Crackling Roar of Atlas Rocket Carries Clandestine NRO Surveillance Satellite Aloft From Cape

A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — Riding atop the crackling roar of an Atlas V rocket, a clandestine surveillance satellite for our nation’s spy masters was carried aloft by a powerful booster from the Florida space coast to an undisclosed orbit at breakfast time today, Thursday, July 28.

The United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifted off from Space Launch Complex-41 right at the appointed time of 8:37 a.m. EDT this morning with approximately 1.5 million pounds of thrust.

The top secret NROL-61 satellite bolted on top and inside the 4 meter diameter nose cone was launched in support of US national defense and is vital to US national security.

“Thank you to the entire mission team for years of hard work and collaboration on today’s successful launch of NROL-61. We are proud the U.S. Air Force and NRO Office of Space Launch have entrusted ULA with delivering this critical asset for our nation’s security,” said Laura Maginnis, ULA vice president of Custom Services, in a statement.

“Our continued one launch at a time focus and exceptional teamwork make launches like today’s successful.”

A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the NROL-61 surveillance satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

The launch was webcast live by ULA and featured video recorded call in questions about spaceflight from the general public – especially children!

The rocket roared off pad 41 atop an ever expanding plume of smoke and ash into a brilliant and cloudless blue sky under absolutely ideal weather conditions with clear lines of sight enjoyed by hordes of spectators gathered here from near and far, and lining the space coast beaches and surrounding viewing areas.

Many local area hotels were packed with space enthusiasts hoping for a space spectacular at this unusually convenient launch time – and they were not disappointed!!

Because the Atlas rocket was equipped with a pair of powerful solid rocket boosters to augment its liftoff thrust, the smoke plume was visible for as long as we could see it.

ULA Atlas V rocket lifts off with NROL-61 spy satellite for the NRO from pad 41 on July 28, 2016 at 8:37 a.m. EDT. Credit: Julian Leek
ULA Atlas V rocket lifts off with NROL-61 spy satellite for the NRO from pad 41 on July 28, 2016 at 8:37 a.m. EDT. Credit: Julian Leek

The rocket soon arced over, racing southeasterly to orbit and towards the African continent.

Virtually everything about the clandestine payload, its mission, purpose and goals are classified top secret on a mission of vital importance to America’s national security and defense needs.

The NRO is the government agency that runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The most recent NRO payload, known as NROL 37, was just launched by ULA last month on their Delta IV Heavy – the most powerful rocket in the world on June 11 – read my story here.

The venerable ULA Atlas V rocket sports a 100% record of launch success and its unusual for technical issues to hold up a launch. The ever changeable Florida weather is another matter entirely.

The NROL-61 mission counts as ULA’s sixth launch of 2016 and the 109th overall since the company was founded in 2006.

The 20 story tall Atlas V launched in its 421 configuration – the same as what will be used for manned launches with the crewed Boeing ‘Starliner’ space taxi carrying astronaut crews to the International Space Station.
This was the sixth Atlas V to launch in the 421 configuration.

The Atlas 421 vehicle includes a 4-meter diameter Extra Extended Payload Fairing (XEPF) payload fairing and two solid rocket boosters that augment the first stage. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solids deliver approximately 500,000 pounds of thrust.

The solids were jettisoned about 2 minutes after liftoff.

Virtually everything about the clandestine payload, its mission, purpose and goals are classified top secret.

The NRO is the government agency that runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Atlas V rocket streaks to orbit on smoke and ash carrying NROL-61 spy satellite for the NRO  after launch on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
Atlas V rocket streaks to orbit on smoke and ash carrying NROL-61 spy satellite for the NRO after launch on July 28, 2016 at 8:37 a.m. EDT from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station, the Kennedy Space Center and the ULA Atlas launch pad.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SLS and Orion crew vehicle, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Juno at Jupiter, Orbital ATK Antares & Cygnus, Boeing, Space Taxis, Mars rovers, NASA missions and more at Ken’s upcoming outreach events:

July 27-28: “ULA Atlas V NRO Spysat launch July 28, SpaceX launch to ISS on CRS-9, SLS, Orion, Juno at Jupiter, ULA Delta 4 Heavy NRO spy satellite, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Atlas V rocket streaks to orbit carrying NROL-61 spy satellite for the NRO  on July 28, 2016 at 8:37 a.m. EDT as seen from Satellite Beach, FL.  Credit: Jillian Laudick
Atlas V rocket streaks to orbit carrying NROL-61 spy satellite for the NRO on July 28, 2016 at 8:37 a.m. EDT as seen from Satellite Beach, FL. Credit: Jillian Laudick

Mission artwork for Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) is painted on nose cone of Atlas V rocket and depicts a green lizard, Spike, riding an Atlas V  launch vehicle.  Credit: Ken Kremer/kenkremer.com
Mission artwork for Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) is painted on nose cone of Atlas V rocket and depicts a green lizard, Spike, riding an Atlas V launch vehicle. Credit: Ken Kremer/kenkremer.com

A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016.   Credit: Ken Kremer/kenkremer.com
A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016. Credit: Ken Kremer/kenkremer.com

Top Secret NRO SpySat Set for Brilliant Breakfast Blastoff July 28 – Watch Live

A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016.   Credit: Ken Kremer/kenkremer.com
A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — The nation’s newest surveillance satellite is all set for a brilliant breakfast blastoff on Thursday July 28 atop a powerful Atlas V rocket from the Florida Space Coast – and both the booster and weather are in excellent shape at this time!

The goal is carry the top secret NROL-61 mission for the National Reconnaissance Office (NRO) to an undisclosed orbit which in support of US national defense and vital to US national security.

The NROL-61 mission is set to lift off on a United Launch Alliance (ULA) Atlas V rocket on Thursday morning July 28 from Space Launch Comple-41 at Cape Canaveral Air Force Station in Florida.

In an uncommon move, ULA and the military have announced the launch time is 8:37 a.m. EDT.

Virtually everything about the clandestine payload, its mission, purpose and goals are classified top secret.

The NRO is the government agency that runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The most recent NRO payload, known as NROL 37, was just launched by ULA last month on their Delta IV Heavy – the most powerful rocket in the world on June 11 – read my story here.

The excitement is building with the launch just a day away and visitors are checking into local area hotels hoping for a magnificent show from the venerable Atlas rocket with a perfect record of launch performance.

ULA managers completed the Launch Readiness Review and everything “is on track for launch.”

So you can now plan your day and watch Thursday’s launch live via a ULA broadcast which starts 20 minutes prior to the given launch time at 8:17 a.m. EDT.

Webcast links: http://bit.ly/nrol61

Or: www.youtube.com/unitedlaunchalliance

Better yet if you are free and mobile you can watch this truly impressive feat with your own eyes by making your way to the many excellent viewing locations surrounding Cape Canaveral in every direction.

Here’s the rather cool ULA mission art with a webcast link.

