World’s Most Powerful Solid Booster Set for Space Launch System Test Firing on March 11

All systems are go for the inaugural ground test firing on March 11 of the world’s most powerful solid rocket booster ever built that will one day power NASA’s mammoth new Space Launch System (SLS) heavy lift rocket and propel astronauts to deep space destinations.

The booster known as qualification motor, QM-1, is the largest solid rocket motor ever built and will be ignited on March 11 for a full duration static fire test by prime contractor Orbital ATK at the newly merged firms test facility in Promontory, Utah.

Ignition of the horizontally mounted motor is planned for 11:30 a.m. EDT (9:30 a.m. MDT) on Wednesday, March 11 on the T-97 test stand.

The test will be broadcast live on NASA TV.

Engineers at Orbital ATK in Promontory, Utah, prepare to test the booster that will help power NASA’s Space Launch System to space to begin missions to deep space, including to an asteroid and Mars. A test on March 11 is one of two that will qualify the booster for flight.  Image Credit:  Orbital ATK
Engineers at Orbital ATK in Promontory, Utah, prepare to test the booster that will help power NASA’s Space Launch System to space to begin missions to deep space, including to an asteroid and Mars. A test on March 11 is one of two that will qualify the booster for flight. Image Credit: Orbital ATK

The two minute long, full duration static test firing of the motor marks a major milestone in the ongoing development of NASA’s SLS booster, which is the most powerful rocket ever built in human history.

The 5-segment booster produces 3.6 million lbs of maximum thrust which equates to more than 14 Boeing 747-400s at full takeoff power!

The new 5-segment booster is directly derived from the 4-segment booster used during NASA’s three decade long Space Shuttle program. One segment has been added and therefore the new, longer and more powerful booster must be requalified to launch the SLS and humans.

A second test is planned a year from now and will qualify the boosters for use with the SLS.

Teams of engineers, operators, inspectors and program managers across Orbital ATK’s Flight Systems Group have spent months getting ready for the QM-1 test. To prepare they started countdown tests on Feb 25.

“The crew officially starts daily countdown test runs of the systems this week, at T-15 days,” said Kevin Rees, director, Test & Research Operations at Orbital ATK.

“These checks, along with other test stand calibrations, will verify all systems are ready for the static test. Our team is prepared and we are proud to play such a significant role on this program.”

The first qualification motor for NASA's Space Launch System's booster is installed in ATK's test stand in Utah and is ready for a March 11 static-fire test.   Credit:  ATK
The first qualification motor for NASA’s Space Launch System’s booster is installed in ATK’s test stand in Utah and is ready for a March 11 static-fire test. Credit: ATK

The QM-1 booster is being conditioned to 90 degrees and the static fire test will qualify the booster design for high temperature launch conditions. It sits horizontally in the test stand and measures 154 feet in length and 12 feet in diameter and weighs 801 tons.

The static fire test will collect data on 103 design objectives as measured through more than 534 instrumentation channels on the booster it is firing.

The second booster test in March 2016 will be conducted at lower temperature to qualify the lower end of the launch conditions at 40 degrees F.

The first stage of the SLS will be powered by a pair of the five-segment boosters and four RS-25 engines that will generate a combined 8.4 million pounds of liftoff thrust.

The SLS is designed to propel the Orion crew capsule to deep space destinations, including the Moon, asteroids and the Red Planet.

The maiden test flight of the SLS is targeted for no later than November 2018 and will be configured in its initial 70-metric-ton (77-ton) version with a liftoff thrust of 8.4 million pounds. It will boost an unmanned Orion on an approximately three week long test flight beyond the Moon and back.

NASA plans to gradually upgrade the SLS to achieve an unprecedented lift capability of 130 metric tons (143 tons), enabling the more distant missions even farther into our solar system.

The first SLS test flight with the uncrewed Orion is called Exploration Mission-1 (EM-1) and will launch from Launch Complex 39-B at the Kennedy Space Center.

Solid rocket boosters separate from SLS core stage in this artists concept. Credit: NASA
Solid rocket boosters separate from SLS core stage in this artists concept. Credit: NASA

Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Orion’s inaugural mission dubbed Exploration Flight Test-1 (EFT) was successfully launched on a flawless flight on Dec. 5, 2014 atop a United Launch Alliance Delta IV Heavy rocket Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

. ………….

Learn more about MMS, Mars rovers, Orion, SpaceX, Antares, NASA missions and more at Ken’s upcoming outreach events:

Mar 9-11: “MMS, Orion, SpaceX, Antares, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built.  Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA’s Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer – kenkremer.com

NASA Video Shows Astronaut’s-Eye View of “Trial by Fire” from Inside Orion EFT-1 on First Test Flight

Video Caption: New video recorded during NASA’s Orion return through Earth’s atmosphere provides viewers a taste of what the vehicle endured as it returned through Earth’s atmosphere during its Dec. 5 flight test. Credit: NASA

KENNEDY SPACE CENTER, FL – Newly released NASA footage recorded during the first test flight of NASA’s Orion crew capsule this month gives an astronaut’s-eye view of what it would have been like for a crew riding along on the “Trial by Fire” as the vehicle began the fiery reentry through the Earth’s atmosphere and suffered scorching temperatures during the approximately ten minute plummet homewards and parachute assisted splashdown.

“The video provides a taste of the intense conditions the spacecraft and the astronauts it carries will endure when they return from deep space destinations on the journey to Mars,” NASA said in a statement.

