Antares Launch Calamity Unfolds – Dramatic Photo Sequence

Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Story updated with link to Ken Kremer interview with NBC Nightly News[/caption]

NASA WALLOPS FLIGHT FACILITY, VA – The first night launch of Orbital Sciences’ commercial Antares rocket suddenly ended in total calamity some 10 seconds or so after liftoff when the base of the first stage exploded without warning over the launch pad at NASA’s Wallops Flight Facility, Va, at 6:22 p.m. EDT on Tuesday, October 28.

Watch the Antares launch disaster unfold into a raging inferno in this dramatic sequence of my photos shot on site.Check out my raw video of the launch – here. Read my first hand account- here.

I was interviewed by NBC News and you can watch the entire story and see my Antares explosion photos featured at NBC Nightly News on Oct. 29 here.

I was an eyewitness to the awful devastation suffered by the Orb-3 mission from the press viewing site at NASA Wallops located at a distance of about 1.8 miles away with a completely clear view to the launch complex.

A prime suspect in the disaster could be the pair Soviet-era built and US modified AJ26 engines that power the rocket’s first stage.

Another AJ26 engine failed and exploded during acceptance testing on May 22, 2014 at NASA’s Stennis Space Center in Mississippi. An extensive analysis and recheck by Orbital Scoences was conducted to clear this pair for flight.

See my exclusive photo of the AJ-26 engines below and a follow up story shortly.

Ignition of Orbital Sciences Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Ignition of Orbital Sciences’ Antares rocket appears nominal at first until it explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

It was a picture perfect evening.

Blastoff of the 14 story Antares rocket took place from the beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops situated on the eastern shore of Virginia.

Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Base of Orbital Sciences’ Antares rocket explodes moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back  after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares loses thrust after rocket explosion and begins falling back after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes intoan aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Antares falls back to the ground and being consumed shortly after blastoff and first stage explosion at NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes violently and is consumed in a gigantic aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014 at 6:22 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences’ Antares rocket explodes into an aerial fireball seconds after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014, at 6:22 p.m. Credit: Ken Kremer – kenkremer.com

The highly anticipated 1st night launch of Antares would have wowed tens of millions of spectators up and down the eastern seaboard from South Carolina to Maine. Overall it was the 5th Antares launch.

The doomed Orb-3 mission was bound for the International Space Station (ISS) on a flight to bring up some 5000 pounds of (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission in the Cygnus resupply flight dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The investigation into the launch failure will be led by Orbital Sciences.

“The root cause will be determined and corrective actions taken,” Frank Culbertson, Orbital’s Executive Vice President and General Manager of its Advanced Programs Group, said at a post launch briefing.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Stray Boater Delays Antares Launch to Tuesday

The Orbital Sciences Corporation Antares rocket, with the Cygnus spacecraft onboard, on launch Pad-0A at NASA's Wallops Flight Facility in Virginia. Credit: NASA/Joel Kowsky.

A Monday launch attempt for the third Orbital Sciences cargo mission to the International Space Station was scrubbed because a boat strayed into restricted waters southeast of the launch pad at Wallops Island, Virginia. The Antares rocket, carrying the Cygnus capsule would have flown over the boater had the rocket lifted off and officials cited public safety as the reason for the scrub.

Launch has been rescheduled for 6:22 p.m. EDT (22:22 UTC), about 15 minutes after sunset at the Mid-Atlantic Regional Spaceport, and the Antares blastoff should be visible along much of the US eastern seaboard – stretching from Maine to South Carolina.

The scrub caused disappointment, as the highly-anticipated launch had perfect weather and was expected to be visible to millions up and down the Atlantic shoreline. Photographers had also hoped to capture a spectacular night-time launch with the crescent Moon nearby and the Space Station flying overhead shortly after launch.

Monday’s launch window was only 10 minutes long due to a short opportunity for the spacecraft to reach the space station’s orbit. The boat was said to have a single passenger and was without a radio.

If the weather holds, the launch should still be visible along the Eastern seaboard on Tuesday. See our complete guide to viewing the launch here, and Orbital may provide updated viewing maps here.

NASA Television coverage of Tuesday’s launch will begin at 5:30 p.m. EDT, and you can watch live below. A post-launch news conference will follow at approximately 8 p.m.

The Antares will launch the Cygnus spacecraft filled with over 5,000 pounds of supplies for the International Space Station, including science experiments, experiment hardware, spare parts, and crew provisions. The Orbital-3 mission is Orbital Sciences’ third contracted cargo delivery flight to the space station for NASA.

A Tuesday launch will result in the Cygnus spacecraft arriving at the space station early Sunday, Nov. 2. NASA TV coverage of rendezvous and berthing will begin at 3:30 a.m. with grapple at approximately 4:58 a.m.



Broadcast live streaming video on Ustream

Orbital Antares GO to WOW US East Coast Spectators for 1st Night Launch on Oct. 27

Antares rocket stands erect, reflecting off the calm waters the night before a launch from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer/kenkremer.com

NASA WALLOPS FLIGHT FACILITY, VA – An Orbital Sciences Corp. commercial Antares rocket was given the GO for its first night launch on Oct. 27, following a launch readiness review on Sunday, Oct. 26, between managers from Orbital Sciences Corp. of Dulles, Virginia, and NASA.

