IceCube Senses Neutrinos Streaming From an Active Galaxy 47 Million Light-Years Away

This is a Hubble Space Telescope image of the Messier 77 spiral galaxy. Scientists working with the IceCube Neutrino Observatory detected neutrinos emanating from the galaxy's core. Image Credit: By NASA, ESA & A. van der Hoeven -, Public Domain,

Researchers using the IceCube Neutrino Observatory have detected neutrinos emanating from the energetic core of an active galaxy millions of light-years away. Neutrinos are difficult to detect, and finding them originating from the galaxy is a significant development. What does the discovery mean?

Continue reading “IceCube Senses Neutrinos Streaming From an Active Galaxy 47 Million Light-Years Away”

How Spiral Galaxies Get Their Shape

Magnetic fields in NGC 1086, or M77, are shown as streamlines over a visible light and X-ray composite image of the galaxy from the Hubble Space Telescope, the Nuclear Spectroscopic Array, and the Sloan Digital Sky Survey. The magnetic fields align along the entire length of the massive spiral arms — 24,000 light years across (0.8 kiloparsecs) — implying that the gravitational forces that created the galaxy’s shape are also compressing the its magnetic field. This supports the leading theory of how the spiral arms are forced into their iconic shape known as “density wave theory.” SOFIA studied the galaxy using far-infrared light (89 microns) to reveal facets of its magnetic fields that previous observations using visible and radio telescopes could not detect. Credits: NASA/SOFIA; NASA/JPL-Caltech/Roma Tre Univ.

Spiral galaxies are an iconic form. They’re used in product logos and all sorts of other places. We even live in one. And though it may seem kind of obvious how they get their shape, by rotating, that’s not the case.

Continue reading “How Spiral Galaxies Get Their Shape”