ALMA Telescope Links Third Antenna

Well, they’re 1/22 of the way there: the Atacama Large Millimeter/submillimeter Array (ALMA), planned to be one of the largest ground-based observatories in the world, successfully linked 3 of its 66 antennas together. This is the next step in working out all of the bugs associated with linking together the whole array, which should happen sometime in 2012.

ALMA is a “microwave” telescope array that will be the largest such ground-based observatory in the world once it is completely online. Telescopes like ALMA are called interferometers because they use the principle of very-long baseline interferometry – by linking separate telescopes together, a larger telescope of the effective resolution of the distance between the separate elements is achieved.

We reported on the first image taken by two of the antennas back in November. Information from a pair of the antennas was gathered to test the electronic functioning of the system, but errors from the system itself and those that creep in because of the atmosphere were weeded out by this latest test that included a third antenna. This test is called a “closure phase”, essentially the self-calibration of the antennas in terms of reconciling the information they are taking in with the signals present from noise.

Fred Lo, director of the National Radio Astronomy Observatory (NRAO) – which is the contributing organization of North America to the ALMA array – said of the test in a press release,”This successful test shows that we are well on the way to providing the clear, sharp ALMA images that will open a whole new window for observing the Universe. We look forward to imaging stars and planets as well as galaxies in their formation processes.”

ALMA can gather information in the electromagnetic spectrum at a wavelength that is less than 1 millimeter. Because the planned array is so large, it will eventually be able to resolve unprecedented images of some of the first galaxies to form after the Big Bang, and will also be able to capture the formation of planets around stars, as well as information on the late stages in the life of stars.

ALMA is located in the Atacama desert in Chile at about 5,000 meters (16,500 feet) above sea level. This high and dry location allows the telescope to receive more of the light in the submillimeter; water vapor in the atmosphere of the Earth absorbs light in this part of the spectrum.

Source: NRAO press release

A Very Large 3-D Movie

Quick! Grab a pair of red and green 3-D glasses and slap them on to watch this great time lapse video of the Very Large Telescope at the Paranal Observatory, high in the Atacama Desert in Chile. It shows a complete night at the observatory, and you can see the four 8m telescopes and the four 1.8m telescopes of the VLT working, all in 3-D. The video comes from the handiwork of astrophotographer and head Optics Engineer on the VLT, St├ęphane Guisard. If that name sounds familiar, St├ęphane has recently been working with ESO and fellow astrophotographer Serge Brunier on the GigaGalaxy Zoom project. Click this link to go directly to GigaGalaxy Zoom, or read one of our previous articles about them here. It was made by using two cameras taking pictures simultaneously, which were combined to create an anaglyph time lapse movie. Two notes about the movie: the telescopes and domes were lit by the moonlight, and the International Space Station crosses the sky during the very first seconds of the movie.
Continue reading “A Very Large 3-D Movie”

Arecibo Observatory

Named after the nearby city in Puerto Rico, the Arecibo Observatory (or Arecibo Radio Telescope) is the largest single-aperture (radio) telescope ever built, 305 m in diameter.

Taking advantage of a karst sinkhole, Cornell University built a spherical reflector out of wire mesh, with receivers at the focus suspended by 18 steel cables strung from three concrete towers on the rim. It took three years to build, and was completed in 1963. Since then it has been upgraded several times; for example, in 1974 perforated aluminum panels replaced the wire mesh, and a Gregorian reflector system added to the receiver mechanism in 1997. Among other things, these upgrades have extended the range of radio wavelengths Arecibo can operate at, both as a radio telescope and for radar astronomy.

Such a visually interesting piece of scientific hi-tech has lead to Arecibo playing a role in many movies and TV shows, from James Bond’s Golden Eye to Contact to X-Files.

Everyone knows about [email protected], right? Well, it’s receivers on Arecibo that supply the data which the millions of PCs crunch!

Arecibo has played a key role in many astronomical discoveries, from the rotation period of Mercury (a radar astronomy application, in 1964), to the pulses of the Crab Nebula (1968), to studies of pulsars by Hulse and Taylor (1974) that lead to their Nobel Prize (1993), and to direct imaging of asteroids (another radar astronomy application, first done in 1989).

Due to budget cutbacks and changes in research priorities, the future of Arecibo is uncertain (most of its funding comes from the National Science Foundation); maybe you can find a way to save it?

Here’s the official Arecibo Observatory website; ALFA is a current large-scale astronomical survey being done at Arecibo, in case you don’t already know about [email protected], and click here to read more about planetary radar.

Calling All Amateur Astronomers: Help Comb Through Arecibo Data for Gems, Arecibo Spots Triple Asteroid, Arecibo Gets an Upgrade: just three of the many Universe Today stories featuring the Arecibo Observatory!

Some of the ways Arecibo contributes to astronomy are covered in Astronomy Casts The Rise of Supertelescopes, and Across the Electromagnetic Spectrum.

Source: National Astronomy and Ionosphere Center: Arecibo Observatory