. That scenario would work for an asteroid mission, as a crewed flight to an asteroid would likely be about a six-month roundtrip journey, depending on the destination.

“So in things like reliability, leak rate of atmosphere in the cabin, and protection from radiation and micrometeorites, Orion is already designed for 6-7 month missions for the hardware,” Hopkins explained. “It is just not designed to have people for that long of time period.”

Orion has solar arrays rather than fuel cells like Apollo, which enable longer missions. Another big selling point is that the MPCV is designed to be 10 times safer during ascent and entry than its predecessor, the space shuttle.

“The reentry speeds are just a little bit faster for an asteroid mission than a lunar mission,” Hopkins said, “but current the thermal protection system we have should be able to handle it.”

At look inside the hatch of the Orion capsule at the Michoud Assembly Facility near New Orleans. Credit: John O'Connor, NASATech.net. Click for large, pan-able image.

Inside the MPCV is 9 cubic meters of habitable volume. “That is not total pressurized volume of the structure, but the space that’s left after computers, seats, supplies are all accounted for,” said Hopkins. “That’s about twice the size of a modern passenger van, like a Toyota Sienna.”

One big challenge is to figure out how use every nook and cranny to package a lot of supplies in a small amount of space, as the Orion could serve as a storeroom of sorts. “We think it’s possible,” Hopkins said. “We’ve done initial calculations that we can pack a reasonable amount of volume but it would be a pretty tight fit and we also have to think about the secondary things that need to be included, so that’s work that is ongoing.”

Logistically, the Orion MPCV could even support doing an EVA from the hatch on the capsule.

“We have a hatch that is big enough that an astronaut in a space suit can get out,” Hopkins said, “and the internal systems in the spacecraft are designed to tolerate the cabin being depressurized. We don’t rely on air circulation to carry the heat away from the electronics – they have their own cold plates to take the heat away. The knobs are designed to be manipulated with spacesuit gloves on, not just bare hands. A lot of those features just worked out to be pretty applicable to the asteroid mission because it was designed for a similar set of mission requirements.”

Lockheed Martin’s Space Operations Simulation Center in Colorado can simulates the MPCV docking with an asteroid. Credit: John O'Connor, NASATech.net. Click for large, pan-able image.

Hopkins knows the requirements and capabilities the Orion, as well as the in-space habitat will likely change over time, depending on the destination and the timeline. “If the plan is to go to the moons of mars or distant asteroids relatively soon, say in the late 2020’s or early 2030s, you might go ahead and build a relatively large, capable in space habitat, because you will definitely need it for those more distant missions. But if the idea were to go to the easiest asteroids to get to and do that relatively soon, then you might stick with a smaller simpler habitat module, or perhaps even the twin Orion approach.”

When the MPCV does return from a mission to an asteroid, it will likely land in the Pacific Ocean. NASA has begun some at NASA’s Langley Research Center to certify the vehicle for water landings. Engineers have dropped a 22,000-pound MPCV mockup into the basin. The test item is similar in size and shape to MPCV, but is more rigid so it can withstand multiple drops. Each test has a different drop velocity to represent the MPCV’s possible entry conditions during water landings.

So while these tests are happening and while Hopkins and his team from Lockheed Martin are working on and testing the Orion MPCV, NASA is still trying to decide on a heavy-lift launch system capable of bringing humans beyond low Earth orbit and they have not named anyone to lead the design of a human mission to an asteroid. The NASA website doesn’t even have any official information about a human asteroid mission; it only mentions “beyond low Earth orbit” as the next stop for humans.

“We’re talking about something that is going to happen in 2025 so we haven’t even decided on a spacecraft yet,” said Michael Braukus from NASA’s Exploration Systems Mission Directorate via a phone call. “We’re planning on the asteroid mission happening; it’s just that we haven’t designated a person to be responsible for the asteroid mission itself. We have the Orion MPCV under construction and we are awaiting on the decision of a space launch system, which will be the rocket that will carry it to deep space, and we’re progressing down the road, but haven’t reached a point yet where we have actually assigned someone to start developing the mission.”

So, that appears to be NASA’s current biggest hurdle to a human asteroid mission: deciding on the Space Launch System.

