Fully Functional Pan-STARRS is now Panning for Stars, Asteroids and Comets

Pan-STARRS PS1 Observatory. Image courtesy of Rob Ratkowski Photography and the Haleakala Amateur Astronomers.

[/caption]

There’s a new eye on the skies on the lookout for ‘killer’ asteroids and comets. The first Pan-STARRS (Panoramic Survey Telescope & Rapid Response System) telescope, PS1, is fully operational, ready to map large portions of the sky nightly. It will be sleuthing not just for potential incoming space rocks, but also supernovae and other variable objects.

“Pan-STARRS is an all-purpose machine,” said Harvard astronomer Edo Berger. “Having a dedicated telescope repeatedly surveying large areas opens up a lot of new opportunities.”

“PS1 has been taking science-quality data for six months, but now we are doing it dusk-to-dawn every night,” says Dr. Nick Kaiser, the principal investigator of the Pan-STARRS project.

Pan-STARRS PS1 Observatory just before sunrise on Haleakala, Maui. Credit: Harvard-Smithsonian Center for Astrophyiscs

Pan-STARRS will map one-sixth of the sky every month and basically be on the lookout for any objects that move over time. Frequent follow-up observations will allow astronomers to track those objects and calculate their orbits, identifying any potential threats to Earth. PS1 also will spot many small, faint bodies in the outer solar system that hid from previous surveys.

“PS1 will discover an unprecedented variety of Centaurs [minor planets between Jupiter and Neptune], trans-Neptunian objects, and comets. The system has the capability to detect planet-size bodies on the outer fringes of our solar system,” said Smithsonian astronomer Matthew Holman.

Pan-STARRS features the world’s largest digital camera — a 1,400-megapixel (1.4 gigapixel) monster. With it, astronomers can photograph an area of the sky as large as 36 full moons in a single exposure. In comparison, a picture from the Hubble Space Telescope’s WFC3 camera spans an area only one-hundredth the size of the full moon (albeit at very high resolution).

This sensitive digital camera was rated as one of the “20 marvels of modern engineering” by Gizmo Watch in 2008. Inventor Dr. John Tonry (IfA) said, “We played as close to the bleeding edge of technology as you can without getting cut!”

Each image, if printed out as a 300-dpi photograph, would cover half a basketball court, and PS1 takes an image every 30 seconds. The amount of data PS1 produces every night would fill 1,000 DVDs.

Another view of Pan STARRS PS1 Observatory. Image courtesy of Rob Ratkowski Photography and the Haleakala Amateur Astronomers.

“As soon as Pan-STARRS turned on, we felt like we were drinking from a fire hose!” said Berger. He added that they are finding several hundred transient objects a month, which would have taken a couple of years with previous facilities.

Located atop the dormant volcano Haleakala (that’s Holy Haleakala to you, Bad Astronomer) Pan-STARRS exploits the unique combination of superb observing sites and technical and scientific expertise available in Hawaii.

Source: CfA

Exoplanet Hunting Robotic Telescope Sees First Light

TRAPPIST First Light Image of the Tarantula Nebula. Credit: ESO

[/caption]

Great shot of the Tarantula nebula!

A new robotic telescope dedicated primarily to hunting for extra solar planets has opened its eyes. Although its first light image is of a nebula, the TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) at ESO’s La Silla Observatory in Chile will focus on detecting and characterizing planets located outside of our solar system. The new telescope will also study comets.

“The two themes of the TRAPPIST project are important parts of an emerging interdisciplinary field of research — astrobiology — that aims at studying the origin and distribution of life in the Universe,” said Michaël Gillon, who is in charge of the exoplanet studies.

“Terrestrial planets similar to our Earth are obvious targets for the search for life outside the Solar System, while comets are suspected to have played an important role in the appearance and development of life on our planet,” adds his colleague Emmanuël Jehin, who leads the cometary part of the project.

TRAPPIST will make high precision measurements of “brightness dips” that might possibly be caused by exoplanet transits. During such a transit, the observed brightness of the star decreases slightly because the planet blocks a part of the starlight. The larger the planet, the more of the light is blocked and the more the brightness of the star will decrease.

