Lockheed Accelerates Orion to Achieve 2013 launch and potential 2016 Manned Lunar Flyby

[/caption]
KENNEDY SPACE CENTER – Despite utilizing just half the work force originally planned and cutting back further on the original test program, Lockheed Martin is now accelerating the Orion Multi-Purpose Crew Vehicle (MPCV) launch schedule and aiming to achieve an Earth orbital flight by 2013 and a human crewed flight as early as 2016. The first Orion crew cabin has been built and construction of the second spacecraft has begun.

What’s more is that a bold “manned mission beyond low Earth orbit and even a lunar fly by is possible in 2016 if NASA’s new heavy lift rocket is developed in time,” says John Karas, vice president of Lockheed Martin’s Human Space Flight programs, in an exclusive interview with Universe Today. A bipartisan majority in Congress recently approved funding for the Heavy lift booster and mandated that the first flight occur in 2016.

“In order to go to the moon, we need NASA’s new heavy lifter,” Karas explained. Orion was designed with the capability to fly human crews to low Earth orbit (LEO) and the International Space Station, as well as beyond to deep space, the Moon, Asteroids, Lagrange Points and Mars.

Orion is NASA’s next generation crew vehicle and is intended to someday replace the Space Shuttle program, which will be fully retired just three months from now.

The second to last shuttle flight – STS 134 – is slated for launch this week on April 29 and President Obama and the entire First Family will attend.

Lockheed Martin is the prime contractor for Orion under a multi-year contract awarded by NASA in 2006.

First Orion Crew module
Orion crew module during recent installation of back shell panel at Lockheed Martin’s Vertical Test Facility in Denver, Colorado. Credit: NASA

Karas told me that the streamlined test program would involve flying one Orion mission per year – of increasing complexity – from 2013 to 2016. “Lockheed Martin is working with NASA to determine what are the right launch vehicles and the right missions.”

American astronauts could return to the moon in 5 years after a more than 40 year long hiatus.

Orion crew module at Lockheed’s Denver Space Faciilty. First Orion Crew module being outfitted with doors, windows and thermal protection system and more at Lockheed facilities in Denver. Credit: NASA

“Right now we are building a brand new crew cabin for the first Orion mission; OFT-1. But everything depends on the budget.”

“For the inaugural Orion test flight in 2013 NASA is considering a Delta IV Heavy booster rocket,” Karas said. “The Atlas V is not powerful enough to send the whole 50,000 pound spacecraft into orbit. With an Atlas we could only launch an Orion crew module. You would have to have delete the Service Module (SM) and /or other subsystems.”

“Orion would be lofted some 7,000 miles out, and then sent back for Earth reentry to simulate something close to lunar velocity, around 80% or so. So we would definitely be testing the deep space environment. Therefore the test flight would be a lot more involved than just a simple Earth orbital reentry.

“For the first Orion mission, we will put as much capability on it as possible depending on the budget,” Karas amplified. “But it’s unlikely to have solar arrays without a few hundred million more bucks. The capability is money limited.”

“The 2014 flight could be a high altitude abort test or perhaps something else.”

“Then a full up unmanned test flight would follow in 2015,” Karas explained.

“If we have a heavy lifter, the 2016 flight with the first human crew could be a deep space mission or a lunar fly by lasting more than a week.”

Orion crew module boosted by upper stage to the Moon and deep space. Credit: Lockheed Martin

Lockheed has already constructed the initial Orion crew vehicle – known as the first article or Ground Test Article (GTA). The Orion GTA first article was built at NASA’s Michoud Assembly Facility (MAF) in New Orleans, LA where I inspected it after the structural framework was welded into one piece.

Following the installation of mass and volume simulators and a successful series of pressure tests, the first article was then shipped in February this year to the company’s new state-of-the-art Space Operation Simulation Center (SOSC) located in Denver, Colorado.

“At Denver, we are going to finish the assembly of the first article by July of this year so it looks like a spacecraft – adding the doors, windows, thermal tiles and more,” Karas said. “Then it undergoes rigorous acoustics tests until September – known as Shake and Bake – to simulate all aspects of the harsh environment of deep space.”