The video was among the first data to be removed from Orion following its unpiloted Dec. 5 flight test and was recorded through windows in Orion’s crew module.

The Orion deep space test capsule reached an altitude of 3604 miles and the video starts with a view of the Earth’s curvature far different from what we’ve grown accustomed to from Space Shuttle flight and the International Space Station (ISS).

Then it transitions to the fiery atmospheric entry and effects from the superheated plasma, the continued descent, gorgeous series of parachute openings, and concludes with the dramatic splashdown.

Although parts of the video were transmitted back in real time and shown live on NASA TV, this is the first time that the complete video is available so that “the public can have an up-close look at the extreme environment a spacecraft experiences as it travels back through Earth’s environment from beyond low-Earth orbit.”

A portion of the video could not be sent back live because of the communications blackout that always occurs during reentry when the superheated plasma surrounds the vehicle as it endures peak heating up to 4000 F (2200 C) and prevents data downlink. Video footage “shows the plasma created by the interaction change from white to yellow to lavender to magenta as the temperature increases.”

The on-board cameras continued to operate all the way through the 10 minute reentry period to unfurling of the drogue and three main parachutes and splashdown in the Pacific Ocean at 11:29 a.m. EST at about 20 mph.

The Orion EFT-1 spacecraft was recovered from the Pacific by a combined team from NASA, the U.S. Navy, and Orion prime contractor Lockheed Martin and safely towed into the flooded well deck of the USS Anchorage.

The Orion spacecraft is guided into the well deck of the USS Anchorage during recovery operations following splashdown. Credit: U.S. Navy
The Orion spacecraft is guided into the well deck of the USS Anchorage during recovery operations following splashdown. Credit: U.S. Navy

It was brought to shore and off-loaded from the USS Anchorage at US Naval Base San Diego.

Orion was then hauled 2700 miles across the US from California on a flat bed truck for her homecoming arrival back to the Kennedy Space Center in Florida on Dec. 19 just prior to the Christmas holidays.

Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014 after successful blastoff on Dec. 5, 2014.  Credit: Ken Kremer - kenkremer.com
Homecoming view of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014, after successful blastoff on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Orion’s inaugural test flight began with the flawless Dec. 5 launch as it soared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Orion flew on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that carried the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

EFT-1 tested the rocket, second stage, and jettison mechanisms as well as avionics, attitude control, computers, environmental controls and electronic systems inside the Orion spacecraft, heat shield, thermal protection tiles, and ocean recovery operations.

NASA intends that the EFT-1 test flight starts the agency on the long awaited road to send astronauts beyond Earth and eventually to Mars in the 2030s.

View of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
View of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

NASA’s First Orion Crew Module Arrives Safely Back at Kennedy Space Center

KENNEDY SPACE CENTER, FL – After a history making journey of more than 66,000 miles through space, ocean splash down and over 2700 mile cross country journey through the back woods of America, NASA’s pathfinding Orion crew capsule has returned to its home base at the Kennedy Space Center in Florida.

“The Orion mission was a spectacular success,” said Jules Schneider, Lockheed Martin Program manager for Orion at KSC, during a homecoming event attended by space journalists including Universe Today on Friday, Dec. 19, 2014.

“We achieved 85 of 87 test objectives,” noted Schneider. “Only an up righting air bag did not deploy fully after splashdown. And we are looking into that. Otherwise the mission went extremely well.”

Orion’s early homecoming was unexpected and a pleasant surprise since it hadn’t been expected until next week just prior to Christmas.

Orion flew on its two orbit, 4.5 hour flight maiden test flight on the Exploration Flight Test-1 (EFT-1) mission that started NASA’s long road to send astronauts beyond Earth and eventually to Mars in the 2030s.

The media were able to see the entire Orion capsule from top to bottom, including the exposed, blackened and heat scorched heat shield which had to protect the vehicle from fiery reentry temperatures exceeding 4000 F (2200 C).

 Top view of NASA’s maiden Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com

Top view of NASA’s maiden Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Orion is being stored for now inside the Launch Abort System Facility (LASF)

“The heat shield worked extremely well and did its job,” Schneider told Universe Today.

Engineers took three samples from the 16.5 foot diameter heat shield and they are in for analysis.

“I don’t know if you can tell, we’ve actually taken a few core samples off the heat shield already and we’re looking at those,” said Schneider. “We will be removing the heat shield from this vehicle later in February so we will get an ever better look at it.”

One of the main objectives was to test the heat shield during the high speed atmospheric plummet of about 20000 mph (32000 kph) that reached approximately 85% of what astronauts will experience during a return from future voyages to Mars and Asteroids in the next decade and beyond.

“All of Orion’s system performed very well,” Schneider told me in an interview beside Orion.

“And the capsule used only about 90 pounds of its about 300 pounds of hydrazine propellant stored on board.”

“All of the separation events went beautifully and basically required virtually no maneuvering fuel to control the attitude of the capsule. The expected usage was perhaps about 150 pounds.”

“Therefore there is a lot more hydrazine fuel on board than we expected. And we had to be cautious in transporting Orion across the country.”

Up close view of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
Up close view of three core samples taken from the heat shield of NASA’s first Orion spacecraft after returning to NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Lockheed Martin is the Orion prime contractor.

The Orion arrived module arrived back at KSC, Thursday afternoon after being hauled across our country mostly on back country roads, and with no publicity or fanfare, on an unmarked flat bed truck to minimize interaction with the public.

“It was like a black ops operation,” said one of the team members responsible to safely transporting Orion from Naval Base San Diego to KSC.