The rocket was rolled to the launch pad and erected. Technicians are putting the final touches on the rocket to prepare it for flight to the International Space Station (ISS).

NASA and Orbital Sciences are targeting Antares for blastoff at 6:45 p.m. EDT on Oct. 27 from beachside Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island Flight Facility on Virginia’s eastern shore.

There is a 10 minute launch window to get Antares off the ground as the launch pad moves into the plane of the space stations orbit. The slightly longer launch window is due to the extra thrust available from using a new, more powerful ATK built upper stage engine.

Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Technicians processing Antares rocket on Oct 26 to prepare for first night launch from NASA’s Wallops Flight Facility, VA, on Oct. 27 at 6:45 p.m. Credit: Ken Kremer – kenkremer.com

The rare spectacle of a night launch within view of tens of millions could WOW hordes of US East Coast residents in densely populated areas up and down the Atlantic shoreline – weather permitting.

The current forecast calls for an almost unheard of 98% chance of favorable weather conditions at launch time.

Depending on local weather conditions, the Antares blastoff will be visible along much of the US eastern seaboard – stretching from Maine to South Carolina.

Orbital 3 Launch from NASA Wallops Island, VA on Oct. 27, 2014- Time of First Sighting Map.  This map shows the rough time at which you can first expect to see Antares after it is launched on Oct. 27, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you'll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. However, depending on your local conditions the actual time you see the rocket may be earlier or later. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 117 seconds after launch (L + 117 sec).   Credit: Orbital Sciences
Orbital 3 Launch from NASA Wallops Island, VA on Oct. 27, 2014- Time of First Sighting Map. This map shows the rough time at which you can first expect to see Antares after it is launched on Oct. 27, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you’ll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. However, depending on your local conditions the actual time you see the rocket may be earlier or later. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 117 seconds after launch (L + 117 sec). Credit: Orbital Sciences

For precise viewing locations and sighting times, see the collection of detailed maps and trajectory graphics courtesy of Orbital Sciences and NASA in my prior story with a complete viewing guide on “How to See the Antares Launch.”

Antares is carrying Orbital’s privately developed Cygnus pressurized cargo freighter loaded with nearly 5000 pounds (2200 kg) of science experiments, research instruments, crew provisions, spare parts, spacewalk and computer equipment and gear on a critical resupply mission dubbed Orb-3 bound for the International Space Station (ISS).

Orbital Sciences Antares rocket stand erect and ready for blastoff the day before its first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
Orbital Sciences Antares rocket stands erect and ready for blastoff the day before its first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m. Credit: Ken Kremer – kenkremer.com

This is the heaviest cargo load yet lofted by a Cygnus. Some 800 pounds additional cargo is loaded on board compared to earlier flights, that’s enabled by using the more powerful ATK CASTOR 30XL second stage for the first time.

Research gear and experiments account for about 1600 pounds (720 kg), or about one third of Cygnus total cargo load.

Among the items aboard are 32 cubesats and deployers, a 6000 psi high pressure replacement nitrogen tank needed for spacewalks from the Quest airlock, experiments enabling the first space-based observations of meteors entering Earth’s atmosphere, determination of how blood flows from the brain to the heart in the absence of gravity, investigations on the impact of space travel on both the human immune system and an individual’s microbiome, the collection of microbes that live in and on the human body, and student science investigations from the SSEP/NCESSE.

“There is nothing more exciting than spaceflight,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a pre-launch briefing at NASA Wallops.

“It is important to inspire the next generation of scientists. We need to keep the kids inspired to study math and science and keep going back to space. If we stop going to space, it will be very hard to restart.”

On-Ramp to the Orbital Sciences Antares rocket and International Space Station - ready for blastoff the day before its first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m.  Credit: Ken Kremer – kenkremer.com
On-Ramp to the Orbital Sciences Antares rocket and International Space Station – ready for blastoff the day before its first night launch from NASA’s Wallops Flight Facility, VA, targeted for Oct. 27 at 6:45 p.m. Credit: Ken Kremer – kenkremer.com

This Cygnus resupply module, dubbed “SS Deke Slayton,” honors one of America’s original Mercury 7 astronauts, Donald “Deke” K. Slayton. He flew on the Apollo-Soyuz Test Project mission in 1975 and championed commercial space endeavors after retiring from NASA in 1982. Slayton passed away in 1993.

The Orbital-3, or Orb-3, mission is the third of eight cargo resupply missions to the ISS through 2016 under the NASA Commercial Resupply Services (CRS) contract award valued at $1.9 Billion.

Orbital Sciences is under contract to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for the eight ISS flight.

NASA Television will broadcast live coverage of the launch, including pre- and post-launch briefings and arrival at the station. Launch coverage begins at 5:45 p.m. EDT.

NASA will broadcast the Antares launch live on NASA TV starting at 5:45 p.m. Monday – http://www.nasa.gov/nasatv

You can also watch the pre- and post launch briefings on Monday on NASA TV.

Of course the absolute best viewing will be locally in the mid-Atlantic region closest to Wallops Island.