ULA Webcast info for launch of Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) on July 28, 2016.  Credit: ULA/NRO
ULA Webcast info for launch of Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) on July 28, 2016. Credit: ULA/NRO

The NROL-61 patch depicts a green lizard, Spike, riding an Atlas V launch vehicle from the Cape Canaveral AFS. Spike was chosen as the mission mascot.

Mission artwork for Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) is painted on nose cone of Atlas V rocket and depicts a green lizard, Spike, riding an Atlas V  launch vehicle.  Credit: Ken Kremer/kenkremer.com
Mission artwork for Atlas V NROL-61 mission for the National Reconnaissance Office (NRO) is painted on nose cone of Atlas V rocket and depicts a green lizard, Spike, riding an Atlas V launch vehicle. Credit: Ken Kremer/kenkremer.com

The Florida weather outlook is looking quite promising at this time rather favorable. Air Force meteorologists are predicting an 80 percent chance of ‘GO’ with favorable weather conditions for Thursdays breakfast time blastoff.

The primary weather concern is for Cumulus Clouds.

In the event of a scrub delay for any reason, a backup launch opportunity exists on Friday, July 29. The weather odds are the same at 80% GO!

The rocket should put on a spectacular sky show since it is equipped with a pair of powerful solid rocket boosters spewing fire and an expanding plume of smoke and ash as is soars to orbit!

The Atlas rocket and payload were rolled put to launch pad 41 as planned Tuesday morning, July 26 – for a distance of about 1800 feet from the Vertical Integration Facility (VIF) where the rocket and payload were assembled, out to the pad.

It is now visibly erect at the pad from a number of viewing locations including Titusville and Playalinda Beach – positioned in between four lightning masts for protection from lightening.

Here’s a detailed mission profile video describing the launch events:

The NROL-61 mission counts as ULA’s sixth launch of 2016 and the 109th overall since the company was founded in 2006.

A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016.   Credit: Ken Kremer/kenkremer.com
A ULA Atlas V rocket carrying the NROL-61 satellite is poised for blastoff from the pad at Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on July 28, 2016. Credit: Ken Kremer/kenkremer.com

The 20 story tall Atlas V will launch in its 421 configuration – the same as what will be used for manned launches with the crewed Boeing ‘Starliner’ space taxi carrying astronaut crews to the International Space Station.

This will be the sixth Atlas V to launch in the 421 configuration.

The Atlas 421 vehicle includes a 4-meter diameter payload fairing and two solid rocket boosters that augment the first stage. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen and delivers 860,200 lb of thrust at sea level.

The strap on solids deliver approximately 500,000 pounds of thrust.

The solids will be jettisoned about 2 minutes after liftoff

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station, the Kennedy Space Center and the ULA Atlas launch pad.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SLS and Orion crew vehicle, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Juno at Jupiter, Orbital ATK Antares & Cygnus, Boeing, Space Taxis, Mars rovers, NASA missions and more at Ken’s upcoming outreach events:

July 27-28: “ULA Atlas V NRO Spysat launch July 28, SpaceX launch to ISS on CRS-9, SLS, Orion, Juno at Jupiter, ULA Delta 4 Heavy NRO spy satellite, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Triple Barreled Powerhouse Plows Dazzling Path to Orbit for Clandestine NRO Eavesdropper – Gallery

United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A top secret eavesdropping satellite constructed to support America’s national defense plowed a dazzling path to orbit Saturday riding atop the immense firepower of the mightiest rocket in the world – the triple barreled Delta IV Heavy powerhouse.

Note: Story expanding with more photos/videos !!

A United Launch Alliance (ULA) Delta IV Heavy rocket carrying a classified payload for the National Reconnaissance Office (NRO) soared to space under mostly sunny sunshine state skies from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fla., on June 11 at 1:51 p.m. EDT.

Although the actual launch time was classified, liftoff of the 24 story tall monster rocket came right at the opening of the publicly announced launch window – on its ninth mission overall.

The clandestine surveillance satellite with the nondescript name NROL-37 blazed to space on over two million pounds of liftoff thrust – putting on a stunning display of one of the biggest and baddest launches in many years from the Florida Space Coast.

“We are so honored to deliver the NROL-37 payload to orbit for the National Reconnaissance Office during today’s incredible launch,” said Laura Maginnis, ULA vice president of Custom Services, in a statement.

“This was the ninth time ULA launched the Delta IV Heavy, the most powerful launch vehicle in existence today.”

United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
Ignition and liftoff … United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

To the eyes and ears of myself and many space journalist friends it was among the very the best and loudest blastoffs since the retirement of NASA’s space shuttle orbiter fleet back it 2011.

Spectators ringing the beaches and packing the hotels along the Atlantic Ocean shore and beyond could hear the engines roar reverberating for more than 5 minutes, even after it disappeared far far way in the distant clouds.

Spectators east of the Cape and watching from more than 20 miles away told me they hear the rockets roar and feel the rumbling in their houses and apartments even after it disappeared from sight.

The 235-foot-tall rocket arced over eastwards towards the African continent on its path skywards, providing clues to its intended orbit.

Although a preplanned communications blackout was instituted by ULA and the US military some five minutes after liftoff, it is believed that the Delta IV Heavy successfully delivered NROL-37 to a geostationary orbit and an altitude of approximately 22,300 miles.

Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Julian Leek
Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Saturdays successful liftoff came 48 hours after gloomy weather related to Tropical Storm Colin in the so called ‘sunshine state’ forced a postponement for the mammoth satellite valued at over $1.5 Billion.

“The team worked together through many challenges this flow including, overcoming the aftereffects of Tropical Storm Colin,” said Maginnis.

“We are proud of the outstanding teamwork between the ULA, NRO and Air Force partners to ensure mission success for this critical national security asset.”

The most powerful rocket in existence today was required for this launch since the immense payload reportedly weighs in excess of 17,000 pounds.

Double ignition of United Launch Alliance Delta 4 Heavy booster and birds carrying NROL 37 spysat to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
Double ignition of United Launch Alliance Delta 4 Heavy booster and birds carrying NROL 37 spysat to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

NROL-37 is being launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

Reports indicate it may be one of the largest satellites ever launched, weigh some 17,000 pounds and may deploy an antenna over 300 feet wide for eavesdropping purposes.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Launch of ULA Delta 4 Heavy with NROL-37 spysat on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: SpaceHeadNews/Lane Hermann
Launch of ULA Delta 4 Heavy with NROL-37 spysat on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: SpaceHeadNews/Lane Hermann

Witnessing a Delta IV Heavy rumble to orbit is a rather rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

Watch these spectacular launch videos from remote video cameras set at the pad:

Video Caption: NROL-37 launch on ULA Delta IV Heavy from the front pond camera location at CCAFS on June 11, 2016. Credit: Jeff Seibert

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Each first stage CBC is powered by an upgraded RS-68A engine generating 702,000 pounds of thrust.

The three CBCs generate a combined 2.1 million pounds of thrust fueled by cryogenic liquid oxygen and liquid hydrogen.

A single RL10 liquid hydrogen/liquid oxygen engine powers the Delta second stage.

The secret satellite was enclosed in a 5 meter diameter payload fairing.

Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Julian Leek
Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

ULA manufactures the Delta rocket family in Decatur, Alabama. Aerojet Rocketdyne builds the booster and upper stage engines.

ULA Delta 4 Heavy rocket delivers NROL-37 spy satellite to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rocket delivers NROL-37 spy satellite to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 14/15: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Riding a Fountain of Fire the Delta IV Heavy makes ‘First Contact’ with Space - after launching on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Riding a Fountain of Fire the Delta IV Heavy makes ‘First Contact’ with Space – after launching on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rides to orbit on a massive spongy looking vapor trail after blastoff with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rides to orbit on a massive spongy looking vapor trail after blastoff with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Massive vapor trail to orbit after blastoff of ULA Delta 4 Heavy with top secret NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Jillian Laudick
Massive vapor trail to orbit after blastoff of ULA Delta 4 Heavy with top secret NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Jillian Laudick
Delta rocket at dawn at launch pad 37 on launch day June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Delta rocket at dawn at launch pad 37 on launch day June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

World’s Largest Rocket Ready to Rumble Saturday With Secret NRO Spy Satellite – Watch Live

Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — The world’s largest rocket was ready to rumble with a secret spy satellite for the NRO until Thursday’s stormy weather across the so-called ‘sunshine state’ postponed the engines roar by 48 hours to Saturday, June 11.

After a forlorn four hour wait in hopes of a parting of the gloomy gray rainy skies around the Florida Space Coast, launch officials with rocker maker United Launch Alliance (ULA) threw in the towel at 6 p.m. EDT and kept the triple barreled Delta 4 Heavy rocket and its over $1.5 Billion clandestine cargo critical to national defense prudently grounded for a better day.

An early afternoon blastoff of the classified NROL-37 spy satellite for the National Reconnaissance Office (NRO) atop the powerful ULA Delta IV Heavy rocket is now slated for 1:51 p.m. EDT from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Saturday, June 11.

The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016.  Credit: Ken Kremer/kenkremer.com
The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016. Credit: Ken Kremer/kenkremer.com

In an unusual move, the launch time of America’s newest spy satellite on America’s most powerful rocket had been announced in advance of Thursday’s plans by ULA. Liftoff of the NROL-37 surveillance satellite had been slated for 1:59 p.m. June 9. Saturdays launch time has moved up 8 minutes.

The good news is you can watch the now weekend launch live via a ULA broadcast which starts 20 minutes prior to the given launch time at 1:31 p.m. EDT June 11.

Webcast link: http://bit.ly/div_nrol37

Or – if you are free and mobile – you can watch this truly impressive feat with your own eyes as a rarely afforded treat – by making your way to the many excellent viewing locations surrounding Cape Canaveral.

Since this is a national security launch, the exact launch time and launch window are both actually classified. So the liftoff could easily occur later than 1:51 p.m. EDT Saturday.

Although the announced ‘launch period’ on Thursday extended until 6:30 p.m. EDT (2230 GMT), the actual launch window was also classified and fell somewhere within that lengthy launch period.

Due to Thursday’s weather scrub at 6 p.m. , we can now probably conclude that the actual launch window for NROL-37 lasts about 4 hours. So Saturday’s full launch window should run until shortly before 6 p.m. EDT.

Unfortunately the weather outlook has deteriorated from earlier indications and may be as trying as Thursday’s launch attempt.

The official Air Forces prognosis calls for only a 40% chance of favorable weather conditions on June 11.

The primary concerns are for Anvil Clouds, Cumulus Clouds and Lightning – quite similar to those on June 9.

“The trough that lingered in the area all week and caused multiple weather Launch Commit Criteria violations yesterday will continue to plague the area today.

Meteorological models are now showing the boundary still lingering in the area Saturday, and an upper-level short wave will also move through during the launch window,” according to the official Air Force forecast for June 11.

“Showers and thunderstorms are still likely along the trough. Also, anvils from inland thunderstorms will migrate toward the Space Coast.”

In case of a scrub for any reason related to technical or weather issues, ULA has NOT announced the next launch opportunity, a ULA spokesperson told Universe Today.

The Air Force did say that the weather odds rise significantly to an 80% chance of favorable weather conditions in case of a potential 48 hour scrub turnaround for potential on Monday, June 13.

Whenever the 24 story tall rocket soars skyward it will put on a spectacular sky show.

Virtually nothing is known about the clandestine payload, since its mission, purpose and goals are classified top secret – but it is absolutely vital to America’s national security.

The 235-foot-tall rocket will likely launch the classified NROL-37 surveillance satellite into a geosynchronous orbit and an altitude of 22,300 miles.

NROL-37 is being launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

Reports indicate it may be one of the largest satellites ever launched, weigh some 17,000 pounds and may deploy an antenna over 300 feet wide for eavesdropping purposes.

Delta 4 Heavy carrying NROL-37 spy satellite awaits launch from Space Launch Complex-37 at Cape Canaveral Air Force.  Credit: Lane Herman
Delta 4 Heavy carrying NROL-37 spy satellite awaits launch from Space Launch Complex-37 at Cape Canaveral Air Force. Credit: Lane Herman

Seeing a Delta 4 Heavy soar to space is a rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Each first stage CBC is powered by an upgraded RS-68 engine, which generates a combined 2.1 million pounds of thrust fueled by cryogenic liquid oxygen and liquid hydrogen.

Watch this up close video tour of the Delta 4 Heavy on pad 37 after retraction of the Mobile Service Structure from my space friends at USLaunchReport.

Video Caption: ULA is launching the 2.1 million lbs thrust “Heavy” on June 11, 2016 from Pad 37 on CCAFS. Credit: USLaunchReport

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Credit: Julian Leek
Credit: Julian Leek

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 10/11: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016.  Credit: Ken Kremer/kenkremer.com
The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016. Credit: Ken Kremer/kenkremer.com
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m.  EDT.  Broadcast starts at 1:39 p.m. EDT  Watch the live webcast:  http://bit.ly/div_nrol37
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m. EDT. Broadcast starts at 1:39 p.m. EDT Watch the live webcast: http://bit.ly/div_nrol37

Surveillance Satellite Set for June 9 Launch on Mighty Delta 4 Heavy

Sun rises behind Delta 4 Heavy launch of  NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Sun rises behind Delta 4 Heavy launch of NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL, FL — A classified surveillance satellite set to fortify the reconnaissance capabilities of America’s spy masters is now scheduled to launch this Thursday afternoon, June 9, atop America’s most powerful rocket – the Delta 4 Heavy.