NASA obtained special permits to move Orion from all the states travelled between California and Florida.

“We didn’t want any publicity because the capsule was still loaded with residual toxic chemicals like ammonia and hydrazine.” These were used to power and fuel the capsule.”

Orion’s test flight began with a flawless launch on Dec. 5 as it roared to orbit atop the fiery fury of a 242 foot tall United Launch Alliance Delta IV Heavy rocket – the world’s most powerful booster – at 7:05 a.m. EST from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

The unpiloted test flight of Orion on the EFT-1 mission ignited NASA’s roadmap to send Humans to Mars by the 2030s by carrying the capsule farther away from Earth than any spacecraft designed for astronauts has traveled in more than four decades.

Humans have not ventured beyond low Earth orbit since the launch of Apollo 17 on NASA’s final moon landing mission on Dec. 7, 1972.

Watch for more details and photos later.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Watch for Ken’s ongoing Orion coverage from onsite at the Kennedy Space Center about the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Jules Schneider, Lockheed Martin Program manager for Orion at KSC, and Ken Kremer/Universe Today discuss Orion during arrival event at NASA’s Kennedy Space Center in Florida on Dec. 19, 2014.   Credit: Ken Kremer - kenkremer.com
Jules Schneider, Lockheed Martin Program manager for Orion at KSC, and Ken Kremer/Universe Today discuss Orion during arrival event at NASA’s Kennedy Space Center in Florida on Dec. 19, 2014. Credit: Ken Kremer – kenkremer.com

Mars Era Opens with Spectacular Blastoff of NASA’s New Orion Crew Spacecraft

KENNEDY SPACE CENTER, FL – The long road to NASA’s “Mars Era” opened with the thunderous on-time blastoff today, Dec. 5, of NASA’s first Orion spacecraft.

Orion took flight atop a United Launch Alliance Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 5, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

“It’s the dawn of Orion and a new era in space exploration,” said NASA launch commentator Mike Curie as the Delta rocket roared to life.

Orion’s Delta rocket lit the sky on fire and soared to space on the world’s most powerful rocket.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 4, 2014.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Jubilation broke out in Mission Control as Orion slowly ascended from the pad.

“It’s a great day for America,” said NASA Flight Director Mike Sarafin.

Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 4, 2014.   Credit: Ken Kremer - kenkremer.com
Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

This story is being updated directly from the Kennedy Space Center. Further details in follow up features.

Watch for Ken’s ongoing Orion coverage and he is onsite at KSC during launch week for the historic launch on Dec. 5.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s first Orion spacecraft and Delta 4 Heavy Booster unveiled at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida prior to launch set for Dec. 4, 2014.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft and Delta 4 Heavy Booster unveiled at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida prior to launch on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

Moon Over Orion Heralds Start of NASA’s Human Road to Mars

KENNEDY SPACE CENTER, FL – This week’s appearance of the Moon over the Kennedy Space Center marks the perfect backdrop heralding the start of NASA’s determined push to send Humans to Mars by the 2030s via the agency’s new Orion crew capsule set to soar to space on its maiden test flight in less than two days.

Orion is the first human rated vehicle that can carry astronauts beyond low Earth orbit on voyages to deep space in more than 40 years.

Top managers from NASA, United Launch Alliance (ULA), and Lockheed Martin met on Tuesday, Dec. 2, and gave the “GO” to proceed toward launch after a thorough review of all systems related to the Orion capsule, rocket, and ground operation systems at the launch pad at the Launch Readiness Review (LRR), said Mark Geyer at a NASA media briefing on Dec. 2.

A new countdown display has been constructed in the place of the former analog countdown clock at the Press Site at NASA's Kennedy Space Center in Florida for Orion’s first launch. The display is a modern, digital LED display akin to stadium monitors. It allows television images to be shown along with numbers.  Note former shuttle launch pad 39A in the background above clock.   Credit: Ken Kremer – kenkremer.com
A new countdown display has been constructed in the place of the former analog countdown clock at the Press Site at NASA’s Kennedy Space Center in Florida for Orion’s first launch slated for Dec. 4, 2014. The display is a modern, digital LED display akin to stadium monitors. It allows television images to be shown along with numbers. Note former shuttle launch pad 39A in the background above clock. Credit: Ken Kremer – kenkremer.com

Orion is slated to lift off on a United Launch Alliance Delta IV Heavy rocket on its inaugural test flight to space on the uncrewed Exploration Flight Test-1 (EFT-1) mission at 7:05 a.m. EST on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

America’s astronauts flying aboard Orion will venture farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System starting around 2020 or 2021 on Orion’s first crewed flight atop NASA’s new monster rocket – the SLS – concurrently under development.

NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA's Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built.  Credit: Ken Kremer - kenkremer.com
NASA Administrator Charles Bolden officially unveils world’s largest welder to start construction of core stage of NASA’s Space Launch System (SLS) rocket at NASA Michoud Assembly Facility, New Orleans, on Sept. 12, 2014. SLS will be the world’s most powerful rocket ever built. Credit: Ken Kremer – kenkremer.com

The current weather forecast states the launch is 60 percent “GO” for favorable weather condition at the scheduled liftoff time of at 7:05 a.m. on Dec. 4, 2014.

The launch window extends for 2 hours and 39 minutes.

The two-orbit, four and a half hour Orion EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

EFT-1 will test the rocket, second stage, and jettison mechanisms, as well as avionics, attitude control, computers, and electronic systems inside the Orion spacecraft.