Locally at Wallops you’ll get a magnificent view and hear the rockets thunder at the NASA Wallops Visitor Center or other local spots around the Chincoteague National Wildlife Refuge area.

For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 27/28: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

How to Watch Spectacular 1st Nighttime Antares Launch to ISS on Oct. 27 – Complete Viewing Guide

Orbital 3 Launch from NASA Wallops Island, VA on Oct. 27, 2014- Time of First Sighting Map. This map shows the rough time at which you can first expect to see Antares after it is launched on Oct. 27, 2014. It represents the time at which the rocket will reach 5 degrees above the horizon and varies depending on your location . We have selected 5 degrees as it is unlikely that you'll be able to view the rocket when it is below 5 degrees due to buildings, vegetation, and other terrain features. However, depending on your local conditions the actual time you see the rocket may be earlier or later. As an example, using this map when observing from Washington, DC shows that Antares will reach 5 degrees above the horizon approximately 117 seconds after launch (L + 117 sec). Credit: Orbital Sciences

NASA WALLOPS FLIGHT FACILITY, VA – Tens of millions of US East Coast residents can expect a dinnertime spectacular for the first ever nighttime launch of the commercial Orbital Sciences Corp. Antares rocket slated to blastoff on Monday evening, October 27, from a beachside NASA launch base along the eastern shore of Virginia – if the weather holds as currently forecast.

You can watch live, below.

Antares is carrying Orbital’s private Cygnus cargo freighter loaded with a diverse array of science experiments on a critical cargo resupply mission named Orb-3, and is bound for the International Space Station (ISS).

Broadcast live streaming video on Ustream

NASA and Orbital Sciences are now targeting liftoff at 6:45 p.m. EDT on Oct. 27 from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops Island Flight Facility on Virginia’s shore.

Viewing over New York City from River Road in North Bergen, New Jersey, looking south . Credit: Orbital Sciences Corp.
Viewing over New York City from River Road in North Bergen, New Jersey, looking south . Credit: Orbital Sciences Corp.

The launch to the ISS was delayed three days due to Hurricane Gonzalo and its direct hit on the island of Bermuda which is also home to a critical rocket tracking station – as reported here. The tracking is required to ensure public safety.

If you have never seen a rocket launch, this could be the one for you – especially since its conveniently in the early evening and you don’t have to take the long trek to the Kennedy Space Center in Florida.

Here’s our complete guide on “How to See the Antares/Cygnus Oct. 27 Blastoff” – chock full of viewing maps and trajectory graphics (above and below) from a variety of prime viewing locations, including historic and notable landmarks Washington, DC, NYC, New Jersey, Maryland, Virginia, and more.

Viewing the launch across the tidal basin from the MLK Jr. Memorial in Washington, D.C. Credit: Orbital Sciences Corp.
Viewing the launch across the tidal basin from the MLK Jr. Memorial in Washington, D.C. Credit: Orbital Sciences Corp.

Depending on local weather conditions, the Antares blastoff will be visible along much of the US eastern seaboard – stretching from Maine to South Carolina.

For precise viewing locations and sighting times, see the collection of detailed maps and trajectory graphics courtesy of Orbital Sciences and NASA.

Antares first night launch will also be visible to some inland regions, including portions of New England, Pennsylvania, and West Virginia.

Of course the absolute best viewing will be locally in the mid-Atlantic region closest to Wallops Island.

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014, from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

Locally at Wallops you’ll get a magnificent view and hear the rockets thunder at either the NASA Wallops Visitor Center or the Chincoteague National Wildlife Refuge/Assateague National Seashore.

For more information about the Wallops Visitors Center, including directions, see: http://www.nasa.gov/centers/wallops/visitorcenter

The pressurized Cygnus cargo spacecraft is loaded with some 5,000 pounds of research experiments, top notch student science investigations from the NCESSE/SSEP, supplies, spare parts, and crew provisions on what will be the fourth Cygnus flight overall, including a demonstration flight in 2013.

Student Space Flight teams at NASA Wallops.  Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops. Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

This is the heaviest Cygnus cargo load to date because the Antares rocket is outfitted with a more powerful second stage from ATK – for the first time.

Altogether eight operational resupply missions will be flown for NASA under the Commercial Resupply Services (CRS) contract. That’s the same contract NASA has with SpaceX and that company’s just completed Dragon CRS-4 mission which ended with a successful Pacific Ocean splashdown on Saturday, Oct. 25 – as I reported here.

Viewing the launch from the boardwalk at Virginia Beach, VA.  Credit: Orbital Sciences Corp.
Viewing the launch from the boardwalk at Virginia Beach, VA. Credit: Orbital Sciences Corp.

It is the third of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA through 2016.

The Orbital-3, or Orb-3, mission is the third of the eight cargo resupply missions to the ISS under the NASA CRS award valued at $1.9 Billion.

This Cygnus resupply module, dubbed “SS Deke Slayton,” honors one of America’s original Mercury 7 astronauts, Donald “Deke” K. Slayton. He flew on the Apollo-Soyuz Test Project mission in 1975 and championed commercial space endeavors after retiring from NASA in 1982. Slayton passed away in 1993.