Lift off of the United Launch Alliance (ULA) Delta 4 Heavy carrying the classified NROL-37 spy satellite for the National Reconnaissance Office (NRO) on Thursday, June 9 is slated for 1:59 p.m. EDT from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

This follows a four day delay from June 5 to deal with a last minute and unspecified payload issue.

“Spacecraft, rocket and support systems are ready!” tweeted the NRO.

Although almost everything about the clandestine payload, its mission, purpose and goals are classified top secret, it is certainly vital to America’s national security.

We do know that NROL-37 will be launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

The NRO runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The payload is named NROL-37 and will be carried to an undisclosed orbit, possibly geostationary, by the triple barreled ULA Delta 4 Heavy rocket – currently the largest and most powerful rocket in the world.

It is manufactured and launched by ULA as part of the Delta rocket family. This includes the Delta 4 Medium which can launch with strap on solid rocket boosters. ULA also builds and launches the Atlas V rocket family.

Delta 4 Heavy cutaway diagram. Credit: ULA
Delta 4 Heavy cutaway diagram. Credit: ULA

To date nine NRO payloads have flown on Delta 4 rockets. NROL-37 will be the 32nd Delta IV mission since the vehicle’s inaugural launch.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Precisely because this is a launch of the mighty triple barreled Delta 4 Heavy, the view all around is sure to be spectacular and is highly recommended – in case you are in the Florida Space Coast area or surrounding regions.

One thing for sure is the top secret payload is huge and weighty since it requires the heaviest of the heavies to blast off.

Watch this ULA video showing the mating of the classified reconnaissance payload to the rocket.

Video Caption: The NROL-37 payload is mated to a Delta IV Heavy rocket inside the Mobile Service Tower or MST at Cape Canaveral Air Force Station’s Space Launch Complex-37. Credit: ULA

Another unclassified aspect we know about this flight is that the weather forecast is rather iffy.

The official Air Forces prognosis calls for only a 40% chance of favorable weather conditions.

The primary concerns are for Anvil Clouds, Cumulus Clouds and Lightning.

In case of a scrub for any reason related to technical or weather issues, the next launch opportunity is 48 hours later on Saturday. June 11.

The weather odds rise significantly to an 80% chance of favorable weather conditions on June 11.

Somewhat surprisingly ULA has just announced the launch time – which is planned for 1:59 p.m. EDT (1759 GMT).

And you can even watch a ULA broadcast which starts 20 minutes prior to the given launch time at 1:39 p.m. EDT.

Webcast link: http://bit.ly/div_nrol37

The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m.  EDT.  Broadcast starts at 1:39 p.m. EDT  Watch the live webcast:  http://bit.ly/div_nrol37
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m. EDT. Broadcast starts at 1:39 p.m. EDT Watch the live webcast: http://bit.ly/div_nrol37

Since this is a national security launch, the exact launch time is actually classified and could easily occur later than 1:59 p.m.

The launch period extends until 6:30 p.m. EDT (2230 GMT). The actual launch window is also classified and somewhere within the launch period.

Seeing a Delta 4 Heavy soar to space is a rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 8/9: “SpaceX, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Genesis of ULA’s New Vulcan Rocket Borne of Fierce Commercial and Political Pressures: Interview

Fierce commercial and international political pressures have forced the rapid development of the new Vulcan launcher family recently announced by rocket maker United Launch Alliance (ULA). Vulcan’s “genesis” and development was borne of multiple unrelenting forces on ULA and is now absolutely essential and critical for its “transformation and survival in a competitive environment” moving forward, according to Dr. George Sowers, ULA Vice President for Advanced Concepts and Technology, in an exclusive interview with Universe Today.

“To be successful and survive ULA needs to transform to be more of a competitive company in a competitive environment,” Dr. Sowers told Universe Today in a wide ranging interview regarding the rationale and goals of the Vulcan rocket.

Vulcan is ULA’s next generation rocket to space and slated for an inaugural liftoff in 2019.

Faced with the combined challenges of a completely changed business and political environment emanating powerfully from new space upstart SpaceX offering significantly reduced launch costs, and continuing uncertainty over the future supply of the Russian-made RD-180 workhorse rocket engines that power ULA’s venerable Atlas V rocket, after Russia’s annexation of Crimea, Sowers and ULA’s new CEO Tory Bruno were tasked with rapidly resolving these twin threats to the firms future well being – which also significantly impacts directly on America’s national security.

“Our current plan is to have the new Vulcan rocket flying by 2019,” Sowers stated.

Whereas ULA enjoyed a virtual US launch monopoly for many years, those days are now history thanks to SpaceX.

Vulcan - United Launch Alliance (ULA)’s next generation rocket is set to make its debut flight in 2019.  Credit: ULA
Vulcan – United Launch Alliance (ULA) next generation rocket is set to make its debut flight in 2019. Credit: ULA

The Vulcan launcher was created in response to the commercial SpaceX Falcon 9 rocket, and it will combine the best features of ULA’s existing unmanned Atlas V and Delta IV booster product lines as well as being revamped with new and innovative American-made first stage engines that will eventually be reusable.

It will meet and exceed the capabilities of ULA’s current stable of launchers, including the Delta IV Heavy which recently launched NASA’s maiden Orion crew module on an unmanned test flight in Dec. 2014.

“We at ULA were faced with how do we take our existing products and transform them into a single fleet that enables us to do the entire range of missions on just one family of rockets.”

“So that was really the genesis of what we now call the “Vulcan” rocket. So this single family will be able to do everything [from medium to heavy lift],” Sowers told me.

Another requirement is that Vulcan’s manufacturing methodology be extremely efficient, slashing costs to make it cost competitive with the Space X Falcon 9. Sowers said the launcher would sell “for less than $100 million” at the base level.

“Vulcan will be the highest-performing, most cost-efficient rocket on the market. It will open up new opportunities for the nation’s use of space,” says ULA CEO Tory Bruno.

In its initial configuration Vulcan’s first stage will be powered by a revolutionary new class of cost effective and wholly domestic engines dubbed the BE-4, produced by Blue Origin.

It can be augmented by up to six solid rocket boosters, to propel high value payloads on missions ranging from low Earth orbit to interplanetary destinations for NASA, private industry and vital US national security interests.

Vulcan will also blast off with astronaut crews aboard the Boeing CST-100 space taxi bound for the International Space Station (ISS) in the early 2020s.

Cutaway diagram of ULA’s new Vulcan rocket powered by BE-4 first stage engines, six solid rocket motors and a 5 meter diameter payload fairing. Credit ULA
Cutaway diagram of ULA’s new Vulcan rocket powered by BE-4 first stage engines, six solid rocket motors and a 5 meter diameter payload fairing. Credit ULA

Further upgrades including a powerful new upper stage called ACES, will be phased in down the road as launches of ULA’s existing rocket families wind down, to alleviate any schedule slips.

“Because rocket design is hard and the rocket business is tough we are planning an overlap period between our existing rockets and the new Vulcan rocket,” Sowers explained. “That will account for any delays in development and other issues in the transition process to the new rocket.”