Orion atop Delta 4 Heavy Booster.   Credit: NASA/Kim Shiflett
Orion atop Delta 4 Heavy Booster. Credit: NASA/Kim Shiflett

Then the spacecraft will carry out a high speed re-entry through the atmosphere at speeds approaching 20,000 mph and scorching temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.

NASA TV will provide several hours of live Orion EFT-1 launch coverage with the new countdown clock – starting at 4:30 a.m. on Dec. 4.

Orion’s move to Launch Complex-37. Credit: Mike Killian
Orion’s move to Launch Complex-37. Credit: Mike Killian

Watch for Ken’s ongoing Orion coverage and he’ll be onsite at KSC in the days leading up to the historic launch on Dec. 4.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer
………….
Learn more about Orion, SpaceX, Antares, NASA missions, and more at Ken’s upcoming outreach events:

Dec 1-5: “Orion EFT-1, SpaceX CRS-5, Antares Orb-3 launch, Curiosity Explores Mars,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Orion’s Rocket Ready to Rock n’ Roll for Critical December Test Flight

The huge rocket that will blast NASA’s first Orion spacecraft into orbit is ready to Rock ‘n’ Roll on a critical two orbit test flight scheduled for December.

And Orion is so big and heavy that she’s not launching on just any old standard rocket.

To blast the uncrewed Orion to orbit on its maiden mission requires the most powerful booster on Planet Earth – namely the United Launch Alliance Delta IV Heavy rocket.

Liftoff of the state-of-the-art Orion spacecraft on the unmanned Exploration Flight Test-1 (EFT-1) mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

Just days ago, the launch team successfully completed a countdown and wet dress rehearsal fueling test on the rocket itself – minus Orion – at launch complex 37.

The high fidelity rehearsal included fully powering up the booster and loading the tanks with cryogenic fuel and oxidizer,  liquid oxygen and liquid hydrogen
The high fidelity rehearsal included fully powering up the booster and loading the tanks with cryogenic fuel and oxidizer, liquid oxygen, and liquid hydrogen

The high fidelity rehearsal included fully powering up the booster and loading the tanks with cryogenic fuel and oxidizer, liquid oxygen, and liquid hydrogen.

ULA technicians and engineers practiced the countdown on Nov. 5 which included fueling the core stages of the Delta IV Heavy rocket.

“Working in control rooms at Cape Canaveral Air Force Station in Florida, countdown operators followed the same steps they will take on launch day. The simulation also allowed controllers to evaluate the fuel loading and draining systems on the complex rocket before the Orion spacecraft is placed atop the launcher,” said NASA.

The next key mission milestone is attachment of the completed Orion vehicle stack on top of the rocket. Read more about the fully assembled Orion – here.

Today’s scheduled rollout of Orion to the launch pad for hoisting atop the rocket was scrubbed due to poor weather.

The Orion spacecraft sits inside the Launch Abort System Facility at NASA's Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system.  Credit: NASA/Jim Grossman
The Orion spacecraft sits inside the Launch Abort System Facility at NASA’s Kennedy Space Center in Florida. The Ogive panels have been installed around the launch abort system. Credit: NASA/Jim Grossman

The triple barreled Delta IV Heavy booster became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program in 2011 and is the only rocket sufficiently powerful to launch the Orion EFT-1 spacecraft.

The first stage of the mammoth Delta IV Heavy generates some 2 million pounds of liftoff thrust.

“The team has worked extremely hard to ensure this vehicle is processed with the utmost attention to detail and focus on mission success,” according to Tony Taliancich, ULA’s director of East Coast Launch Operations.

“The Delta IV Heavy is the world’s most powerful launch vehicle flying today, and we are excited to be supporting our customer for this critical flight test to collect data and reduce overall mission risks and costs for the program.”

From now until launch technicians will continue to conduct the final processing, testing, and checkout of the Delta IV Heavy booster.

These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014.   Credit: Ken Kremer/kenkremer.com
These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014. Credit: Ken Kremer/kenkremer.com

The Delta IV Heavy first stage is comprised of a trio of three Common Booster Cores (CBCs).

Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.

The first CBC booster was attached to the center booster in June. The second one was attached in early August.

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

This fall I visited the ULA’s Horizontal Integration Facility (HIF) during a media tour after the three CBCs had been joined together as well as earlier this year after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville. See my photos herein.

 Orion in orbit in this artists concept.  Credit: NASA

Orion in orbit in this artist’s concept. Credit: NASA

Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

“This mission is a stepping stone on NASA’s journey to Mars,” said NASA Associate Administrator Robert Lightfoot.

The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace
The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace

.

“The EFT-1 mission is so important to NASA. We will test the capsule with a reentry velocity of about 85% of what’s expected by [astronauts] returning from Mars.”

“We will test the heat shield, the separation of the fairing, and exercise over 50% of the eventual software and electronic systems inside the Orion spacecraft. We will also test the recovery systems coming back into the Pacific Ocean.”

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHFS) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHFS) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

Assembly Complete for NASA’s Maiden Orion Spacecraft Launching in December 2014

Technicians at the Kennedy Space Center have completed the final major assembly work on NASA’s maiden Orion crew module slated to launch on its first unmanned orbital test flight this December, dubbed Exploration Flight Test-1 (EFT-1)

After first attaching the Launch Abort System (LAS) to the top of the capsule, engineers carefully installed a fairing composed of a set of four ogive panels over the crew module and the abort systems lower structural framework joining them together.