For studying comets, TRAPPIST is equipped with special large, high quality cometary filters, allowing astronomers to study regularly and in detail the ejection of several types of molecules by comets during their journey around the Sun.

“With dozens of comets observed each year, this will provide us with a unique dataset, bringing important information about their nature,” says Jehin.

TRAPPIST is a lightweight 0.6-metre robotic telescope, fully automated and moving precisely across the sky at a high speed. The observing program is prepared in advance and the telescope can perform a full night of observations unattended. A meteorological station monitors the weather continuously and decides to close the dome if necessary. The control center for this telescope is in Liège, Belgium, about 12,000 km away.

See more first light images from TRAPPIST, including Omega Centauri and M83 at the ESO website.

Dramatic Moonset — Amazing Sight on Cerro Paranal

Moonset on Cerro Paranal. Credit: ESO

[/caption]

Need a new desktop image? Usually the Very Large Telescope on Cerro Paranal in Chile provides us with stunning views of the cosmos. This image, however, is a gorgeous view of the observatory itself. As the Moon was setting after a long night of observing, ESO staff member Gordon Gillet welcomed the new day by capturing this stunning image from 14 km away. This image is not a montage or computer-generated (such as the infamous ‘Moon and Sun over the North Pole‘ urban legend)

The ESO website explains:

The Moon appears large because it is seen close to the horizon and our perception is deceived by the proximity of references on the ground. In order to get this spectacular close view, a 500-mm lens was necessary. The very long focal length reduces the depth of field making the objects in focus appear as if they were at the same distance. This effect, combined with the extraordinary quality of this picture, gives the impression that the Moon lies on the VLT platform, just behind the telescopes, even though it is in fact about 30,000 times further away.

Interestingly, Gillet took the image from the road leading to the nearby Cerro Armazones, the peak recently chosen by the ESO Council as the preferred location for the planned 42-meter European Extremely Large Telescope (E-ELT), which should be open for business by 2018.

Source: ESO

Scientist Explains New LOFAR Image of Quasar 3C196

Radio images of the quasar 3C 196 at 4 - 10 m wavelength (30 - 80 MHz frequency). Left: Data from LOFAR stations in the Netherlands only. The resolution is not sufficient to identify any substructure. Right: Blow-up produced with data from the German stations included. The resolution of this image is about ten times better and allows for the first time to distinguish fine details in this wavelength range. The colours are chosen to resemble what the human eye would see if it were sensitive to radiation at a wavelength ten million times larger than visible light. Image: Olaf Wucknitz, Bonn University (Click to enlarge image).

[/caption]

We received several questions about our article on the new high-resolution LOFAR (LOw Frequency Array) image of quasar 3C196, concerning what was actually visible in this new image. We contacted LOFAR scientist Olaf Wucknitz from the Argelander-Institute for Astronomy at Bonn University in Germany, and he has provided an extensive explanation.

“3C196 is a quasar, the core of which is sitting right in the middle of the radio component,” Wucknitz said. “The core itself is not seen in radio observations but only on optical images. A possible reason for not seeing the core or the jets is that the central engine may not be very active at the moment (or rather it was not very active when the radiation left the object about 7 billion years ago). Alternatively it is possible that the inner parts of this source radiate very inefficiently so that we just do not see them in the radio images.”

In any case, he said, there must have been considerable activity earlier, because extensions of the jets that form radio lobes and hot spots are able to be seen in the image.

“The main lobes seem to be the bright SW component and the more compact NE component. When compared to observations at higher frequencies, these have the flattest spectra, i.e. they dominate at higher frequencies,” Wucknitz continued. “Then there is the other pair of components, the fuzzier E and W components. They are much weaker at higher frequencies.”

“The standard explanation for this would be that the jets from the core are changing its orientation with time (e.g. due to precession caused by a second black hole near the core, but this is very speculative). In this scenario the more extended components are older. Because of their age, the electrons causing the radiation have lost so much energy that we now see more low-frequency (i.e. low energy) radiation. The more compact components would be younger and therefore produce more high-frequency radiation.”

Interestingly, the W and E components show very different “colors” between 30-80 MHz, he said, so there must be some difference in the physical conditions in these two regions.

“Another possible explanation is that the compact components are the main lobes. There the jets interact with the surrounding medium. The matter is deflected and causes an outflow which we see as the other components.”