NASA Television will broadcast live coverage of the event, including pre- and post-launch briefings and arrival at the station. Launch coverage begins at 5:45 p.m. Monday – http://www.nasa.gov/nasatv

You can also watch the pre- and post launch briefing on Sunday and Monday on NASA TV.

What the Antares launch will look like from Fells Point in Baltimore, MD. Credit: Orbital Sciences Corp.
What the Antares launch will look like from Fells Point in Baltimore, MD. Credit: Orbital Sciences Corp.

The weather prognosis is currently very favorable with a greater than a 90% chance of acceptable weather conditions at launch time.

Watch here for Ken’s onsite reporting direct from NASA Wallops.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Commercial Space, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations:

Oct 26/27: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

What the Antares launch will look like over the Port of Baltimore, MD. Credit: Orbital Sciences Corp.
What the Antares launch will look like over the Port of Baltimore, MD. Credit: Orbital Sciences Corp.
What the Antares launch will look looking south over Heritage Commission in Dover, DE. Credit: Orbital Sciences Corp.
What the Antares launch will look looking south over Heritage Commission in Dover, DE. Credit: Orbital Sciences Corp.
Viewing the launch from looking East from the University of Virginia, Charlottesville, VA.  Credit: Orbital Sciences Corp.
Viewing the launch from looking East from the University of Virginia, Charlottesville, VA. Credit: Orbital Sciences Corp.
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13, 2014, from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cat 4 Hurricane Gonzalo Threatens Bermuda and Delays Antares Launch to Space Station

NOAA's GOES-East satellite captured this image of Hurricane Gonzalo off the U.S. East Coast on Oct. 16 at 13:07 UTC (9:07 a.m. EDT). Gonzalo is classified as Category 4 storm. Credit: NASA/NOAA GOES Project

Hurricane Gonzalo, the first major Atlantic Ocean basin hurricane in three years, has strengthened to a dangerous Category 4 storm, threatening Bermuda and forcing a postponement of the upcoming launch of the Orbital Sciences Antares rocket to the space station from the Virginia shore to no earlier than Oct. 27.

A hurricane warning is in effect for the entire island of Bermuda.

NASA and Orbital Sciences had no choice but to delay the Antares blastoff from Oct. 24 to no earlier than Oct. 27 because Bermuda is home to an “essential tracking site” that must be operational to ensure public safety in case of a launch emergency situation.

Antares had been slated for an early evening liftoff with the Cygnus cargo carrier on the Orb-3 mission to the International Space Station (ISS).

NASA and Orbital issued the following statement:

“Due to the impending arrival of Hurricane Gonzalo on the island of Bermuda, where an essential tracking site used to ensure public safety during Antares launches is located, the previously announced “no earlier than” (NET) launch date of October 24 for the Orb-3 CRS mission to the International Space Station for NASA is no longer feasible.”

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

The powerful Gonzalo is currently expected to make a direct hit on Bermuda on Friday afternoon, Oct. 17. It’s packing devastating maximum sustained winds exceeding 145 mph (225 kph).

NASA and NOAA satellites including the Terra, Aqua and GOES-East satellites are providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda, according to a NASA update today.

The ISS-RapidScat payload tracking ocean winds, that was just attached to the exterior of the ISS, is also designed to help with hurricane monitoring and forecasting.

Tropical storm force winds and 20 to 30 foot wave heights are expected to impact Bermuda throughout Friday and continue through Saturday and into Sunday.

“The National Hurricane Center expects hurricane-force winds, and rainfall totals of 3 to 6 inches in Bermuda. A storm surge with coastal flooding can be expected in Bermuda, with large and destructive waves along the coast. In addition, life-threatening surf and riptide conditions are likely in the Virgin Islands, Puerto Rico, Dominican Republic, Bahamas. Those dangerous conditions are expected along the U.S. East Coast and Bermuda today, Oct. 16,” according to NASA.

On Oct. 15 at 15:30 UTC (11:30 a.m. EDT) NASA's Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Credit: NASA Goddard MODIS Rapid Response Team
On Oct. 15 at 15:30 UTC (11:30 a.m. EDT) NASA’s Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Credit: NASA Goddard MODIS Rapid Response Team

After the hurricane passes, a team will be sent to assess the impact of the storm on Bermuda and the tracking station. Further delays are possible if Bermuda’s essential infrastructure systems are damaged, such as power, transportation and communications.

The Antares/Cygnus rocket and cargo ship launch from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility along the eastrn shore of Virginia.

Liftoff is currently target for October 27 at 6:44 p.m. (EDT). The rendezvous and berthing of Cygnus with the ISS remains on November 2, with grapple of the spacecraft by the station’s robotic arm at approximately 4:58 a.m. (EST), according to a NASA update.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus Cargo Carrier Concludes with Fiery Reentry Aug. 17 – Amazing Astronaut Photos

Cygnus reentry [17 Aug 2014]. In 84 days Reid, Max and I will ride home inside such an amazing fireball! Credit: NASA/ESA/Alexander Gerst

Cygnus reentry [17 Aug 2014]. In 84 days Reid, Max and I will ride home inside such an amazing fireball! Credit: NASA/ESA/Alexander Gerst
Story updated[/caption]

Farewell Cygnus!