The next step after that was to send it to NASA Langley for intensive water drop landing tests. But that plan may well change Karas told me.

“The first article – or GTA – is flight worthy. So we don’t want to break the spacecraft during the water landing tests. In the newly revised plan it may be used on the 2nd Orion flight in 2014 instead of reserving it for ground tests only. It would fly with a service module, but not solar panels. The first article could even be the first flight vehicle if the program funding is insufficient.”

Orion prototype crew cabin - GTA
Orion cabin view with astronaut crew hatch and window openings at NASA Michoud Assembly Facility, New Orleans, LA is now undergoing testing and integration at Lockheed’s new state-of-the-art Space Operation Simulation Center (SOSC) in Denver, Colorado. Credit: Ken Kremer

“We have only half the budget for Orion that was planned earlier by NASA,” Karas stated.

“1500 less people are working on Orion since 1 year ago from the start to the end of 2010 – and that number includes all the subcontractors. We had to lay off a lot of people, including some folks we intended to hire.”

“MAF is now focused on building the composite structures of the first Service Module with about 200 people. That’s about half of what should have been about 400 folks. The earlier work at Michoud (MAF) focused on the metallic structures of the cabin for the first article,” said Karas.

To a large degree, launching astronauts to deep space is more a matter of sheer political will power then solving technical issues. And it all comes down to the bucks.

If NASA’s Heavy lifter is not available an alternative scenario with other expendable rockets would have to be developed to achieve the escape velocity required to send a crew of astronauts to the Moon.

Lockheed Martin has independently proposed a stepping stone approach that would send astronauts in Orion spacecraft to challenging deep space targets such as the Moon, and elsewhere such as Asteroids, Lagrange points and Mars that have never been done before and which I’ll feature in upcoming articles.

“Exploration missions that are affordable and sustainable will inevitably lead to technological innovation, to scientific discovery, and to public inspiration and spark an interest in STEM careers that can help the United States counter the overwhelming numerical disadvantage in college graduates it faces in these disciplines in developing third-world nations,’ says Karas.

Read my recent Orion and Shuttle articles:

NASAs First Orion Capsule and New Space Operations Center Unveiled

NASAs First Orion Capsule Ships for Crucial Deep Space Tests

President Obama to Attend Endeavour’s Last Launch on April 29

Shuttle Endeavour Photo Special: On Top of Pad 39A for Final Flight

NASA Selects Museums in Florida, California, New York and the Smithsonian for retiring Space Shuttles

‘In Flight’ Shuttle Orbiter retirement display planned by Kennedy Space Center Visitor Complex

Orion manned capsule launch atop Heavy Lift Booster
Orion could launch on a lunar flyby mission in 2016 atop NASA’s new Heavy lift booster from the Kennedy Space Center. Credit: Lockheed Martin.

NASAs First Orion Capsule and New Space Operations Center Unveiled

[/caption]

The inaugural version of NASA’s new Orion human space exploration capsule was unveiled by Lockheed Martin at the company’s new state-of-the-art Space Operation Simulation Center (SOSC) located in Denver, Colorado. Orion is designed to fly human crews to low Earth orbit (LEO) and the International Space Station, the Moon, Asteroids, Lagrange Points and beyond to deep space and Mars.

Lockheed Martin is aiming for a first unmanned orbital test flight of Orion as soon as 2013, said John Karas, vice president and general manager for Lockheed Martin’s Human Space Flight programs in an interview with Universe Today . The first operational flight with humans on board is now set for 2016 as stipulated in the NASA Authorization Act of 2010.

Orion manned capsule could launch in 2016 atop proposed NASA heavy lift booster from the Kennedy Space Center

This Orion prototype capsule was assembled at NASA’s Michoud Assembly Facility (MAF) in New Orleans, LA and shipped by truck to Denver. At Denver, the capsule will be put through a rigorous testing program to simulate all aspects of a space mission from launch to landing and examine whether the vehicle can withstand the harsh and unforgiving environment of deep space.

Orion was originally designed to be launched by the Ares 1 booster rocket, as part of NASA’s Project Constellation Return to the Moon program, now cancelled by President Obama. The initial Orion test flight will likely be atop a Delta IV Heavy rocket, Karas told me. The first manned flight is planned for the new heavy lift rocket ordered by the US Congress to replace the Project Constellation architecture.

The goal is to produce a new, US-built manned capsule capable of launching American astronauts into space following the looming forced retirement of NASA’s Space Shuttle orbiters later this year. Thus there will be a gap of at least three years until US astronauts again can launch from US soil.

“Our nation’s next bold step in exploration could begin by 2016,” said Karas in a statement. “Orion was designed from inception to fly multiple, deep-space missions. The spacecraft is an incredibly robust, technically advanced vehicle capable of safely transporting humans to asteroids, Lagrange Points and other deep space destinations that will put us on an affordable and sustainable path to Mars.”

Jim Bray, Director, Orion Crew & Service Module, unveils the first Orion crew module to guests and media at the Lockheed Martin Space Systems Company Waterton Facility in Denver, CO. The vehicle is temporarily positioned in the composite heat shield before installation begins. Following installation of the heat shield and thermal backshell panels, the spacecraft will undergo rigorous testing to validate Orion’s ability to endure the harsh environments of deep space. Credit: Lockheed Martin

Lockheed Martin is the prime contractor for Orion under a multiyear contract awarded by NASA worth some $3.9 Billion US Dollars.

The SOSC was built at a cost of several million dollars. The 41,000 square foot facility will be used to test and validate vehicles, equipment and software for future human spaceflight programs to ensure safe, affordable and sustainable space exploration.

Mission scenarios include docking to the International Space Station, exploring the Moon, visiting an Asteroid and even journeying to Mars. Lockheed has independently proposed the exploration of several challenging deep space targets by astronauts with Orion crew vehicles which I’ll report on in upcoming features.

Orion capsule and Abort rocket mockups on display at Kennedy Space Center.
Full scale mockups of the Orion capsule and emergency abort rocket are on public display at the Kennedy Space Center Visitor Complex in Florida. Orion crew capsule mockup (at left) and Launch Abort System (LAS) at right. The emergency rocket will be bolted atop an Orion spaceship for the initial orbital test flight currently slated for 2013 launch. The LAS mockup was used in launch pad exercises at the New Mexico launch site of the LAS rocket blast-off in May 2010. Credit: Ken Kremer

The SOSC facility provides the capability for NASA and Lockheed Martin engineers to conduct full-scale motion simulations of many types of manned and robotic space missions. Demonstrations are run using laser and optically guided robotic navigation systems.
Inside the SOSC, engineers can test the performance of a vehicles ranging, rendezvous, docking, proximity operations, imaging, descent and landing systems for Earth orbiting mission as well as those to other bodies in our solar system.

“The Orion spacecraft is a state-of-the-art deep space vehicle that incorporates the technological advances in human life support systems that have accrued over the last 35 years since the Space Shuttle was designed.” says Karas. “In addition, the Orion program has recently been streamlined for additional affordability, setting new standards for reduced NASA oversight. Orion is compatible with all the potential HLLVs that are under consideration by NASA, including the use of a Delta IV heavy for early test flights.”

Orion approaches the ISS

At this moment, the SOSC is being used to support a test of Orion hardware that will be flying on the upcoming STS-134 mission of Space Shuttle Endeavour. Orion’s Relative Navigation System – dubbed STORRM (Sensor Test for Orion RelNav Risk Mitigation) – will be put through its paces in several docking and navigation tests by the shuttle astronauts as they approach and depart the ISS during the STS-134 flight slated to launch on April19, 2011.

The Orion flight schedule starting in 2013 is however fully dependent on the level of funding which NASA receives from the Federal Government.

This past year the, Orion work was significantly slowed by large budget cuts and the future outlook is murky. Project Orion is receiving about half the funding originally planned by NASA.