Previous article in this series: Human Mission to an Asteroid: Why Should NASA Go?

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

First Orion Assembled at Denver, Another Orion Displayed at Kennedy Space Center

Assembly of NASA’s first Orion Crew Module is complete. Shown here is the first Orion/Multi-Purpose Crew Vehicle (MPCV) being hoisted into position in the Reverberant Acoustic Lab at Lockheed Martin’s Waterton Facility near Denver, Colorado where it will undergo ground tests simulating the harsh environment of deep space. Credit: Lockheed Martin

[/caption]

Assembly of NASA’s first Orion Crew vehicle that could actually launch to space has been accomplished by prime contractor Lockheed Martin Corporation at the firm’s Waterton space systems facility located near Denver, Colorado, where the spacecraft is slated to begin a severe testing process that will help confirm crew safety.

Orion is NASA’s next generation spacecraft designed to send human crews to low Earth Orbit and beyond to multiple deep space destinations throughout our solar system including the Moon, Mars and Asteroids. Orion was recently recast as the MPCV or Multi Purpose Crew Vehicle in the NASA Authorization Act of 2010.

“The first Orion crew module built to spaceflight specifications is complete,” said Linda Singleton, a spokesperson for Lockheed Martin in an interview.

“Orion will soon be integrated with the launch abort system test article prior to undergoing acoustic, vibration and modal testing in Denver,” Singleton told me. “The testing process will last several months.”

Watch this cool and detailed animation of the testing process to be conducted at the Reverberant Acoustic Lab at Lockheed Martin’s Waterton Facility.


The video also shows how the Orion will be integrated and tested with the Launch Abort System (LAS) that would save the lives of the astronauts on board in the event of a spaceflight emergency.

With the Grand Finale of NASA’s Space Shuttle Program now just days away after the launch of shuttle Atlantis on the STS-135 mission, the US faces a gap with no capability to send humans to space and the International Space Station for a time period extending at least several years.

A replacement vehicle for the retiring shuttle – whether its the Orion or from a commercial provider like SpaceX – can’t come soon enough in order to maintain the viability of the International Space Station.

This Orion vehicle also known as the Ground Test Article, or GTA, will now be subjected to several months of rigorous flight like testing that simulates the harsh environments that astronauts would face during voyages to deep space.

NASA's Orion Multi Purpose Crew Vehicle
The Orion MPVC Multi Purpose Crew Vehicle ground test article (GTA) is shown at the Lockheed Martin Vertical Test Facility in Colorado. The GTA’s heat shield and thermal protection backshell was completed in preparation for environmental testing. Credit: NASA/Lockheed Martin

Thereafter, the Orion crew module will be transported in early 2012 to NASA’s Langley Research Center in Virginia where it will undergo water landing drop tests next year at the new Hydro Impact Basin facility.

“The NASA and Lockheed Martin teams hope to achieve Orion/MPCV initial crewed operations by 2016”, said Singleton. “We are aiming for an initial unmanned orbital test flight in 2013.”

A Delta IV Heavy booster rocket is the most likely candidate for the 2013 Orion orbital flight, but a final decision has not yet been announced by NASA.

Meanwhile, another Orion crew module that was flown during the Pad Abort 1 test (PA-1) in 2010 is now on public display at the Kennedy Space Center Visitor Complex in Florida. The vehicle just arrived after a cross country trek from NASA’s Dryden Flight Research Center in California and making several public outreach stops along the way to Florida.

The Orion Pad Abort 1 Test crew module is moved to viewing location at the Rocket Garden at The Kennedy Space Center Visitor Complex. Credit: Lockheed Martin

The Orion PA-1 test article is on display until July 4 in the historic Rocket Garden at Kennedy in the shadow of a mighty Saturn 1B and alongside Mercury, Gemini and Apollo Era capsules and rockets. The mockup of the LAS is also still on display at the Kennedy Visitor Complex.