ULA was formed in 2006 as a 50:50 joint venture between Lockheed Martin and Boeing that combined their existing expendable rocket fleet families – the Atlas V and Delta IV – under one roof.

Development of the two Evolved Expendable Launch Vehicles (EELV’s) was originally funded by the U.S. Air Force to provide two independent and complimentary launch capabilities thereby offering assured access to space for America’s most critical military reconnaissance satellites gathering intelligence for the National Reconnaissance Office (NRO), DOD and the most senior US military and government leaders.

Since 2006, SpaceX (founded by billionaire Elon Musk) has emerged on the space scene as a potent rival offering significantly lower cost launches compared to ULA and other launch providers in the US and overseas – and captured a significant and growing share of the international launch market for its American-made Falcon rocket family.

And last year to top that all off, Russia’s deputy prime minister, Dmitry Rogozin, who is in charge of space and defense industries, threatened to “ban Washington from using Russian-made [RD-180] rocket engines [used in the Atlas V rocket], which the US has used to deliver its military satellites into orbit.”

A United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Thursday, March 12, 2015, Florida.  Credit: Ken Kremer- kenkremer.com
ULA Atlas V rocket first stage is powered by Russian-made RD-180 engines.
United Launch Alliance Atlas V rocket with NASA’s Magnetospheric Multiscale (MMS) spacecraft onboard launches from the Cape Canaveral Air Force Station Space Launch Complex 41, March 12, 2015, Florida. Credit: Ken Kremer- kenkremer.com

“ULA was formed eight years ago as a government regulated monopoly focused on US government launches. Now eight years later the environment is changing,” Sowers told me.

How did ULA respond to the commercial and political challenges and transform?

“So there are a lot of things we had to do structurally to make that transformation. One of the key ones is that when ULA was formed, the government was very concerned about having assured access to space for national security launches,” Sowers explained.

“In their mind that meant having two independent rocket systems that could essentially do the same jobs. So we have both the Atlas V and the Delta IV. But in a competitive environment you can well imagine that that requirement drives your costs significantly higher than they need to be.”

ULA actually offered three rocket families after the merger, when only one was really needed.

“So our first conclusion on how to be competitive was how do we go from supporting three rocket families – including the Delta II – off of 6 launch pads, to our ultimate aim of getting down to just 1 rocket family of off just 2 pads – one on each coast. So, that is the most cost effective structure that we could come up with and the most competitive.”

Developing a new first stage engine not subject to international tensions was another primary impetus.

“The other big objective that was always in our minds, but that became much higher priority in April 2014 when Russia decided to annex Crimea, is that the RD-180 rocket engine that became our workhorse on Atlas, now became politically untenable.”

“So the other main objective of Vulcan is to re-engine [the first stage of] our fleet with an American engine, the Blue Origin BE-4.”

The RD-180’s will be replaced with a pair of BE-4 engines from Blue Origin, the highly secretive aerospace firm founded by Jeff Bezos, billionaire founder of Amazon. The revolutionary BE-4 engines are fueled by liquefied natural gas and liquid oxygen and will produce about 1.1 million pounds of thrust vs. about 900,000 pounds of thrust for the RD-180, a significant enhancement in thrust.

“The Blue Origin BE-4 is the primary engine [for Vulcan]. ULA is co-investing with Blue Origin in that engine.”

Although the BE-4 is ULA’s primary choice to replace the RD-180, ULA is also investing in development of a backup engine, the AR-1 from Aerojet-Rocketdyne, in case the BE-4 faces unexpected delays.

“As I said, rocket development is hard and risky. So we have a backup plan. That is with Aerojet-Rocketdyne and their AR-1. And we are investing in that engine as well.”

More on the Vulcan, BE-4, reusability and more upcoming in part 2.

ULA concept for SMART reuse capability for the new Vulcan rocket involves eventual midair recovery and reuse of the first stage engines.  Credit: ULA
ULA concept for SMART reuse capability for the new Vulcan rocket involves eventual midair recovery and reuse of the first stage engines. Credit: ULA

Meanwhile, the next commercial SpaceX Falcon 9 is due to blastoff this Sunday, June 28, on the Dragon CRS-7 resupply mission to the ISS.

Watch for my onsite reports from the Kennedy Space Center and Cape Canaveral Air Force Station in Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about ULA, SpaceX, Europa, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 25-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

X-37B Air Force Space Plane Launches on 4th Mystery Military Mission and Solar Sailing Test

Blastoff of the X-37B spaceplane on United Launch Alliance (ULA) Atlas V rocket with the OTV-4 AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: Ken Kremer/kenkremer.com
Story updated with additional details and photos[/caption]

The X-37B, a reusable Air Force space plane launched today, May 20, from Cape Canaveral, Florida, on its fourth mission steeped in mystery as to its true goals for the U.S . military and was accompanied by ten tiny cubesat experiments for NASA and the NRO, including a solar sailing demonstration test for The Planetary Society.

The military space plan successfully blasted off for low Earth orbit atop a 20 story United Launch Alliance (ULA) Atlas V rocket on the clandestine Air Force Space Command 5 (AFSPC-5) satellite mission for the U.S. Air Force Rapid Capabilities Office at 11:05 a.m. EDT (1505 GMT) today, May 20, from Space Launch Complex-41 on Cape Canaveral Air Force Station, Florida.

The weather cooperated for a spectacular liftoff from the Florida space coast, which was webcast live by ULA until five minutes after launch when it went into a communications blackout shortly after announcing the successful ignition of the Centaur upper stage.

The exact launch time was classified until it was released by the Department of Defense this morning. Early this morning the four hour launch window was narrowed down to two small windows of opportunity.

USAF X-37B orbital test vehicle launches atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle launches atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

Among the experiments for the flight are 10 CubeSats housed in the Aft Bulkhead Carrier (ABC) located below the Centaur upper stage. Together they are part of the National Reconnaissance Office’s (NRO’s) Ultra Lightweight Technology and Research Auxiliary Satellite (ULTRASat). The 10 CubeSats in ULTRASat are managed by the NRO and NASA. They are contained in eight P-Pods from which they will be deployed in the coming days.

Also aboard the X-37B is a NASA materials science experiment called METIS and an advanced Hall thruster experiment. The Hall thruster is a type of electric propulsion device that produces thrust by ionizing and accelerating a noble gas, usually xenon.

Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft.

They are sponsored by the National Reconnaissance Office (NRO) and NASA and were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and The Planetary Society.

LightSail marks the first controlled, Earth orbit solar sail flight according to the non-profit Planetary Society. Photons from the sun should push on the solar sails.

“The purpose of this LightSail demonstration test is to verify telemetry, return photos return and to test the deployment of the solar sails,” said Bill Nye, the Science Guy), and President of The Planetary Society, during the X-37B launch webcast.

“LightSail is comprised of three CubeSats that measure about 30 cm by 10 cm.”