And more deep cuts are in store for NASA’s budget – including both manned and unmanned projects – as both political parties wrangle about priorities as they try to pass a federal budget for this fiscal year. Until then, NASA and the entire US government are currently operating under a series of continuing resolutions passed by Congress – and the future is anything but certain.

Orion prototype crew cabin with crew hatch and windows
built at NASA Michoud Assembly Facility, New Orleans, LA. Credit: Ken Kremer
Lockheed Martin team of aerospace engineers and technicians poses with first Orion crew cabin after welding into one piece at NASA Michoud Assembly Facility, New Orleans, LA. Credit: Ken Kremer
Orion and ISS simulated docking

NASAs First Orion Capsule Ships for Crucial Deep Space Tests

[/caption]The first Orion spacecraft has just been shipped from NASAs Michoud Assembly Facility in New Orlean’s to a Lockheed Martin manufacturing facility in Denver for crucial tests to simulate the harsh environment of deep space.

The Orion crew cabin – know as the Ground Test Article or GTA – was shipped by truck and will arrive in Denver on Feb. 14 according to a Lockheed Martin spokesperson.

Orion is NASA’s next generation crew vehicle and will eventually replace the Space Shuttle system after the looming retirement of the three orbiter fleet, now reset to mid 2011.

The Orion crew exploration vehicle is capable of supporting missions to low Earth orbit (LEO), the Moon, Asteroids and Deep Space.

The next step at Denver is to install the heat shield and thermal protection backshell. The pathfinding vehicle will then be subjected to performance testing inside the acoustic and environmental testing chamber. The testing exercise ensures the vehicle can meet the challenges of ascent, on-orbit operations and safe landing.

“This is a significant milestone for the Orion project and puts us on the right path toward achieving the President’s objective of Orion’s first crewed mission by 2016,” said Cleon Lacefield, Lockheed Martin vice president and Orion program manager. “Orion’s upcoming performance tests will demonstrate how the spacecraft meets the challenges of deep-space mission environments such as ascent, launch abort, on-orbit operations, high-speed return trajectory, parachute deployment, and water landings in a variety of sea states.”

Engineers for Lockheed Martin successfully finished the initial construction and testing phase for this prototype Orion crew cabin at New Orleans. The final pieces of the Orion GTA were welded together in late May 2010 using a state of the art friction stir welding process. See photos below from my inspection tour of the newly welded Orion GTA.

The spacecraft underwent proof pressure testing this past fall. Several mass and volume simulators including the parachutes were installed by the technical team to ready the capsule for shipment.

Parachutes are installed by Lockheed Martin technicians on the Orion Ground Test Article (GTA) at NASA’s Michoud Assembly Facility in New Orleans. Credit: NASA

In Denver, the vehicle will be bombarded with acoustic energy and vibrations to simulate flight like situations that correlate the structural environment inside and outside the vehicle. The tests will determine if the spacecraft was properly designed to survive the harsh rigors of spaceflight. Lessons learned will be incorporated into the tools and manufacturing processes that will eventually lead to a human rated production vehicle.

The GTA vehicle will then be transported to NASA’s Langley Research facility for drop tests to simulate, validate and certify a variety of water landing scenarios at the new Hydro Impact Basin. The Langley facility will be used to test and certify water landing for all human-rated spacecraft for NASA according to Lockheed.

NASA and Lockheed hope to launch the first unmanned Orion test flight in 2013 if the budget allows. Construction of the service module and other key components is in progress.

Orion has achieved other significant development milestones in the past year.

Orion GTA crew cabin with crew hatch and windows after final pieces were welded together using state of the art friction stir welding. Credit: Ken Kremer
360 degree panorama of Orion GTA looking inside crew hatch. Credit: nasatech.net

The emergency abort rocket was successfully tested on May 6, 2010 at the U.S. Army’s White Sands Missile Range near Las Cruces, N.M. The abort rocket is bolted atop the crew cabin and is designed to pull the capsule away from the launcher in a split second in an emergency and save astronauts lives.

“The Phase 1 Safety Review was completed in June 2010 and formally acknowledges that Orion’s design meets all of NASA’s critical safety requirements for a human-rated space flight vehicle for flights to low earth orbit (LEO), lunar and deep space missions,” according to Larry Price, Orion Deputy Program Manager at Lockheed Martin.