The flight of the Orbital Sciences’ Cygnus commercial cargo carrier concluded this morning, Sunday Aug. 17, in a spectacular fireball as planned upon reentry into Earth’s atmosphere at approximately 9:15 a.m. (EDT). And the fireworks were captured for posterity in a series of amazing photos taken by the Expedition 40 crew aboard the International Space Station (ISS). See astronaut photos above and below.

ESA astronaut Alexander Gerst and Russian Cosmonaut Maxim Suraev documented the breakup and disintegration of Cygnus over the Pacific Ocean east of New Zealand today following precise thruster firings commanded earlier by Orbital Sciences mission control in Dulles, VA, that slowed the craft and sent it on a preplanned destructive reentry trajectory.

Cygnus reentry on 17 Aug 2014.  Credit: NASA/ESA/Alexander Gerst
Cygnus reentry on 17 Aug 2014. Credit: NASA/ESA/Alexander Gerst

Gerst was truly moved by the spectacle of what he saw as a portent for his voyage home inside a Soyuz capsule barely three months from now, with crew mates Maxim Suraev and NASA astronaut Reid Wiseman.

“In 84 days Reid, Max and I will ride home inside such an amazing fireball! In 84 Tagen werden Reid, Max & ich in solch einem Feuerball nach Hause fliegen!” – Gerst wrote from the station today in his social media accounts with the fireball photos.

Cygnus was loaded with no longer needed trash and fell harmlessly over an uninhabited area of the South Pacific Ocean.

Today’s spectacular reentry fireworks concluded the hugely successful flight of the Cygnus resupply ship named in honor of astronaut Janice Voss on the Orb-2 mission.

ISS Crewmate Max Suraev just caught this amazing photo of Cygnus Orb2 disintegrating on reentry.   Credit: Roscosmos/ Max Suraev via ISS crew mate Reid Wiseman
ISS Crew mate Max Suraev just caught this amazing photo of Cygnus Orb2 disintegrating on reentry. Credit: Roscosmos/ Max Suraev via ISS crew mate Reid Wiseman

The astronaut photos may be helpful to engineers planning the mechanics of the eventual deorbiting of the ISS at some point in the hopefully distant future.

Cygnus finished it’s month-long resupply mission two days ago when it was unberthed from the International Space Station (ISS) on Friday, Aug. 15, and station astronaut Alex Gerst released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.

“From start to finish, we are very pleased with the results of this mission. Our team is proud to be providing essential supplies to the ISS crew so they can carry out their vital work in space,” said Mr. Frank Culbertson, Executive Vice President and General Manager of Orbital’s Advanced Programs Group, in a statement.

Goodbye, Cygnus!  Credit: NASA/ESA/Alexander Gerst
Goodbye, Cygnus! Credit: NASA/ESA/Alexander Gerst

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

It arrived at the station after a three day chase and was captured with the 58-foot (17-meter) long Canadian robotic arm on July 16, 2014 by Station Commander Steve Swanson working at a robotics workstation in the cupola.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus arrival at the ISS took place on the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission by Neil Armstrong, Buzz Aldrin and Michael Collins.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

This mission dubbed Orbital-2, or Orb-2, marks the second of at least eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m.  EDT, Friday, Aug. 15, 2014.  Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

The next resupply launch of the private Cygnus Orb-3 craft atop the Orbital Sciences’ Antares rocket is currently scheduled for October 2014 from NASA’s Wallops Flight Facility, VA.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

“With three fully successful cargo delivery missions now complete, it is clear our public-private partnership with NASA is proving to be a positive asset to the productivity of the ISS. We are looking forward to the next Antares launch and the Cygnus cargo delivery mission that is coming up in about two months,” said Culbertson.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing ISS, Rosetta, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Cygnus Commercial Cargo Ship ‘Janice Voss’ Finishes Resupply Mission and Departs Space Station

Cygnus Orb-2 spacecraft ‘Janice Voss’ bids farewell to the ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. It's set to reenter the atmosphere on Aug. 17. Credit: NASA TV

The Cygnus commercial cargo ship ‘Janice Voss’ built by Orbital Sciences finished it’s month-long resupply mission and bid farewell to the International Space Station (ISS) this morning, Friday, Aug. 15, after station astronauts released the vessel from the snares of the Canadarm2 robotic arm at 6:40 a.m. EDT.

The on time release and departure took place as the massive orbiting lab complex was soaring 260 miles (400 km) above the west coast of Africa over the coastline of Namibia.

Expedition 40 Flight Engineer and ESA astronaut Alexander Gerst was in charge of commanding the vessels actual release from the snares on the end effector firmly grasping Cygnus at the terminus of the 58-foot (17-meter) long Canadian robotic arm.

Gerst was working at the robotics work station inside the seven windowed cupola, backed by fellow station crew member and NASA astronaut Reid Wiseman.

About two minutes later, Cygnus fired its thrusters to depart the million pound station and head toward a destructive fiery reentry into the Earth’s atmosphere over the Pacific Ocean on Sunday, Aug. 17.

Ground controllers at Mission Control, Houston had paved the way for Cygnus release earlier this morning when they unberthed the cargo ship from the Earth-facing port of the Harmony module at about 5:14 a.m. EDT.

Cygnus Orb-2 spacecraft ‘Janice Voss’ unberthed from ISS at 5:14 a.m.  EDT, Friday, Aug. 15, 2014. Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ unberthed from ISS at 5:14 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

This mission dubbed Orbital-2, or Orb-2, marks the second of at least eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module named ‘SS Janice Voss’ during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

The supplies are critical to keep the station flying and humming with research investigations.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

The “Dove” flock of nanosatellites will be deployed from the Kibo laboratory module’s airlock beginning next week. “They will collect continuous Earth imagery documenting natural and man-made conditions of the environment to improve disaster relief and increase agricultural yields” says NASA.

Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m.  EDT, Friday, Aug. 15, 2014.  Credit: NASA TV
Cygnus Orb-2 spacecraft ‘Janice Voss’ departed ISS at 6:40 a.m. EDT, Friday, Aug. 15, 2014. Credit: NASA TV

Cygnus arrived at the station after a three day chase. It was captured in open space on July 16, 2014 at 6:36 a.m. EDT by Commander Steve Swanson working at a robotics workstation in the cupola.

The by the book arrival coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission by Neil Armstrong, Buzz Aldrin and Michael Collins.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, Rosetta, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer - kenkremer.com
Antares rocket and Cygnus spacecraft await launch on Orb 2 mission on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility Facility, VA. LADEE lunar mission launch pad 0B stands adjacent to right of Antares. Credit: Ken Kremer – kenkremer.com

NASA’s Carbon Dioxide Greenhouse Gas Observatory Captures ‘First Light’ at Head of International ‘A-Train’ of Earth Science Satellites

OCO-2 leads the international Afternoon Constellation, or A-Train, of Earth-observing satellites as shown in this artist's concept. Japan’s Global Change Observation Mission - Water (GCOM-W1) satellite and NASA’s Aqua, CALIPSO, CloudSat and Aura satellites follow. Credit: NASA

NASA’s first spacecraft dedicated to studying Earth’s atmospheric climate changing carbon dioxide (CO2) levels and its carbon cycle has reached its final observing orbit and taken its first science measurements as the leader of the world’s first constellation of Earth science satellites known as the International “A-Train.”

The Orbiting Carbon Observatory-2 (OCO-2) is a research satellite tasked with collecting the first global measurements of atmospheric carbon dioxide (CO2) – the leading human-produced greenhouse gas and the principal human-produced driver of climate change.

The ‘first light’ measurements were conducted on Aug. 6 as the observatory flew over central Papua New Guinea and confirmed the health of the science instrument. See graphic below.

NASA's OCO-2 spacecraft collected "first light” data Aug. 6 over New Guinea. OCO-2’s spectrometers recorded the bar code-like spectra, or chemical signatures, of molecular oxygen or carbon dioxide in the atmosphere. The backdrop is a simulation of carbon dioxide created from GEOS-5 model data.  Credit:  NASA/JPL-Caltech/NASA GSFC
NASA’s OCO-2 spacecraft collected “first light” data Aug. 6 over New Guinea. OCO-2’s spectrometers recorded the bar code-like spectra, or chemical signatures, of molecular oxygen or carbon dioxide in the atmosphere. The backdrop is a simulation of carbon dioxide created from GEOS-5 model data. Credit:
NASA/JPL-Caltech/NASA GSFC

Before the measurements could begin, mission controllers had to cool the observatory’s three-spectrometer instrument to its operating temperatures.

“The spectrometer’s optical components must be cooled to near 21 degrees Fahrenheit (minus 6 degrees Celsius) to bring them into focus and limit the amount of heat they radiate. The instrument’s detectors must be even cooler, near minus 243 degrees Fahrenheit (minus 153 degrees Celsius), to maximize their sensitivity,” according to a NASA statement.

The team still has to complete a significant amount of calibration work before the observatory is declared fully operational.

OCO-2 was launched
just over a month ago during a spectacular nighttime blastoff on July 2, 2014, from Vandenberg Air Force Base, California, atop a the venerable United Launch Alliance Delta II rocket.

OCO-2 arrived at its final 438-mile (705-kilometer) altitude, near-polar orbit on Aug. 3 at the head of the international A-Train following a series of propulsive burns during July. Engineers also performed a thorough checkout of all of OCO-2’s systems to ensure they were functioning properly.

“The initial data from OCO-2 appear exactly as expected — the spectral lines are well resolved, sharp and deep,” said OCO-2 chief architect and calibration lead Randy Pollock of JPL, in a statement.

“We still have a lot of work to do to go from having a working instrument to having a well-calibrated and scientifically useful instrument, but this was an important milestone on this journey.”

Artist's rendering of NASA's Orbiting Carbon Observatory (OCO)-2, one of five new NASA Earth science missions set to launch in 2014, and one of three managed by JPL. Credit:  NASA-JPL/Caltech
Artist’s rendering of NASA’s Orbiting Carbon Observatory (OCO)-2, one of five new NASA Earth science missions set to launch in 2014, and one of three managed by JPL. Credit: NASA-JPL/Caltech

OCO-2 now leads the A-Train constellation, comprising five other international Earth orbiting monitoring satellites that constitute the world’s first formation-flying “super observatory” that collects an unprecedented quantity of nearly simultaneous climate and weather measurements.