NASA's Exploration Systems Mission Directorate (ESMD) visits the Orion MPCV in Colorado. Doug Cooke, Associate Administrator for ESMD, and Dr. Laurie Leshin, Deputy Associate Administrator for ESMD, are pictured with Mark Kirasich, Deputy Program Manager for Orion MPCV. Credit: NASA
Orion Cutaway diagram

Astronomy Cast Ep. 224: Orion

Orion Nebula. Image credit: Hubble

Most people know how to find two constellations: the Big Dipper, and Orion the Hunter. You can teach a small child to find Orion, and at the right time of year, they’ll find it in seconds. There’s so much going on in this spectacular constellation, from the star formation in the Orion Nebula to mighty red supergiant Betelgeuse, ready to explode. Let’s learn about the history and science of the constellation Orion.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

Orion shownotes and transcript.

Successful Test for Orion Launch Abort System

NASA successfully tested the pad abort system developed for the Orion crew vehicle on Thursday morning at the White Sands Missile Range near Las Cruces, New Mexico. The 97-second flight test was the first fully integrated test of the Launch Abort System developed for Orion. “It was a big day for our exploration team,” said Doug Cooke, NASA’s Associate Administrator for Exploration following the test. “It looked flawless from my point of view. This is the first abort system the US has developed since Apollo, but it uses much more advanced technologies. It was a tremendous effort to get to this point, designing such a complex system, and we’ve been working on this for about 4 years. I appreciate the amount of dedication and focus from the team. It was beautiful, a tremendous team effort.”
Continue reading “Successful Test for Orion Launch Abort System”

Obama Compromises, Brings Back Orion Capsule; Allows for Heavy Lift Sooner

President Obama has proposed to completely cancel NASA’s Project Constellation to send humans to the Moon, Mars and Beyond, thus calling into question whether US Leadership in Space will continue. Artists concept of NASA’s cancelled Orion crew exploration vehicle shown here in on a science mission in lunar orbit. Credit: NASA

[/caption]

In what could be considered a compromise in his proposed budget for NASA, President Obama is reviving the Orion crew capsule concept that he had canceled with the rest of the Constellation program earlier this year, according to an article by Seth Borenstein of the Associated Press. This should mean more jobs and less reliance on the Russians, officials said Tuesday. While Orion, still won’t go to the moon. It will go unmanned to the International Space Station to stand by as an emergency vehicle to return astronauts home, officials were quoted in the article.

Borenstein also reported that NASA will speed up development of a heavy lift rocket. It would have the power to blast crew and cargo far from Earth, although no destination has been chosen yet. The rocket supposedly would be ready to launch several years earlier than under the old moon plan.

The two moves are being announced before the “Space Summit” on Thursday, a visit to Kennedy Space Center by Obama. They are designed to counter criticism of the Obama administration’s space plans as being low on detail, physical hardware, and local jobs.

The President’s plan had been met with much criticism, including an open letter to Obama drafted by several former astronauts, flight directors and other former NASA officials.

A briefing at the White House Now said that the president is committed to choosing a single heavy-lift rocket design by 2015 and then starting its construction.

Reportedly, the new Obama program will mean 2,500 more Florida jobs than the old Bush program, a senior White House official told Borenstein. In addition, as we reported earlier, the commercial space industry on Tuesday released a study that said the president’s plan for private ships to fly astronauts to and from the space station would result in 11,800 jobs.

“We wanted to take the best of what was available from Constellation,” the NASA official told The Associated Press as part of a White House briefing.

Read the full Associated Press article here.

New VISTA of Orion

Orion from the VISTA infrared telescope. Credit: ESO

[/caption]

Oh-oh-oh Orion! The new VISTA (Visible and Infrared Survey Telescope for Astronomy) infrared survey telescope has used its huge field of view to show the full splendor of the Orion Nebula. With its infrared eyes, it has peered deeply into dusty regions that are normally hidden to expose the curious behavior of the very active young stars buried there.

VISTA is the latest addition to ESO’s Paranal Observatory. It is the largest survey telescope in the world and is dedicated to mapping the sky at infrared wavelengths. The large (4.1-metre) mirror, wide field of view and very sensitive detectors make VISTA a unique instrument. This dramatic new image of the Orion Nebula illustrates VISTA’s remarkable powers.