In the past year the Orion budget has been cut significantly by NASA due to lack of funding from the federal government and the outlook for future funding is uncertain. The new Congress is aiming to cut NASA’s research and development budget even further.

Orion abort rocket mock up on public exhibit at the Kennedy Space Center Visitor Complex in Florida next to Orion crew capsule mockup (at left). The emergency rocket will be bolted atop an Orion spaceship for the initial orbital test flight which is currently slated for a 2013 launch. Credit: Ken Kremer

Lockheed Martin Space Systems Company is the prime contractor for Orion and designed and built the GTA as part of a multiyear contract awarded by NASA worth some $3.9 Billion US Dollars. The goal is to produce a new, US-built manned capsule capable of launching American astronauts into space in the post shuttle era.

As soon as the shuttles are retired – for lack of money – the United States will have no capability to loft American astronauts to the International Space Station (ISS) for at least several years. NASA – and all other ISS partners – will be wholly dependent on the Russian Soyuz capsules for launching astronauts to the ISS until either the Orion or commercially developed space taxis such as the Dragon spacecraft from SpaceX are ready for flight. The first operational unmanned Dragon was test flown in Dec 2010.

The Obama Administration sought to cancel Orion in Feb. 2010 as part of NASA’s Project Constellation Return to the Moon program, but then decided to continue Orion’s development after the cancellation proposal met strong bipartisan opposition in Congress.

Orion was to have been launched atop the Ares 1 rocket which has now been officially cancelled. NASA has started the design of a replacement for the Ares 1 which will most likely be a shuttle derived vehicle. Congress has mandated that the first test flight of the still undefined heavy lift rocket must take place by 2016.

Alternatively, Orion could be launched atop a Delta 4 Heavy booster after the rocket is man-rated.

Orion Crew Vehicle Construction Video

Watch this video to see how the first Orion spacecraft was constructed from pieces at NASA’s Michoud Assembly Facility in New Orleans. Credit: NASA

Orion crew module processing at NASA’s Michoud Assembly Facility in New Orleans. Credit: NASA

Lockheed Martin team of aerospace engineers and technicians poses with Orion GTA after welding into one piece. Credit: Ken Kremer.
360 degree panorama of Orion GTA and Lockheed Martin team. Credit: nasatech.net

Lockheed Martin Wants to Launch Orion Spacecraft – on a Delta IV Heavy

[/caption]

After the announcement of the Vision for Space Exploration (VSE) one of the proposals to reduce the space flight ‘gap’ between the shuttle program and the Constellation Program was to attach the Crew Exploration Vehicle (CEV) to a Delta IV Heavy rocket. With all the political wrangling this simple solution appeared lost – or so it was thought. The idea of man-rating a Delta IV heavy never seemed to quite fade away and now a plan is under way to launch the Orion spacecraft on top of one of these massive launch vehicles – within the next three years.

More importantly by launching these test flights, NASA will be able to review up to three-quarters of the technical challenges involved with a flight to either the moon or to an asteroid – without risking a crew. Some of the elements that would be checked out on this unmanned test flight would be:

• Spacecraft stabilization and control.

• Parachutes used for reentry and other systems used to recover the spacecraft.

• Micrometeoroid shielding along with other systems used to protect the vehicle.

The manufacturer of the Orion spacecraft, Lockheed Martin, plans to have the first flight take place as soon as 2013. This test flight would launch from Cape Canaveral Air Force Station’s Space Launch Complex 37. If all goes well? Astronauts could be riding the Delta IV heavy to destinations such as the moon or an asteroid by 2015. For now though these plans are still in their infancy.

If all does go according to how Lockheed Martin human spaceflight engineers plan – the first mission to an asteroid could beat the 2025 date that President Obama set during his April visit to Kennedy Space Center – by ten years.

Each successive flight after the first unmanned mission would shake out the technology more and more until crews fly into orbit. The first unmanned flight, as envisioned by Lockheed Martin, would emulate many of the elements of a mission to either an asteroid or to the moon.