“It’s smaller than a shoebox, everybody! And the sail that will come out of it is super shiny mylar. We’re very hopeful that the thing will deploy properly, the sunlight will hit it and we’ll get a push.”

United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek
United Launch Alliance Atlas V launch of USAF X-37B orbital test vehicle on May 20, 2015. Credit: Julian Leek

The Boeing-built X-37B is an unmanned reusable mini shuttle, also known as the Orbital Test Vehicle (OTV) and is flying on the OTV-4 mission. It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

“ULA is honored to launch this unique spacecraft for the U.S Air Force. Congratulations to the Air Force and all of our mission partners on today’s successful launch! The seamless integration between the Air Force, Boeing, and the entire mission team culminated in today’s successful launch of the AFSPC-5 mission” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

The two stage Atlas V stands 206 feet tall and weighs 757,000 pounds.

The X-37B was carried to orbit by the Atlas V in its 501 configuration which includes a 5.4-meter-diameter payload fairing and no solid rocket motors. The Atlas first stage booster for this mission was powered by the RD AMROSS RD-180 engine generating some 850,000 pounds of thrust and fired for approximately the first four and a half minutes of flight. The Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The X-37B space plane was to separate from the Centaur about 19 minutes after liftoff. The Centaur continued firing separately with the CubeSat deployment, including the Planetary Society’s LightSail test demoonstration, into a different orbit later.

Overall this was ULA’s sixth launch of the 501 configuration the 54th mission to launch on an Atlas V rocket. This was also ULA’s fifth launch in 2015 and the 96th successful launch since the company was formed in December 2006.

The OTV is somewhat like a miniature version of NASA’s space shuttles.

Boeing has built two OTV vehicles. But it is not known which of the two vehicles was launched today.

Altogether the two X-37B vehicles have spent a cumulative total of 1367 days in space during the first three OTV missions and successfully checked out the vehicles reusable flight, reentry and landing technologies.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane was built by Boeing and is about a quarter the size of a NASA space shuttle. It was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

USAF X-37B orbital test vehicle poised for launch atop  United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni
USAF X-37B orbital test vehicle poised for launch atop United Launch Alliance Atlas V rocket on May 20, 2015 on OTV-4 mission. Credit: Alex Polimeni

All three OTV missions to date have launched from Cape Canaveral, Florida and landed at Vandenberg Air Force Base, California. Future missions could potentially land at the shuttle landing facility at the Kennedy Space Center, Florida.

The first OTV mission launched on April 22, 2010, and concluded on Dec. 3, 2010, after 224 days in orbit.

The following flights were progressively longer in duration. The second OTV mission began March 5, 2011, and concluded on June 16, 2012, after 468 days on orbit. The third OTV mission launched on Dec. 11, 2012 and landed on Oct. 17, 2014 after 674 days in orbit.

The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m). The payload bay measures 7 ft × 4 ft (2.1 m × 1.2 m). The space plane is powered by Gallium Arsenide Solar Cells with Lithium-Ion batteries.

Among the primary mission goals of the first three flights were check outs of the vehicles capabilities and reentry systems and testing the ability to send experiments to space and return them safely. OTV-4 will shift somewhat more to conducting research.

“We are excited about our fourth X-37B mission,” Randy Walden, director of the USAF’s Rapid Capabilities Office, said in a statement. “With the demonstrated success of the first three missions, we’re able to shift our focus from initial checkouts of the vehicle to testing of experimental payloads.”

US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch.  Credit: Ken Kremer/kenkremer.com
US Air Force X-37B OTV-4 mini space shuttle is encapsulated in 5 meter payload fairing and bolted atop an Atlas 5 rocket at Pad 41 at Cape Canaveral Air Force Station, Florida prior to planned 20 May 2015 launch. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
Launch of the X-37B spaceplane on a United Launch Alliance (ULA) Atlas V rocket with the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force at 11:05 a.m. EDT today, Wednesday, May 20, 2015 from Space Launch Complex-41. Credit: ULA

Busy Year of 13 Launches by ULA in 2015 Begins with Blastoffs for the Navy and NASA

A busy year of 13 space launches by rocket provider United Launch Alliance (ULA) in 2015 begins with a pair of blastoffs for the US Navy and NASA tonight and next week, emanating from both the US East and West Coasts.

The hefty manifest of 13 liftoffs in 2015 comes hot on the heels of ULA’s banner year in 2014 whereby they completed every one of the firm’s 14 planned launches in 2014 with a 100% success rate.

“What ULA has accomplished in 2014, in support of our customers’ missions, is nothing short of remarkable,” said ULA CEO Tory Bruno.

“When you think about every detail – all of the science, all of the planning, all of the resources – that goes into a single launch, it is hard to believe that we successfully did it at a rate of about once a month, sometimes twice.”

ULA’s stable of launchers includes the Delta II, Delta IV and the Atlas V. They are in direct competition with the Falcon 9 rocket from SpaceX founded by billionaire Elon Musk.

And ULA’s 2015 launch calendar begins tonight with a milestone launch for the US Navy that also marks the 200th launch overall of the venerable Atlas-Centaur rocket that has a renowned history dating back some 52 years to 1962 with multiple variations.

And tonight’s blastoff of the Multi-User Objective System (MUOS-3) satellite for the US Navy involves using the most powerful variant of the rocket, known as the Atlas V 551.

Liftoff of MUOS-3 is set for 7:43 p.m. EDT from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. The launch window extends for 44 minutes and the weather outlook is very favorable. It will be carried live on a ULA webcast.

MUOS-3 Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Jan. 20, 2015. Credit: ULA
MUOS-3 Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Jan. 20, 2015. Credit: ULA

The second ULA launch of 2015 comes just over 1 week later on January 29, lofting NASA’s SMAP Earth observation satellite on a Delta II rocket from Vandenberg Air Force Base in California.

MUOS is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move, according to ULA.

This is the third satellite in the MUOS series and will provide military users 10 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

ULA’s second launch in 2015 thunders aloft from the US West Coast with NASA’s Soil Moisture Active Passive mission (SMAP). It is the first US Earth-observing satellite designed to collect global observations of surface soil moisture.

SMAP will blastoff from Space Launch Complex 2 at Vandenberg AFB at 9:20 a.m. EST (6:20 a.m. PST) on ULA’s Delta II rocket.

NASA's Soil Moisture Active Passive mission (SMAP) will lift off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:20 a.m. EST (6:20 a.m. PST) on a United Launch Alliance Delta II rocket.   Credit:  NASA
NASA’s Soil Moisture Active Passive mission (SMAP) will lift off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:20 a.m. EST (6:20 a.m. PST) on a United Launch Alliance Delta II rocket. Credit: NASA

“It goes without saying: ULA had a banner year,” Bruno said. “As we look ahead to 2015, we could not be more honored to continue supporting our nation in one of the most technologically complex, critical American needs: affordable, reliable access to space.”