“The ogive panels smooth the airflow over the conical spacecraft to limit sound and vibration, which will make for a much smoother ride for the astronauts who will ride inside Orion in the future,” according to a NASA description.

Upon finishing the panel assembly work inside the Launch Abort System Facility (LASF) at NASA’s Kennedy Space Center, the teams cleared the last major hurdle before the Orion stack is rolled out to launch pad 37 in mid-November and hoisted to the top of the Delta IV Heavy rocket.

Technicians complete final assembly of NASA’s first Orion spacecraft with installation of the  last ogive close out panels on the Launch Abort System that smooth airflow. Credit: Photo credit: Kim Shiflett
Technicians complete final assembly of NASA’s first Orion spacecraft with installation of the last ogive close out panels on the Launch Abort System that smooth airflow. Photo credit: Kim Shiflett

The Orion stack is comprised of the LAS, crew module (CM) and service module (SM).

The maiden blastoff of the state-of-the-art Orion spacecraft on the EFT-1 mission is slated for December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida atop the triple barreled United Launch Alliance (ULA) Delta IV Heavy booster.

Orion is NASA’s next generation human rated vehicle that will eventually carry America’s astronauts beyond Earth on voyages venturing farther into deep space than ever before – beyond the Moon to Asteroids, Mars, and other destinations in our Solar System.

NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHFS) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHSF) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com

The two-orbit, four and a half hour EFT-1 flight around Earth will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years. It will test the avionics and electronic systems inside the Orion spacecraft.

Then the spacecraft will travel back through the atmosphere at speeds approaching 20,000 mph and temperatures near 4,000 degrees Fahrenheit to test the heat shield, before splashing down for a parachute assisted landing in the Pacific Ocean.

Launch Abort System (LAS) for Orion EFT-1 on view horizontally inside the Launch Abort System Facility at the Kennedy Space Center, Florida, prior to installation atop the crew module. Credit: Ken Kremer/kenkremer.com
Launch Abort System (LAS) for Orion EFT-1 on view horizontally inside the Launch Abort System Facility at the Kennedy Space Center, Florida, prior to installation atop the crew module. Credit: Ken Kremer/kenkremer.com

The LAS plays a critically important role to ensure crew safety.

In case of an emergency situation, the LAS is designed to ignite within milliseconds to rapidly propel the astronauts inside the crew module away from the rocket and save the astronauts’ lives. The quartet of LAS abort motors would generate some 500,000 pounds of thrust to pull the capsule away from the rocket.

And don’t forget that you can fly your name on Orion and also print out an elegant looking “boarding pass.”

Details below and in my article – here.

NASA announced that the public can submit their names for inclusion on a dime-sized microchip that will travel on Orion and succeeding spacecraft voyaging to destinations beyond low-Earth orbit, including Mars.

The deadline to submit your name is soon: Oct 31, 2014.

Click on this weblink posted online by NASA today: http://go.usa.gov/vcpz

NASA invites you to send your name to Mars via the first Orion test flight in December 2014.  Deadline for submissions is Oct 31, 2014. Join over 170,000 others! See link below. Credit: NASA
NASA invites you to send your name to Mars via the first Orion test flight in December 2014. Deadline for submissions is Oct 31, 2014. Join over 170,000 others! See link below. Credit: NASA

“NASA is pushing the boundaries of exploration and working hard to send people to Mars in the future,” said Mark Geyer, Orion Program manager, in a NASA statement.

“When we set foot on the Red Planet, we’ll be exploring for all of humanity. Flying these names will enable people to be part of our journey.”

NASA’s Orion Program manager Mark Geyer discusses Orion EFT-1 mission.  Credit: Ken Kremer - kenkremer.com
NASA’s Orion Program manager Mark Geyer discusses Orion EFT-1 mission, while holding a model of the Launch Abort System. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace
The United Launch Alliance Delta-IV Heavy rocket tasked with launching NASA’s Orion EFT-1 mission being hoisted vertical atop Space Launch Complex-37B at Cape Canaveral Air Force Station in Florida on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace

…………….

Learn more about Orion, Space Taxis, and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

ULA Delta IV Heavy Rocket Rolled to Cape Launch Pad and Raised for Orion’s First Flight

The march towards first launch of NASA’s next generation Orion crew vehicle is accelerating rapidly.

The world’s most powerful rocket – the United Launch Alliance Delta IV Heavy – was moved to its Cape Canaveral launch pad overnight and raised at the pad today, Oct. 1, thereby setting in motion the final steps to prepare for blastoff of NASA’s new Orion capsule on its first test flight in just over two months.

All the pieces are ready and now it’s just a matter of attaching all those components together for the inaugural uncrewed liftoff of the state-of-the-art Orion spacecraft on its maiden mission dubbed Exploration Flight Test-1 (EFT-1) in December.

“We’ve been working toward this launch for months, and we’re in the final stretch,” said Kennedy Director Bob Cabana, in a NASA statement.

Orion is almost complete and the rocket that will send it into space is on the launch pad. We’re 64 days away from taking the next step in deep space exploration.”

The triple barreled Delta IV Heavy topped by the Orion EFT-1 capsule is slated to blastoff on December 4, 2014, from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

United Launch Alliance Delta-IV Heavy rocket  launching NASA’s Orion’s EFT-1 in Dec. 2014 being hoisted vertical at SLC-37B on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace
United Launch Alliance Delta IV Heavy rocket launching NASA’s Orion’s EFT-1 in Dec. 2014 being hoisted vertical at SLC-37B on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace

After a nearly two day delay due to drenching rain storms, the Delta IV Heavy integrated first and second stages were transported horizontally overnight Wednesday starting around 10 p.m. from the processing hanger inside ULA’s Horizontal Integration Facility (HIF) to the nearby launch complex and servicing gantry at Pad 37.