So basically, Wucknitz said, with the study of the data now available, they cannot draw firm conclusions, and he and his team have not had the opportunity to write a paper on the new image. “At the moment we are concentrating on getting LOFAR to run routinely and try to resist the temptation to do too much science with the first images. I hope that we can provide a real scientific analysis of this and similar images later this year.”

However, he suggested a couple of earlier papers that discuss quasar 3C196.

“Rotationally symmetric structure in two extragalactic radio sources” by Lonsdale, C. J.; Morison, I. describes the model of rotating jets for several obects including 3C196.

And this paper, Kiloparsec scale structure in the hotspots of 3C 196 by Lonsdale, C. J. discuses how previous observations by the MERLIN array revealed the presence of complex structure in each of the two bright hot spots in the quasar.

Wucknitz said he looks forward to delving into this object deeper as more of the LOFAR stations come online. “Once we can calibrate our new data better and produce slightly nicer images, we can hopefully say more and decide for one of the models,” he said.

Thanks to Olaf Wucknitz for providing an explanation of this new LOFAR image. Still have questions? Post them in the comments below.

SOFIA Sees First Light

With a NASA F/A-18 flying safety chase nearby, NASA's Stratospheric Observatory for Infrared Astronomy – or SOFIA – flies a test mission over the Mojave Desert with the sliding door over its 17-ton infrared telescope open. Credit: NASA/ Jim Ross

[/caption]

Flying SOFIA has opened her eyes! The Stratospheric Observatory for Infrared Astronomy (SOFIA), a joint program by NASA and the German Aerospace Center made its first observations on May 26. The new observatory uses a modified 747 airplane to carry a German-built 2.5 meter (100 inch) reflecting telescope. “With this flight, SOFIA begins a 20-year journey that will enable a wide variety of astronomical science observations not possible from other Earth and space-borne observatories,” said Jon Morse, Astrophysics Division director in the Science Mission Directorate at NASA. “It clearly sets expectations that SOFIA will provide us with “Great Observatory”-class astronomical science.”

Scientists are now processing the first light data, and say that preliminary results show the sharp, “front-line” images that were predicted for SOFIA. They reported the stability and precise pointing of the German-built telescope met or exceeded the expectations of the engineers and astronomers who put it through its paces during the flight.

Infrared image of Jupiter from SOFIA’s First Light flight composed of individual images at wavelengths of 5.4 (blue), 24 (green) and 37 microns (red) made by Cornell University’s FORCAST camera. A recent visual-wavelength picture of approximately the same side of Jupiter is shown for comparison. The white stripe in the infrared image is a region of relatively transparent clouds through which the warm interior of Jupiter can be seen. (Visual image credit: Anthony Wesley)

“The crowning accomplishment of the night came when scientists on board SOFIA recorded images of Jupiter,” said USRA SOFIA senior science advisor Eric Becklin. “The composite image from SOFIA shows heat, trapped since the formation of the planet, pouring out of Jupiter’s interior through holes in its clouds.”

Faint specks of starlight are reflected by the 100-inch (2.5 meter) primary mirror on SOFIA. Credit: NASA/Tom Tschida

Cornell University built the primary instrument on the telescope, the Faint Object infrared Camera for the SOFIA Telescope, also known as FORCAST. FORCAST is unique in that it records energy coming from space at infrared wavelengths between 5 and 40 microns – most of which cannot be seen by ground-based telescopes due to blockage by water vapor in Earth’s atmosphere. SOFIA’s operational altitude, which is above more than 99 percent of that water vapor, allows it to receive 80 percent or more of the infrared light accessible to space observatories, so FORCAST captures in minutes images that would require many hour-long exposures by ground-based observatories

Composite infrared image of the central portion of galaxy M82, from SOFIA’s First Light flight, at wavelengths of 20 (blue), 32 (green) and 37 microns (red). The middle inset image shows the same portion of the galaxy at visual wavelengths. The infrared image views past the stars and dust clouds apparent in the visible-wavelength image into the star-forming heart of the galaxy. The long dimension of the inset boxes is about 5400 light years. (Visual image credit: N. A. Sharp/ NOAO/AURA/NSF)

The first light flight took off from SOFIA’s home base at the Aircraft Operations Facility in Palmdale, Calif., of NASA’s Dryden Flight Research Center. The in-flight personnel consisted of an international crew from NASA, the Universities Space Research Association in Columbia, Md., Cornell University and the German SOFIA Institute (DSI) in Stuttgart. During the six-hour flight, at altitudes up to 35,000 feet, the crew of 10 scientists, astronomers, engineers and technicians gathered telescope performance data at consoles in the aircraft’s main cabin.

More info on SOFIA.

Source: NASA

Chilean Telescopes OK, ESO, Gemini Report

The ESO Very Large Array atop Cerro Paranal, northern Chile (ESO).

[/caption]

The European Southern Observatory, which has several telescopes housed in the mountains of Chile, issued a press release that none of the observatories suffered any damage, and they have no reports of any staff that were injured or killed in the magnitutde 8.8 earthquake that struck central Chile on February 27, 2010:

Despite being the 7th strongest earthquake ever recorded worldwide, the ESO observatory sites did not suffer any damage, partly as they are engineered to withstand seismic activity and partly due to their distances from the epicentre. At La Silla, a power cut caused observations to stop during the night. Paranal Observatory, the APEX telescope and the ALMA Operations Support Facility and Array Operations Site were unaffected.

Additionally, the Gemini South Observatory posted on their website that they experienced no significant damage:

Sunset over Gemini South. Credit: Gemini

Gemini was fortunate that there were no significant structural damages to any of our facilities. The earthquake disrupted observations on early Saturday morning for less than 30 minutes. Subsequent operations have been essentially normal with the exception of Internet connectivity. We are dealing with communications and minor power inconsistencies that should be solved once general Chilean infrastructure issues are resolved. The temblor struck about 700 kilometers south of Gemini South which is on Cerro Pachón.

ESO reported that they are experiencing power outages and network interruptions, which means that communication may be limited. “Disruption to staff travel plans within, to, and from Chile should be expected. We urge Visiting Astronomers with observations planned at ESO observatories to put their trips to Chile on hold until further notice. International flights to and from Santiago International Airport are currently either cancelled or diverted. Information about observing programmes will be provided at a later date,” the press release said.

Other observatories in Chile include Cerro Tololo (CTIO) and SLOOH. The servers for the websites for these observatories were down on Saturday, but are now back up.

The SLOOH Twitter account reported late Sunday that their observatory has no power but scope, pier and dome appear to be OK. “Won’t know more until power is restored,” they said.

Update (3/1/2010): Mark T. Adams from NRAO sent this report via Facebook (thanks to Richard Drumm for forwarding it on to UT!):

“We’ve been able to contact or have heard from most of our staff based in or visiting Chile, and we are relieved to report that there appear to be no injuries to our staff or their families. Communication remains very difficult: land-lines, cell-phones, and the Internet are intermittent and unreliable.

“The ALMA Array Operations Site and Operations … See MoreSupport Facilities in northern Chile suffered no damage other than loss of communications. It may take a few days for the completion of a safety inspection of the NRAO/AUI and JAO offices in Santiago, which suffered some damage.”

The earthquake epicentre was 115 km north-northeast of the city of Concepción and 325 km south-west of the capital Santiago. The earthquake caused significant casualties and damage in the country.

Source: ESO, Gemini South

ALMA Telescope Links Third Antenna

Well, they’re 1/22 of the way there: the Atacama Large Millimeter/submillimeter Array (ALMA), planned to be one of the largest ground-based observatories in the world, successfully linked 3 of its 66 antennas together. This is the next step in working out all of the bugs associated with linking together the whole array, which should happen sometime in 2012.

ALMA is a “microwave” telescope array that will be the largest such ground-based observatory in the world once it is completely online. Telescopes like ALMA are called interferometers because they use the principle of very-long baseline interferometry – by linking separate telescopes together, a larger telescope of the effective resolution of the distance between the separate elements is achieved.

We reported on the first image taken by two of the antennas back in November. Information from a pair of the antennas was gathered to test the electronic functioning of the system, but errors from the system itself and those that creep in because of the atmosphere were weeded out by this latest test that included a third antenna. This test is called a “closure phase”, essentially the self-calibration of the antennas in terms of reconciling the information they are taking in with the signals present from noise.

Fred Lo, director of the National Radio Astronomy Observatory (NRAO) – which is the contributing organization of North America to the ALMA array – said of the test in a press release,”This successful test shows that we are well on the way to providing the clear, sharp ALMA images that will open a whole new window for observing the Universe. We look forward to imaging stars and planets as well as galaxies in their formation processes.”

ALMA can gather information in the electromagnetic spectrum at a wavelength that is less than 1 millimeter. Because the planned array is so large, it will eventually be able to resolve unprecedented images of some of the first galaxies to form after the Big Bang, and will also be able to capture the formation of planets around stars, as well as information on the late stages in the life of stars.

ALMA is located in the Atacama desert in Chile at about 5,000 meters (16,500 feet) above sea level. This high and dry location allows the telescope to receive more of the light in the submillimeter; water vapor in the atmosphere of the Earth absorbs light in this part of the spectrum.

Source: NRAO press release

A Very Large 3-D Movie


Quick! Grab a pair of red and green 3-D glasses and slap them on to watch this great time lapse video of the Very Large Telescope at the Paranal Observatory, high in the Atacama Desert in Chile. It shows a complete night at the observatory, and you can see the four 8m telescopes and the four 1.8m telescopes of the VLT working, all in 3-D. The video comes from the handiwork of astrophotographer and head Optics Engineer on the VLT, Stéphane Guisard. If that name sounds familiar, Stéphane has recently been working with ESO and fellow astrophotographer Serge Brunier on the GigaGalaxy Zoom project. Click this link to go directly to GigaGalaxy Zoom, or read one of our previous articles about them here. It was made by using two cameras taking pictures simultaneously, which were combined to create an anaglyph time lapse movie. Two notes about the movie: the telescopes and domes were lit by the moonlight, and the International Space Station crosses the sky during the very first seconds of the movie.
Continue reading “A Very Large 3-D Movie”

Arecibo Observatory

courtesy of the NAIC - Arecibo Observatory, a facility of the NSF

[/caption]
Named after the nearby city in Puerto Rico, the Arecibo Observatory (or Arecibo Radio Telescope) is the largest single-aperture (radio) telescope ever built, 305 m in diameter.

Taking advantage of a karst sinkhole, Cornell University built a spherical reflector out of wire mesh, with receivers at the focus suspended by 18 steel cables strung from three concrete towers on the rim. It took three years to build, and was completed in 1963. Since then it has been upgraded several times; for example, in 1974 perforated aluminum panels replaced the wire mesh, and a Gregorian reflector system added to the receiver mechanism in 1997. Among other things, these upgrades have extended the range of radio wavelengths Arecibo can operate at, both as a radio telescope and for radar astronomy.

Such a visually interesting piece of scientific hi-tech has lead to Arecibo playing a role in many movies and TV shows, from James Bond’s Golden Eye to Contact to X-Files.

Everyone knows about SETI@Home, right? Well, it’s receivers on Arecibo that supply the data which the millions of PCs crunch!

Arecibo has played a key role in many astronomical discoveries, from the rotation period of Mercury (a radar astronomy application, in 1964), to the pulses of the Crab Nebula (1968), to studies of pulsars by Hulse and Taylor (1974) that lead to their Nobel Prize (1993), and to direct imaging of asteroids (another radar astronomy application, first done in 1989).

Due to budget cutbacks and changes in research priorities, the future of Arecibo is uncertain (most of its funding comes from the National Science Foundation); maybe you can find a way to save it?

Here’s the official Arecibo Observatory website; ALFA is a current large-scale astronomical survey being done at Arecibo, in case you don’t already know about SETI@Home, and click here to read more about planetary radar.

Calling All Amateur Astronomers: Help Comb Through Arecibo Data for Gems, Arecibo Spots Triple Asteroid, Arecibo Gets an Upgrade: just three of the many Universe Today stories featuring the Arecibo Observatory!

Some of the ways Arecibo contributes to astronomy are covered in Astronomy Casts The Rise of Supertelescopes, and Across the Electromagnetic Spectrum.

Source: National Astronomy and Ionosphere Center: Arecibo Observatory