ULA began operations in December 2006 with the merger of the expendable launch vehicle operations of Boeing and Lockheed Martin.

ULA’s Delta IV Heavy is currently the world’s most powerful rocket and flawlessly launched NASA’s Orion capsule on Dec. 5, 2014 on its highly successful uncrewed maiden test flight on the EFT-1 mission.

Overall, the 14-mission launch manifest in 2014 included 9 national security space missions, 3 space exploration missions, including NASA’s Orion EFT-1 and 2 commercial missions.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Beyond MUOS-3 and SMAP, the launch manifest on tap for 2015 also includes additional NASA science satellites, an ISS commercial cargo resupply mission as well as more GPS satellites for military and civilian uses and top secret national security launches using the Delta II, Delta IV and the Atlas V boosters.

NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

In March, June and September the GPS 2F-9, 2F-10 and 2F-11 navigation satellites will launch on Delta IV and Atlas V rockets from Cape Canaveral.

Two top secret NRO satellites are set to launch on a Delta IV and Atlas in April and August from Vandenberg.

An Air Force Orbital Test Vehicle (OTV) space plane may launch as soon as May atop an Atlas V from Cape Canaveral.

The MUOS-4 liftoff is set for August on another Atlas from the Cape.

The Morelos 3 communications satellite for the Mexican Ministry of Communications and Transportation is due to launch in October from the Cape.

In November, the Atlas V will be pressed into service for the first time to launch the Orbital Sciences Cygnus Orb-4 cargo vehicle to the International Space Station (ISS) as a replacement rocket for the Orbital Sciences Antares rocket which is grounded following its catastrophic Oct. 28 explosion on the Orb-3 mission from NASA Wallops.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9, 2014. The next Cygnus Orb-4 will launch for the first time atop an Atlas V in Nov. 2015. Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

The Orb-4 launch also marks ULA’s first launch to the ISS. It may be followed by another Cygnus launch atop an Atlas V in 2016 as Orbital works to bring the Antares back into service.

Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

In another major milestone down the road, the Atlas V is being man rated since it was chosen to launch the Boeing CST-100 space taxi which NASA selected as one of two new commercial crew vehicles to launch US astronauts to the ISS as soon as 2017.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Atlas V Blasts Off with Clandestine US Spy Satellite Amidst Russian Engine Controversy

An Atlas V rocket thundered to space on Thursday, May 22, carrying a clandestine surveillance satellite for the US National Reconnaissance Office (NRO) amidst a swirling controversy regarding the boosters long term viability due to its dependence on the continued assured supply of Russian made engines.

The United Launch Alliance (ULA) Atlas V rocket soared to space with a super secret payload designated NROL-33 in support of US national defense from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida at 9:09 a.m. EDT.

The launch was carried live on a ULA webcast but was deliberately cutoff after five minutes as part of a preannounced news blackout on the top secret mission.

Nothing is known about the nature of NROL-33 or its covert intelligence gathering mission.

United Launch Alliance (ULA) Atlas V rocket carrying NROL-33 spy satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on Cape Canaveral, Florida, on May 22 at 9:09 a.m. EDT.  Credit: Alan Walters/AmericaSpace
United Launch Alliance (ULA) Atlas V rocket carrying NROL-33 spy satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on Cape Canaveral, Florida, on May 22 at 9:09 a.m. EDT. Credit: Alan Walters/AmericaSpace

The liftoff caps an impressively successful series of four high priority and high value launches by ULA that were accomplished at a rapid pace of barely seven weeks time – speaking volumes about their reliability and diligence.

And the Atlas V also marked the second successful ULA rocket launch in less than one week. It follows on the heels of last weeks blastoff of a ULA Delta IV rocket with an advanced GPS satellite for the US Air Force that benefits hundreds of millions of ordinary users worldwide.

In April, another clandestine surveillance satellite dubbed NROL-67 was also launched on an Atlas V for the US National Reconnaissance Office (NRO).

One can conclude that NROL-67 was certainly a larger and heavier payload compared to NROL-33 since the most powerful version of the Atlas V launcher was used with five strap on solid rocket motors vs. no solids for Thursday’s liftoff. NROL-67 also was housed inside the larger five-meter diameter payload fairing.

United Launch Alliance (ULA) Atlas V rocket carrying NROL-33 spy satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on Cape Canaveral, Florida, on May 22 at 9:09 a.m. EDT.  Credit: John Studwell/AmericaSpace
United Launch Alliance (ULA) Atlas V rocket carrying NROL-33 spy satellite for the National Reconnaissance Office (NRO) lifts off from Space Launch Complex-41 on Cape Canaveral, Florida, on May 22 at 9:09 a.m. EDT. Credit: John Studwell/AmericaSpace

But the future of the venerable Atlas V – and therefore even US National Security launches like those of NROL-33 and NROL-67 – is cloudy because each first stage core is powered by a pair of Russian made RD-180 rocket engines whose future supply was cast in doubt by recent statements from Russia’s deputy prime minister, Dmitry Rogozin, lawsuits by SpaceX CEO Elon Musk and pointed questions from Congress.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” Rogozin said at a media briefing held on May 13.

An almost cold war like crisis in US-Russian relations began with Russia’s actions in Ukraine and the annexation of the Crimea region earlier this year.

The ongoing Ukraine crisis has resulted in continuing deadly confrontations and the institution of economic sanctions against Russia and several Russian officials, including specifically Rogozin, by the US and Western European nations.

“We proceed from the fact that without guarantees that our engines are used for non-military spacecraft launches only, we won’t be able to supply them to the US,” Rogozin said.

The dual chamber, dual nozzle RD-180 engines are manufactured in Russia by NPO Energomash and has performed flawlessly to date.

Rogozin’s statements could effectively block their export to the US, thus calling into question the reliability of their continued supply for the Atlas V first stage and the ability of the US to launch critical national security payloads.

NASA is also a hefty user of the Atlas V for many of the agency’s science and communication satellites like the Curiosity Mars rover, MAVEN Mars orbiter, MMS, Juno Jupiter orbiter and TDRS.

The Atlas V is also planned as the launcher for two of the three companies – Boeing and Sierra Nevada – vying for the next round of commercial crew space taxi contracts aimed at launching US astronauts to the ISS. The commercial crew contracts will be awarded by NASA later this year.

Despite Rogozin’s threatening statements, the RD-180 export situation is not completely clear and ULA has some engines on hand to last a few years.

“ULA has a two year supply of RD-180 engines already stockpiled in the U.S.,” ULA spokesperson Jessica Rye told me.

“We currently have 16 engines in the U.S.” said Rye.

Five more RD-180 engines are due for delivery later this year.

ULA also issued this recent statement in response to Rogozins’ comments.

“ULA and our NPO Energomash supplier in Russia are not aware of any restrictions.”

Certain national security payloads can also be shifted from the Atlas V to the Delta IV.

“ULA and our Department of Defense customers have always prepared contingency plans in the event of a supply disruption. ULA has two launch vehicles that can support all of customers’ needs. We also maintain a two-year inventory of engines to enable a smooth transition to our other rocket, Delta, which has all U.S.-produced rocket engines.”

Besides Rogozin’s listing on the US economic sanctions target list, he was also named by SpaceX CEO Elon Musk in his firms recent attempts to legally block the importation of the RD-180 engines by ULA for the Atlas V as a violation of the US economic sanctions.

Federal Judge Susan Braden initially imposed a temporary injunction blocking the RD-180 imports on April 30. She rescinded that order on May 8, after receiving written communications clarifications from the US Justice and Commerce departments that the engine import did not violate the US government imposed sanctions.

Here’s my earlier articles about Rogozin’s statements, Musk’s suit and more about the effects of economic sanctions imposed by the US and Western nations in response to Russia’s actions in Ukraine and the annexation of Crimea; here, here, here and here.

ULA remains upbeat.

“Congratulations to all of our mission partners on today’s successful launch of the NROL-33 mission! The ULA team is honored to deliver another critical national security asset to orbit together with the NRO Office of Space Launch and the Air Force,” said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

“Today’s launch occurred six days after last week’s GPS IIF-6 launch – the second time this year that this team has launched back-to-back missions within a week. Successfully launching at this tempo is a testament to the team’s focus on mission success, one-launch-at-a-time, and continuous improvement of our launch processes.”

Watch for Ken’s articles about the ongoing Ukraine crisis with uncertain and potentially dire consequences for US National Security and NASA.

Stay tuned here for Ken’s continuing ULA, Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014.  Credit: Ken Kremer – kenkremer.com
United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014. Credit: Ken Kremer – kenkremer.com

Moscow Delivers Double Whammy to US Space Efforts – Bans Rocket Engines for Military Use, Won’t Prolong ISS Work

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014.
Credit: Ken Kremer – kenkremer.com
Story updated[/caption]

Moscow delivered a double whammy of bad news to a broad range of US space efforts today by banning the use of Russian made rocket engines for US military national security launches and by declining to prolong cooperation on the International Space Station (ISS) – says Russia’s deputy prime minister, Dmitry Rogozin, who is in charge of space and defense industries.

Rogozin was quoted in a story prominently featured today, May 13, on the English language website of Russia Today, a Russian TV news and cultural network.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” said Rogozin according to the Russia Today report.

Virtually every aspect of the manned and unmanned US space program – including NASA, other government agencies, private aerospace company’s and crucial US national security payloads – are highly dependent on Russian & Ukrainian rocketry and are clearly at risk amidst the current Ukrainian crisis as tensions continue to escalate with deadly new clashes reported today in Ukraine – with global repercussions.

The engines at issue are the Russian made RD-180 engines – which power the first stage of the venerable Atlas V rocket built by United Launch Alliance (ULA) and are used to launch a wide array of US government satellites including top secret US military spy satellites for the US National Reconnaissance Office, like NROL-67, as well as science satellites for NASA like the Curiosity Mars rover and MAVEN Mars orbiter.

The dual nozzle RD-180 engines are manufactured in Russia by NPO Energomash. Rogozin’s statement effectively blocks their export to the US.

Russian Deputy Prime Minister Dmitry Rogozin. Credit: RIA Novosti
Russian Deputy Prime Minister Dmitry Rogozin. Credit: RIA Novosti

“We proceed from the fact that without guarantees that our engines are used for non-military spacecraft launches only, we won’t be able to supply them to the US,” Rogozin said.

So although the launch of NASA science missions might preliminarily appear to be exempt, they could still be at serious risk based on a qualifier from Rogozin, pertaining to RD-180 engines already delivered.

“If such guarantees aren’t provided the Russian side will also be unable to perform routine maintenance for the engines, which have been previously delivered to the US, he added.

A ULA spokesperson told me that the company has a two year supply of RD-180 engines already stockpiled in the US.

Rogozin’s statements today are clearly in retaliation to stiffened economic sanctions imposed by the US and Western nations in response to Russia’s actions in the ongoing crisis in Ukraine and the annexation of Crimea; as I reported earlier here, here and here.

Therefore, US National Security spy satellite and NASA science launches are left lingering with uncertainty and potential disarray.

Rogozin is specifically named on the US economic sanctions target list.

He was also named by SpaceX CEO Elon Musk in his firms attempt to block the importation of the RD-180 engines by ULA for the Atlas V as a violation of US sanctions.

Federal Judge Susan Braden initially imposed a temporary injunction blocking the RD-180 imports on April 30. She rescinded that order last Thursday, May 8, after receiving written communications clarifications from the US Justice and Commerce departments that the engine import did not violate the US government imposed sanctions.

Rogozin went on to say that “Moscow also isn’t planning to agree to the US offer of prolonging operation of the International Space Station (ISS) [to 2024].

“We currently project that we’ll require the ISS until 2020,” he said. “We need to understand how much profit we’re making by using the station, calculate all the expenses and depending on the results decide what to do next.”

“A completely new concept for further space exploration is currently being developed by the relevant Russian agencies”.

NASA announced early this year the agency’s intention to extend ISS operations to at least 2024, and is seeking agreement from all the ISS partners including Russia.

Since the shutdown of the Space Shuttle program in 2011 before a replacement crew vehicle was available, American astronauts are now 100% dependent on the Russian Soyuz capsule for rides to the ISS and back.

Congress has also repeatedly slashed NASA’s commercial crew program budget, forcing at least an 18 month delay in its start up and thus continued reliance on the Soyuz for years to come at over $70 million per seat.

NASA thus has NO immediate alternatives to Russia’s Soyuz – period.

The Atlas V is also planned as the launcher for two of the three companies vying for the next round of commercial crew contracts aimed at launching US astronauts to the ISS. The commercial crew contracts will be awarded by NASA later this year.

In a previous statement regarding the US sanctions against Russia, Rogozin said that sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”

Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida.  Credit: Ken Kremer
NASA’s Curiosity rover launches to Mars atop Atlas V rocket on Nov. 26, 2011 from Cape Canaveral, Florida. Atlas V 1st stage is powered by Russian made RD-180 engines.
Credit: Ken Kremer – kenkremer.com

Watch for Ken’s articles as the Ukraine crisis escalates with uncertain and potentially dire consequences for US National Security and NASA.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

………

Ken’s upcoming presentation: Mercy College, NY, May 19: “Curiosity and the Search for Life on Mars” and “NASA’s Future Crewed Spaceships.”

The International Space Station (ISS) in low Earth orbit.  Credit: NASA
The International Space Station (ISS) in low Earth orbit.
The sole way for every American and station partner astronaut to fly to space and the ISS is aboard the Russian Soyuz manned capsule since the retirement of NASA’s Space Shuttles in 2011. There are currently NO alternatives to Russia’s Soyuz. Credit: NASA