Early this morning, the rocket was hoisted up into its launch configuration. Several of my space photo-journalist colleagues were on hand. See their photos herein.

From now until launch technicians will conduct the final processing, testing and checkout of the Delta IV Heavy booster. They will also carry out “a high fidelity rehearsal to include fully powering up the booster and loading the tanks with fuel and oxidizer,” according to ULA.

“This is a tremendous milestone and gets us one step closer to our launch later this year,” said Tony Taliancich, ULA’s director of East Coast Launch Operations, in a ULA statement.

“The team has worked extremely hard to ensure this vehicle is processed with the utmost attention to detail and focus on mission success.”

“The Delta IV Heavy is the world’s most powerful launch vehicle flying today, and we are excited to be supporting our customer for this critical flight test to collect data and reduce overall mission risks and costs for the program,” said Taliancich.

ULA Delta IV Heavy rocket launching NASA’s Orion’s EFT-1 in Dec. 2014 being hoisted vertical at SLC-37B on the morning of Oct. 1, 2014. Credit: Jeff Seibert/Wired4Space
ULA Delta IV Heavy rocket launching NASA’s Orion’s EFT-1 in Dec. 2014 being hoisted vertical at SLC-37B on the morning of Oct. 1, 2014. Credit: Jeff Seibert/Wired4Space

NASA’s Orion Program manager Mark Geyer told me in a recent interview that the Orion spacecraft, built by prime contractor Lockheed Martin, will be transported to the pad around November 10 or 11. Then the Orion will be hoisted and attached to the top of the Delta IV Heavy rocket at the base of its service module.

The Delta IV Heavy first stage is comprised of a trio of three Common Booster Cores (CBCs).

These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014.   Credit: Ken Kremer/kenkremer.com
These three RS-68 engines will power each of the attached Delta IV Heavy Common Booster Cores (CBCs) that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014. Credit: Ken Kremer/kenkremer.com

Each CBC measures 134 feet in length and 17 feet in diameter. They are equipped with an RS-68 engine powered by liquid hydrogen and liquid oxygen propellants producing 656,000 pounds of thrust. Together they generate 1.96 million pounds of thrust.

The Delta IV Heavy became the world’s most powerful rocket upon the retirement of NASA’s Space Shuttle program and is the only vehicle that is sufficiently powerful to launch the Orion EFT-1 spacecraft.

The first CBC booster was attached to the center booster in June. The second one was attached in early August.

Beyond the ruins of Launch Complex 34, where three astronauts died in the Apollo 1 fire, NASA looks to the future as workers raise a United Launch Alliance Delta 4 rocket on the pad at Space Launch Complex 37. This Delta vehicle will power the first test flight of NASA's Orion spacecraft, the first human spacecraft designed to travel beyond low Earth orbit since the Apollo program. Launch of Exploration Flight Test 1 (EFT-1) is targeted for the morning of December 4. Photo Credit:Matthew Travis / Zero-G News
Beyond the ruins of Launch Complex 34, where three astronauts died in the Apollo 1 fire, NASA looks to the future as workers raise a United Launch Alliance Delta 4 rocket on the pad at Space Launch Complex 37. This Delta vehicle will power the first test flight of NASA’s Orion spacecraft, the first human spacecraft designed to travel beyond low Earth orbit since the Apollo program. Launch of Exploration Flight Test 1 (EFT-1) is targeted for the morning of December 4. Photo Credit:Matthew Travis / Zero-G News

I recently visited the HIF during a media tour after the three CBCs had been joined together as well as earlier this year after the first two CBCs arrived by barge from their ULA assembly plant in Decatur, Alabama, located about 20 miles west of Huntsville. See my photos herein.

I was also on hand at KSC when the Orion crew module/service module (CM/SM) stack was rolled out on Sept. 11, 2014, on a 36 wheeled transporter from its high bay assembly facility in the Neil Armstrong Operations and Checkout Building.

It was moved about 1 mile to the KSC fueling facility named the Payload Hazardous Servicing Facility (PHFS). Read my Orion move story – here.

Fueling of Orion was completed over the weekend and it has now been moved to the Launch Abort System Facility (LASF) for the installation of its last component – the Launch Abort System (LAS).

Orion’s next stop is SLC-37.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

NASA is simultaneously developing a monster heavy lift rocket known as the Space Launch System or SLS, that will eventually launch Orion on its deep space missions.

The maiden SLS/Orion launch on the Exploration Mission-1 (EM-1) unmanned test flight is now scheduled for no later than November 2018 – read my story here.

SLS will be the world’s most powerful rocket ever built and the assembly of its core stage has begun at NASA’s Michoud Assembly Facility in New Orleans. Read my story – here.