The Orion Nebula is about 1,350 light-years from Earth. Although spectacular when seen through an ordinary telescope, what can be seen using visible light is only a small part of a cloud of gas in which stars are forming. Most of the action is deeply embedded in dust clouds and to see what is really happening astronomers need to use telescopes with detectors sensitive to the longer wavelength radiation that can penetrate the dust. VISTA has imaged the Orion Nebula at wavelengths about twice as long as can be detected by the human eye.

Four highlights of the new VISTA image of Orion. Credit: ESO

On the upper-left, the central region of VISTA’s view of the Orion Nebula is shown, centered on the four dazzling stars of the Trapezium. A rich cluster of young stars can be seen here that is invisible in normal, visible light images. In the lower-right panel the part of the nebula to the north of the center is shown. Here there are many young stars embedded in the dust clouds that are only apparent because their infrared glow can penetrate the dust and be detected by the VISTA camera. Many outflows, jets and other interactions from young stars are apparent, seen in the infrared glow from molecular hydrogen and showing up as red blobs. On the upper-right, a region to the west of center is shown. Here the fierce ultraviolet light from the Trapezium is sculpting the gas clouds into curious wavy shapes. A distant edge-on spiral galaxy is also seen shining right through the nebula. At the lower-left a region south of the center is shown. Each extract covers a region of sky about nine arcminutes across.

All these features are of great interest to astronomers studying the birth and youth of stars.

Source: ESO

Time-Lapse Movie Shows Massive Stars Form Similarly to Smaller Stars

It has been difficult for astronomers to see how massive stars form, since these stars are rare, form quickly and tend to be enshrouded in dense, dusty material which obscures them from view. But astronomers using the Very Long Baseline Array (VLBA) radio telescope were able to take images of the wavelengths of light emitted by a massive young star located 1,350 light years away in the Orion constellation. The created a ‘movie’ from the data, which they say shows the first evidence that young massive stars form from an accretion disk, just as smaller stars form.

“It is the first really ironclad confirmation that massive young stars are surrounded by orbiting accretion disks, and the first strong suggestion that these disks launch magnetically driven winds,” said Mark Krumholz, from the University of California at Santa Cruz.

The astronomers, led by Lynn D. Matthews from the Haystack Observatory at MIT, were able to see a disk of gas swirling close to the young massive star, known as Source I (said like “Source Eye”) in the high-resolution time-lapse movie they created.

By assembling 19 individual images of Source I taken by the VLBA at monthly intervals between March 2001 and December 2002, the high-resolution movie reveals thousands of masers, radio emitting gas clouds that can be thought of as naturally occurring lasers, located close to the massive star. According to Matthews, only three massive stars in the entire galaxy are known to have silicon monoxide masers. Because the silicon monoxide masers emit beams of intense radiation that can pierce the dusty material surrounding Source I, the scientists could probe the material close to the star and measure the motions of individual gas clumps.

Click here to see the time-lapse movie.

For almost 20 years, astronomers have known that low-mass stars form as a result of disk-mediated accretion, or from material formed from a structure rotating around a central body and driven by magnetic winds. But it had been impossible to confirm whether this was true for massive stars, which are eight to 100 times larger than low-mass stars. Without any hard data, theorists proposed many models for how massive stars might form, such as via collisions of smaller stars.

“This work should rule out many of them,” Krumholz said.

Because massive stars are believed to be responsible for creating most of the chemical elements in the universe that are critical for the formation of Earth-like planets and life, understanding how they form may help unravel mysteries about the origins of life.

The VLBA consists of a network of 10 radio telescope dishes located across North America, and can be thought of as a virtual telescope 5,000 miles in diameter. Used as a zoom lens to penetrate the dusty cloud surrounding the massive star, the VLBA captured images up to 1,000 times sharper than those previously obtained by other telescopes, including NASA’s Hubble Space Telescope.

The team’s paper was published in the Jan. 1 issue of the Astrophysical Journal.

Lead image caption: Artist’s conception of the rotating disk of hot, ionized gas surrounding Orion Source I, blocking the star from our view. A cool wind of gas is driven from the upper and lower surfaces of the disk and is sculpted into an hourglass shape by tangled magnetic field lines. Image: Bill Saxton, National Radio Astronomy Observatory/Associated Universities, Incorporated/National Science Foundation

Source: MIT