For long-time followers of the space program, witnessing a man-rated launch of a Delta IV heavy will very much be a blast from the past. In the early days of the space program astronauts rode Atlas and Titan rockets into orbit (these rockets were actually man-rated Cold-War missiles). Attached atop the Delta IV would be the Orion capsule and on top of that would be a Launch Abort System (LAS). This last component is a small mini-rocket that would pull the capsule up and away from the Delta if there is an emergency.

Once the flight is completed, the Orion will splashdown in the same general area as Space Exploration Technology’s (SpaceX’s) Dragon Spacecraft – the Pacific Ocean off the coast of California.

The Orion Spacecraft has proved itself to be a survivor. President Obama initially promised to support NASA’s lunar ambitions on the campaign trail – a promise he went back on once elected. He then attempted to cancel all elements of the Constellation Program of which Orion was a key part. This proposal landed with a resounding thud. He then attempted to gain support for his space plan by resurrecting Orion as a stripped down lifeboat for the International Space Station (ISS) – this too met with little support. Eventually, after much Congressional wrangling, Orion emerged as the one element of Constellation – which Obama could not kill.

Congress has put some support behind his plan to have commercial space firms provide transportation to low-Earth-orbit (LEO). However, these firms have no experience whatsoever launching men and material to orbit – and Congress wanted to have a backup plan – that meant Orion. As the launch vehicle that would have hefted Orion to orbit was effectively dead another rocket was required – the best candidate was the Delta IV heavy.

Within three years a Delta IV Heavy like this one could launch the first Orion capsule. Photo Credit: Universe Today/Alan Walters - awaltersphoto.com

“Space Factory of the Future” Preparing for Orion Spacecraft for Flight

[/caption]

Lockheed Martin has been working overtime to get the Orion spacecraft ready for its first mission, which officials say could be as early as 2013, depending on Congress’ final decision for NASA’s future and budget. Tools and procedures are being checked out to see that they work as advertised for both the spacecraft as well as assembly procedures and manufacturing for building future capsules.

The Orion spacecraft will be assembled and integrated on site in the Operations & Checkout (O & C) building at NASA’s Kennedy Space Center (KSC) in Florida. By doing this, both time and money can be saved as it will cut down on transportation costs and logistical issues.

“The unique benefit of this complete on-site operation is that we will build the spacecraft and then move it directly onto the launch vehicle at KSC, which saves the government transportation costs associated with tests and checkout prior to launch,” said Lockheed Martin Orion Deputy Program Manager for production operations Richard Harris. “This capability also facilitates the KSC workforce transition efforts by providing new job opportunities for those employees completing their shuttle program assignments.”

The current plan calls for Orion to serve to transport astronauts to the International Space Station and perhaps an eventual mission beyond low-Earth-orbit (LEO), but Orion’s future rests with Congress’ upcoming decision on NASA’s future budget. The House Science and Technology Committee announced Thursday a compromise between the House and Senate versions of NASA’s budget, but it is unclear when a final vote may take place.

In the meantime, the O & C building has been transformed in the past couple years into what is being called “the space factory of the future.” This was accomplished by the combined effort of both Lockheed Martin as well as Space Florida, the state’s aerospace development organization. The work was done to create a state-of-the-art facility for spacecraft production and innovation.

NASA's Operations and Checkout (O&C) Building has recently been refurbished to accomocate the Orion spacecraft. Photo Credit: NASA

Changes made to the O&C include 90,000 square feet of air-bearing floor space, paperless work stations, a portable clean room system, and specialized lifting/lowering/ support tools designed by United Space Alliance (USA). Specially designed air-bearing pallets will allow a small crew to maneuver hardware across the floor. The building renovation also incorporates energy-saving electrical systems which will help to further lower costs.

Lockheed Martin is the prime contractor for the Orion Project and heads the team that includes numerous subcontractors and small businesses working at facilities in 28 states. Additionally, the program works with more than 500 small businesses across the U.S. to provide the needed supplies that make the Orion Project a reality.

Source: Lockheed Martin