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

Orion’s EFT-1 launch vehicle being hoisted vertical at SLC-37B this morning. Photo Credit: Alan Walters / AmericaSpace
Orion’s EFT-1 launch vehicle being hoisted vertical at SLC-37B on the morning of Oct. 1, 2014. Photo Credit: Alan Walters / AmericaSpace
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to Launch Abort System Facility (LASF) on Sept. 11, 2014 at the Kennedy Space Center, FL.  Credit: Ken Kremer - kenkremer.com
NASA’s completed Orion EFT 1 crew module loaded on wheeled transporter during move to the Payload Hazardous Servicing Facility (PHFS) on Sept. 11, 2014, at the Kennedy Space Center, FL. Credit: Ken Kremer – kenkremer.com
Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012 from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com
Delta 4 Heavy rocket and super secret US spy satellite roar off Pad 37 on June 29, 2012, from Cape Canaveral, Florida. NASA’s Orion EFT-1 capsule will blastoff atop a similar Delta 4 Heavy Booster in December 2014. Credit: Ken Kremer- kenkremer.com

Assembly Complete for NASA’s First Orion Crew Module Blasting off Dec. 2014

This past weekend technicians completed assembly of NASA’s first Orion crew module at the agency’s Neil Armstrong Operations and Checkout (O & C) Facility at the Kennedy Space Center (KSC) in Florida, signifying a major milestone in the vehicles transition from fabrication to full scale launch operations.

Orion is NASA’s next generation human rated vehicle and is scheduled to launch on its maiden uncrewed mission dubbed Exploration Flight Test-1 (EFT-1) in December 2014. It replaces the now retired space shuttle orbiters.

The black Orion crew module (CM) sits stacked atop the white service module (SM) in the O & C high bay photos, shown above and below.

The black area is comprised of the thermal insulating back shell tiles. The back shell and heat shield protect the capsule from the scorching heat of re-entry into the Earth’s atmosphere at excruciating temperatures reaching over 4000 degrees Fahrenheit (2200 C) – detailed in my story here.

Technicians and engineers from prime contractor Lockheed Martin subsequently covered the crew module with protective foil. The CM/SM stack was then lifted and moved for the installation of the Orion-to-stage adapter ring that will mate them to the booster rocket.

Lifting and stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
Lifting and stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

At the conclusion of the EFT-1 flight, the detached Orion capsule plunges back and hits the Earth’s atmosphere at 20,000 MPH (32,000 kilometers per hour).

“That’s about 80% of the reentry speed experienced by the Apollo capsule after returning from the Apollo moon landing missions,” Scott Wilson, NASA’s Orion Manager of Production Operations at KSC, told me during an interview at KSC.

The next step in Orion’s multi stage journey to the launch pad follows later this week with transport of the CM/SM stack to another KSC facility named the Payload Hazardous Servicing Facility (PHFS) for fueling, before moving again for the installation of the launch abort system (LAS) in yet another KSC facility.

Stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
Stacking NASA’s first completed Orion crew and service modules at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

The Orion EFT-1 test flight is slated to soar to space atop the mammoth, triple barreled United Launch Alliance (ULA) Delta IV Heavy rocket from Cape Canaveral, Florida, on Dec. 4, 2014 .

The state-of-the-art Orion spacecraft will carry America’s astronauts on voyages venturing farther into deep space than ever before – past the Moon to Asteroids, Mars and Beyond!

NASA’s first completed Orion crew and service modules being moved inside the High Bay at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014.   Credit: NASA/Rad Sinyak
NASA’s first completed Orion crew and service modules being moved inside the High Bay at the Neil Armstrong Operations and Checkout Facility at Kennedy Space Center in Florida in early September 2014. Credit: NASA/Rad Sinyak

NASA is simultaneously developing a monster heavy lift rocket known as the Space Launch System or SLS, that will eventually launch Orion on its deep space missions.

The maiden SLS/Orion launch on the Exploration Mission-1 (EM-1) unmanned test flight is now scheduled for no later than November 2018 – read my story here.

SLS will be the world’s most powerful rocket ever built.

The two-orbit, four and a half hour EFT-1 flight will lift the Orion spacecraft and its attached second stage to an orbital altitude of 3,600 miles, about 15 times higher than the International Space Station (ISS) – and farther than any human spacecraft has journeyed in 40 years.

Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center - now renamed in honor of Neil Armstrong.   Credit: Ken Kremer/kenkremer.com
Orion service module assembly in the Operations and Checkout facility at Kennedy Space Center – now renamed in honor of Neil Armstrong. Credit: Ken Kremer/kenkremer.com

The EFT-1 mission will test the systems critical for EM-1 and future human missions to deep space that follow.

The Orion EFT-1 capsule has come a long way over the past two years of assembly.

The bare bones, welded shell structure of the Orion crew cabin arrived at KSC in Florida from NASA’s Michoud facility in New Orleans in June 2012 and was officially unveiled at a KSC welcoming ceremony on 2 July 2012, attended by this author.

“Everyone is very excited to be working on the Orion. We have a lot of work to do. It’s a marathon not a sprint to build and test the vehicle,” said Jules Schneider, Orion Project manager for Lockheed Martin at KSC, during an exclusive 2012 interview with Universe Today inside the Orion clean room at KSC.

Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida.  Service module at bottom.  Credit: Ken Kremer/kenkremer.com
Orion crew capsule, Service Module and 6 ton Launch Abort System (LAS) mock up stack inside the transfer aisle of the Vehicle Assembly Building (VAB) at the Kennedy Space Center (KSC) in Florida. Service module at bottom. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Orion, SLS, Boeing, Sierra Nevada, Orbital Sciences, SpaceX, commercial space, Curiosity, Mars rover, MAVEN, MOM and more Earth and planetary science and human spaceflight news.

Ken Kremer

Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida.   Credit: Ken Kremer - kenkremer.com
Orion crew module back shell tiles and panels inside the Neil Armstrong Operations and Checkout Building high bay at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com
Orion EFT-1 capsule under construction inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer, Universe Today.  Credit: Ken Kremer - kenkremer.com
Orion EFT-1 capsule under construction inside the Structural Assembly Jig at the Operations and Checkout Building (O & C) at the Kennedy Space Center (KSC); Jules Schneider, Orion Project Manager for Lockheed Martin and Ken Kremer, Universe Today. Credit: Ken Kremer – kenkremer.com

US Heavy Lift Mars Rocket Passes Key Review and NASA Sets 2018 Maiden Launch Date

Artist concept of NASA’s Space Launch System (SLS) 70-metric-ton configuration launching to space. SLS will be the most powerful rocket ever built for deep space missions, including to an asteroid and ultimately to Mars. Credit: NASA/MSFC
Story updated[/caption]

After a thorough review of cost and engineering issues, NASA managers formally approved the development of the agency’s mammoth heavy lift rocket – the Space Launch System or SLS – which will be the world’s most powerful rocket ever built and is intended to take astronauts farther beyond Earth into deep space than ever before possible – to Asteroids and Mars.

The maiden test launch of the SLS is targeted for November 2018 and will be configured in its initial 70-metric-ton (77-ton) version, top NASA officials announced at a briefing for reporters on Aug. 27.

On its first flight known as EM-1, the SLS will also loft an uncrewed Orion spacecraft on an approximately three week long test flight taking it beyond the Moon to a distant retrograde orbit, said William Gerstenmaier, associate administrator for the Human Explorations and Operations Mission Directorate at NASA Headquarters in Washington, at the briefing.

Previously NASA had been targeting Dec. 2017 for the inaugural launch from the Kennedy Space Center in Florida – a slip of nearly one year.

But the new Nov. 2018 target date is what resulted from the rigorous assessment of the technical, cost and scheduling issues.

This artist concept shows NASA’s Space Launch System, or SLS, rolling to a launch pad at Kennedy Space Center at night. SLS will be the most powerful rocket in history, and the flexible, evolvable design of this advanced, heavy-lift launch vehicle will meet a variety of crew and cargo mission needs.   Credit:  NASA/MSFC
This artist concept shows NASA’s Space Launch System, or SLS, rolling to a launch pad at Kennedy Space Center at night. SLS will be the most powerful rocket in history, and the flexible, evolvable design of this advanced, heavy-lift launch vehicle will meet a variety of crew and cargo mission needs. Credit: NASA/MSFC

The decision to move forward with the SLS comes after a wide ranging review of the technical risks, costs, schedules and timing known as Key Decision Point C (KDP-C), said Associate Administrator Robert Lightfoot, at the briefing. Lightfoot oversaw the review process.

“After rigorous review, we’re committing today to a funding level and readiness date that will keep us on track to sending humans to Mars in the 2030s – and we’re going to stand behind that commitment,” said Lightfoot. “Our nation is embarked on an ambitious space exploration program.”

“We are making excellent progress on SLS designed for missions beyond low Earth orbit,” Lightfoot said. “We owe it to the American taxpayers to get it right.”

He said that the development cost baseline for the 70-metric ton version of the SLS was $7.021 billion starting from February 2014 and continuing through the first launch set for no later than November 2018.

Lightfoot emphasized that NASA is also building an evolvable family of vehicles that will increase the lift to an unprecedented lift capability of 130 metric tons (143 tons), which will eventually enable the deep space human missions farther out than ever before into our solar system, leading one day to Mars.

“It’s also important to remember that we’re building a series of launch vehicles here, not just one,” Lightfoot said.

Blastoff of NASA’s Space Launch System (SLS) rocket and Orion crew vehicle from the Kennedy Space Center, Florida.   Credit: NASA/MSFC
Blastoff of NASA’s Space Launch System (SLS) rocket and Orion crew vehicle from the Kennedy Space Center, Florida. Credit: NASA/MSFC

Lightfoot and Gerstenmaier both indicated that NASA hopes to launch sooner, perhaps by early 2018.

“We will keep the teams working toward a more ambitious readiness date, but will be ready no later than November 2018,” said Lightfoot.

The next step is conduct the same type of formal KDP-C reviews for the Orion crew vehicle and Ground Systems Development and Operations programs.

The first piece of SLS flight hardware already built and to be tested in flight is the stage adapter that will fly on the maiden launch of Orion this December atop a ULA Delta IV Heavy booster during the EFT-1 mission.

The initial 70-metric-ton (77-ton) version of the SLS stands 322 feet tall and provides 8.4 million pounds of thrust. That’s already 10 percent more thrust at launch than the Saturn V rocket that launched NASA’s Apollo moon landing missions, including Apollo 11, and it can carry more than three times the payload of the now retired space shuttle orbiters.

The core stage towers over 212 feet (64.6 meters) tall with a diameter of 27.6 feet (8.4 m) and stores cryogenic liquid hydrogen and liquid oxygen. Boeing is the prime contractor for the SLS core stage.

The first stage propulsion is powered by four RS-25 space shuttle main engines and a pair of enhanced five segment solid rocket boosters (SRBs) also derived from the shuttles four segment boosters.

The pressure vessels for the Orion crew capsule, including EM-1 and EFT-1, are also being manufactured at MAF. And all of the External Tanks for the space shuttles were also fabricated at MAF.

The airframe structure for the first Dream Chaser astronaut taxi to low Earth orbit is likewise under construction at MAF as part of NASA’s commercial crew program.

The first crewed flight of the SLS is set for the second launch on the EM-2 mission around the 2020/2021 time frame, which may visit a captured near Earth asteroid.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer