Nebula Pictures

Here are some cool nebula pictures taken by the Hubble Space Telescope.

[/caption]

This is a cool picture of the Omega Nebula, which is also known as the Swan Nebula, or M 17. It’s located in the constellation Sagittarius, located about 5,000 light-years from Earth.


Cat's Eye Nebula
Cat's Eye Nebula

This is picture of the Cat’s Eye Nebula, a planetary nebula in the constellation Draco. This used to be a star similar to our Sun, but then it died and became a white dwarf, puffing off its outer layers into space.


Carina Nebula
Carina Nebula

This is the Carina Nebula, a star forming nebula in the Carina Constellation. It holds Eta Carinae, one of the most massive stars ever discovered, which is expected to detonate as a supernova in the next few hundred thousand years.


Bubble Nebula. Image credit: Hubble
Bubble Nebula. Image credit: Hubble

This is the Bubble Nebula, also known as NGC 7635. This nebula glows because of a hot central star that’s providing radiation and exciting the nebula atoms.


Full view of the Trifid Nebula.  Credit: ESO
Full view of the Trifid Nebula. Credit: ESO

This is a picture of the Trifid Nebula taken by the European Southern Observatory. This nebula was cataloged M 20 by Charles Messier as part of his famous catalog. It’s called the “Trifid Nebula”, because it appears to be broken up into three parts.

We have written many stories about nebulae for Universe Today. Here’s an article with more details about the Trifid Nebula, and here’s an article about planetary nebulae found around heavy stars.

If you want more cool pictures of nebula, you should check out the source. Go to the Hubble Space Telescope page on nebulae.

We have recorded an entire episode of Astronomy Cast that’s just about nebulae. Listen here, Episode 111: Nebulae.

What Is The Crab Nebula?

The Crab Nebula, or M1 (the first object in Messier’s famous catalog), is a supernova remnant and pulsar wind nebula. The name – Crab Nebula – is due to the Earl of Rosse, who thought it looked like a crab; it’s not in the constellation Cancer (the Crab), rather Taurus (the Bull).

The supernova which gave rise to the Crab Nebula was seen widely here on Earth in 1054 (and so it’s called SN 1054 by astronomers); it is perhaps the most famous of the historical supernovae. It is certainly one of the brightest (estimated to be –7 at peak), partly because it is so close (only 6,300 light-years away), and partly because it’s not hidden by dust clouds. The expansion of the nebula – as in seen-to-be-getting-bigger, rather than the-gas-is-moving-very-fast – was first confirmed in 1930.

As it was a core collapse supernova (a massive star which ran out of fuel), it left behind a neutron star; by chance, we are in line with its ‘lighthouse beam’, so we see it as a pulsar (all young neutron stars are pulsars, but not all of them have beams which point to us in one part of the cycle). It’s a pretty fast pulsar; the neutron star rotates once every 33 milliseconds. Because it’s so young and so close, the Crab Nebula pulsar was the first to be detected in the visual waveband, and also in x-rays and gamma rays. Being the source of the tremendous output of energy, from both the pulsar wind nebula and the pulsar itself, and as energy is conserved, the pulsar is slowing down, at a rate of 15 microseconds per year.

The inner part of the Crab Nebula, the pulsar wind nebula, contains lots of really hot (‘relativistic’) electrons spiraling around magnetic fields; this creates the eerie blue glow … synchrotron radiation. This makes the Crab Nebula one of the brightest objects in the x-ray and gamma ray region of the electromagnetic spectrum, and as it is a relatively steady source (unlike most high energy objects) it has given its name to a new astronomical unit, the Crab. For example, a new x-ray source may be 2 mCrab (milli-Crab), meaning 0.002 times as strong an x-ray source as the Crab Nebula.

This SEDS page has a lot more information on the Crab Nebula, both historical and contemporary.

Such an intensively studied object, no wonder there are lots of Universe Today stories on it; for example Nearly a Thousand Years After the Death of a Star, Giant Hubble Mosaic of the Crab Nebula, The Peculiar Pulsar in the Crab Nebula, Astronomers Locate High Energy Emissions from the Crab Nebula, and Evidence of Supernovae Found in Ice Core Sample.

Astronomy Cast’s Neutron Stars and Their Exotic Cousins has more on pulsars, and Nebulae more on nebulae.

Sources: Caltech Astronomy, SEDS, Stanford University SLAC

New Images Reveal Details of the Trifid Nebula

[/caption]
You’ll have no trouble at all enjoying these stunning new images of the Trifid Nebula. This massive star factory is so named for the dark dust bands that trisect its glowing heart, and is a rare combination of three nebula types: reflection, emission and dark nebulae. With these new images from ESO’s La Silla Observatory in northern Chile, astronomers are learning more about the early stages of stellar life, from gestation to first light.

Smouldering several thousand light-years away in the constellation of Sagittarius (the Archer), the Trifid Nebula is a favorite target for amateur and professional astronomers alike. These new images shows the heat and “winds” of newly ignited, volatile stars that stir the Trifid’s gas and dust-filled cauldron; in time, the dark tendrils of matter strewn throughout the area will themselves collapse and form new stars.

Full view of the Trifid Nebula.  Credit: ESO
Full view of the Trifid Nebula. Credit: ESO

Made with the Wide-Field Imager camera attached to the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory in northern Chile, this new image prominently displays the different regions of the Trifid Nebula as seen in visible light. In the bluish patch to the upper left, called a reflection nebula, gas scatters the light from nearby, Trifid-born stars. The largest of these stars shines most brightly in the hot, blue portion of the visible spectrum. This, along with the fact that dust grains and molecules scatter blue light more efficiently than red light — a property that explains why we have blue skies and red sunsets — imbues this portion of the Trifid Nebula with an azure hue.

In the bottom part of the image, in the round, pink-reddish area typical of an emission nebula, the gas at the Trifid’s core is heated by hundreds of scorching young stars until it emits the red signature light of hydrogen, the major component of the gas, just as hot neon gas glows red-orange in illuminated signs all over the world.

See here for a zoomable image of the Trifid Nebula.

The gases and dust that crisscross the Trifid Nebula make up the third kind of nebula in this cosmic cloud, known as dark nebulae, courtesy of their light-obscuring effects. (The iconic Horsehead Nebula may be the most famous of these). Within these dark lanes, the remnants of previous star birth episodes continue to coalesce under gravity’s inexorable attraction. The rising density, pressure and temperature inside these gaseous blobs will eventually trigger nuclear fusion, and yet more stars will form.

In the lower part of this emission nebula, a finger of gas pokes out from the cloud, pointing directly at the central star powering the Trifid. This is an example of an evaporating gaseous globule, or “EGG”, also seen in the Eagle Nebula, another star-forming region. At the tip of the finger, which was photographed by Hubble, a knot of dense gas has resisted the onslaught of radiation from the massive star.

Source: ESO