Scientists will use the huge quantities of data to record the health of Earth’s atmosphere and surface environment as never before possible.

OCO-2 is followed in orbit by the Japanese GCOM-W1 satellite, and then by NASA’s Aqua, CALIPSO, CloudSat and Aura spacecraft, respectively. All six satellites fly over the same point on Earth within 16 minutes of each other. OCO-2 currently crosses the equator at 1:36 p.m. local time.

OCO-2 poster. Credit: ULA/NASA
OCO-2 poster. Credit: ULA/NASA

The 999 pound (454 kilogram) observatory is the size of a phone booth.

OCO-2 is equipped with a single science instrument consisting of three high-resolution, near-infrared spectrometers fed by a common telescope. It will collect global measurements of atmospheric CO2 to provide scientists with a better idea of how CO2 impacts climate change and is responsible for Earth’s warming.

During a minimum two-year mission the $467.7 million OCO-2 will take near global measurements to locate the sources and storage places, or ‘sinks’, for atmospheric carbon dioxide, which is a critical component of the planet’s carbon cycle.

OCO-2 was built by Orbital Sciences as a replacement for the original OCO which was destroyed during the failed launch of a Taurus XL rocket from Vandenberg back in February 2009 when the payload fairing failed to open properly and the spacecraft plunged into the ocean.

The OCO-2 mission will provide a global picture of the human and natural sources of carbon dioxide, as well as their “sinks,” the natural ocean and land processes by which carbon dioxide is pulled out of Earth’s atmosphere and stored, according to NASA.

Here’s a NASA description of how OCO-2 collects measurements.

As OCO-2 flies over Earth’s sunlit hemisphere, each spectrometer collects a “frame” three times each second, for a total of about 9,000 frames from each orbit. Each frame is divided into eight spectra, or chemical signatures, that record the amount of molecular oxygen or carbon dioxide over adjacent ground footprints. Each footprint is about 1.3 miles (2.25 kilometers) long and a few hundred yards (meters) wide. When displayed as an image, the eight spectra appear like bar codes — bright bands of light broken by sharp dark lines. The dark lines indicate absorption by molecular oxygen or carbon dioxide.

It will record around 100,000 precise individual CO2 measurements around the worlds entire sunlit hemisphere every day and help determine its source and fate in an effort to understand how human activities impact climate change and how we can mitigate its effects.

OCO-2 mission  description. Credit: NASA
OCO-2 mission description. Credit: NASA

At the dawn of the Industrial Revolution, there were about 280 parts per million (ppm) of carbon dioxide in Earth’s atmosphere. As of today the CO2 level has risen to about 400 parts per million, which is the most in at least 800,000 years, says NASA.

OCO-2 is the second of NASA’s five new Earth science missions planned to launch in 2014 and is designed to operate for at least two years during its primary mission. It follows the successful blastoff of the joint NASA/JAXA Global Precipitation Measurement (GPM) Core Observatory satellite on Feb 27.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

The Orbiting Carbon Observatory-2, NASA's first mission dedicated to studying carbon dioxide in Earth's atmosphere, lifts off from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014 on a Delta II rocket.  The two-year mission will help scientists unravel key mysteries about carbon dioxide. Credit: NASA/Bill Ingalls
The Orbiting Carbon Observatory-2, NASA’s first mission dedicated to studying carbon dioxide in Earth’s atmosphere, lifts off from Vandenberg Air Force Base, California, at 2:56 a.m. Pacific Time, July 2, 2014 on a Delta II rocket. The two-year mission will help scientists unravel key mysteries about carbon dioxide. Credit: NASA/Bill Ingalls

Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

The International Space Station's robotic arm, Canadarm2, grapples the Orbital Sciences' Cygnus cargo craft named "Janice Voss" on July 16, 2014. Image Credit: NASA TV

Following a nearly three day journey, an Orbital Sciences Corp. Cygnus commercial cargo freighter carrying a ton and a half of science experiments and supplies for the six person crew was successfully installed onto the International Space Station at 8:53 a.m. EDT this morning, July 16, after a flawless arrival and being firmly grasped by station astronauts deftly maneuvering the Canadarm2 robotic arm some two hours earlier.

Cygnus was captured in open space at 6:36 a.m. EDT by Commander Steve Swanson as he maneuvered the 57-foot (17-meter) Canadarm2 from a robotics workstation inside the station’s seven windowed domed Cupola, after it was delicately flown on an approach vector using GPS and LIDAR lasers to within about 32 feet (10 meters) of the massive orbiting complex.

Swanson was assisted by ESA astronaut and fellow Expedition 40 crew member Alexander Gerst working at a hardware control panel.

“Grapple confirmed” radioed Houston Mission Control as the complex soared in low orbit above Earth at 17500 MPH.

“Cygnus is captured as the ISS flew 260 miles (400 km) over northern Libya.”

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

Cygnus by the book arrival at the million pound orbiting laboratory coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission.

This mission dubbed Orbital-2, or Orb-2, marks the second of eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The supplies are critical to keep the station flying and humming with research investigations.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The supply ship thrusters all worked perfectly normal during rendezvous and docking to station with streaming gorgeous views provided by the stations new high definition HDEV cameras.

“We now have a seventh crew member. Janice Voss is now part of Expedition 40,” radioed Swanson.

“Janice devoted her life to space and accomplished many wonderful things at NASA and Orbital Sciences, including five shuttle missions. And today, Janice’s legacy in space continues. Welcome aboard the ISS, Janice.”

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

A robotics officer at Mission Control in Houston then remotely commanded the arm to move Cygnus into place for its berthing at the Earth-facing port on the Harmony module.

Once Cygnus was in place at the ready to latch (RTF) position, NASA astronaut and Flight Engineer Reid Wiseman monitored the Common Berthing Mechanism operations and initiated the first and second stage capture of the cargo ship to insure the craft was firmly joined.

The hard mate was completed at 8:53 a.m. EDT as the complex was flying about 260 miles over the east coast of Australia. 16 bolts were driven to firmly hold Cygnus in place to the station.

“Cygnus is now bolted to the ISS while flying 260 miles about the continent of Australia,” confirmed Houston Mission Control.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Student Space Flight teams at NASA Wallops.  Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

The crew will begin work today to remove the Centerline Berthing Camera System that provided the teams with a view of berthing operations through the hatch window.

Swanson will then pressurize and outfit the vestibule area between Harmony and Cygnus. After conducting leak checks they will open the hatch to Cygnus either later today or tomorrow and begin the unloading process, including retrieving a stash of highly desired fresh food.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

“Every flight is critical,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culbertson was a NASA shuttle commander and also flew aboard the International Space Station (ISS).

“We carry a variety of types of cargo on-board, which includes food and basic supplies for the crew, and also the research.”

The cargo mission was crucial since the crew supply margin would have turned uncomfortably narrow by the Fall of 2014.

Cygnus will remain attached to the station approximately 30 days until August 15.

For the destructive and fiery return to Earth, the crew will load Cygnus with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later after undocking.

The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.

The July 13 liftoff marked the fourth successful launch of the 132 foot tall Antares in the past 15 months, Culbertson noted.

The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Cygnus Cargo Craft Closing In for Space Station Berthing on July 16 – Watch Live

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com

The Cygnus commercial cargo craft is rapidly closing in on the International Space Station (ISS) for an expected berthing on Wednesday morning, July 16, following a spectacular lunchtime blastoff from the Virginia shore on Sunday, July 13, carrying over one and a half tons of supplies and science experiments for the six man crew.

During a three day orbital chase, mission controllers are executing a series of carefully choreographed thruster firings to maneuver the private Orbital Sciences Cygnus ever closer to the space station.

You can watch the final rendezvous and berthing sequence live on NASA TV on Wednesday starting at 5:15 a.m.

Watch the streaming NASA TV webcast here at – http://www.nasa.gov/nasatv

All systems “green” reported Orbital Sciences as of about 6 p.m. Tuesday evening, July 15.

In this photo posted to Twitter by Flight Engineer Alexander Gerst, he and Commander Steve Swanson (foreground) use the robotics workstation in the International Space Station's cupola.  Image Credit: NASA
In this photo posted to Twitter by Flight Engineer Alexander Gerst, he and Commander Steve Swanson (foreground) use the robotics workstation in the International Space Station’s cupola.
Image Credit: NASA

Cygnus orbit was 415 x 409 km and some 4 kilometers below and 270 kilometers behind the ISS. It is closing in at 23 km/hour using its 32 thrusters.

Cygnus roared to orbit during the flawless July 13 blastoff of the Orbital Sciences Corp. Antares rocket at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The two stage rocket ascended very slowly after ignition with a mounting sound and deafening crescendo that reverberated across the local Virginia viewing area. It put on a spectacular sky show before disappearing into the clouds after about 40 seconds or so.

The 13 story Antares lofted the Cygnus christened “Janet Voss” in honor of the late shuttle astronaut bound for the space station and packed with a wide range of science experiments and essential supplies.

ISS Expedition 40 crew members Commander Steve Swanson of NASA and Alexander Gerst of the European Space Agency conducted a last minute practice session today at the robotics work station inside the domed cupola.

They used the Robotics Onboard Trainer, or ROBoT, to practice techniques for capturing Cygnus with Canadarm2, said NASA.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

They are expected to capture the private cargo freighter at approximately 6:39 a.m. (EDT) using the stations 57-foot (17-meter) Canadarm2 robotic arm.

Live coverage will then pause as the crew makes final preparations.

NASA will resume the live webcast at 8:30 a.m. EDT for the berthing of Cygnus.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port during Orb-1 mission in January 2014. Credit: NASA TV

Mission Control in Houston will command the arm to move Cygnus into place for its installation at the Earth-facing port on the Harmony module expected to take place some 15 minutes later at around 8:45 a.m.

The Antares/Cygnus Orbital-2 (Orb-2) mission is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The pressurized Cygnus cargo freighter will deliver 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

The wide ranging science cargo and experiments includes a flock of 29 nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer