Astrophotos: A Wide Angle “Trilogy” of the North America Nebula

A colorful, wide view of the North American Nebula (NGC 7000 or Caldwell 20) in Cygnus. This three-panel mosaic spanning an area approximately 2.5 x 5.5 degrees, captured using QHY11/TAK E180 presented here in H-Alpha, Hubble Palette and RGB with H-Alpha. Credit and copyright: Terry Hancock.

A perfect set of astrophotos for #WideAngleWednesday! Here are not one but three views of the North America Nebula taken by Terry Hancock. Terry said this is his widest view yet of this region. Also known as NGC 7000 or Caldwell 20, this is an emission nebula in the constellation Cygnus that resembles the shape of North America and The Gulf Of Mexico. It lies at a distance of approximately 1800 light years away from Earth.

Terry presents a “trilogy” of three different color processes (see below). He took imagery in both July and September 2014 with a total exposure time of 13.9 hours from his Down Under Observatory in Fremont, Michigan.

For more details about the processing for each image, click on the images. To see more of Terry’s great work, see his website, Facebook, Flickr, or G+.

A wide, three-panel mosaic spanning an area approximately 2.5 x 5.5 degrees of the North America Nebula (NGC 7000 or Caldwell 20), in H-Alpha, Hubble Palette and RGB with H-Alpha. Credit and copyright: Terry Hancock.
A wide, three-panel mosaic spanning an area approximately 2.5 x 5.5 degrees of the North America Nebula (NGC 7000 or Caldwell 20), in H-Alpha, Hubble Palette and RGB with H-Alpha. Credit and copyright: Terry Hancock.
Another version of the 3-panel, wide angle view of the North America Nebula. Credit and copyright: Terry Hancock.
Another version of the 3-panel, wide angle view of the North America Nebula. Credit and copyright: Terry Hancock.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Virtual Star Party – January 5, 2014: Jupiter in Opposition and 6 Telescopes!

Hosts: Fraser Cain and Scott Lewis

Astronomers:
David Dickinson in Florida
Michael Phillips in North Carolina
Bill McLaughlin in Oregon
Gary Gonella in California
Paul Stewart in New Zealand
Shahrin Ahmad in Malaysia
Stuart Foreman in San Francisco
Thad Szabo in California
Continue reading “Virtual Star Party – January 5, 2014: Jupiter in Opposition and 6 Telescopes!”

Virtual Star Party – October 6, 2013

Another wonderful Virtual Star Party, this time with 6 astronomers broadcasting their view of the night sky live. We had amazing views of Saturn, the Ring Nebula, M27,  and M17 the Swan Nebula (also known as the Lobster or Horseshoe Nebula). We also caught great views of NGC-896, NGC-869, and the M56 Cluster. Then we got some beautiful views of the Veil Nebula and discussed the benefits of image-stabilized binoculars.

This was also the first time were joined by Scott Ferguson, who delighted us with his dark sky views from the west coast of Florida. His views of the Pelican Nebula (NGC-6996) were gorgeous and unique.
Continue reading “Virtual Star Party – October 6, 2013”

Weekly SkyWatcher’s Forecast: August 6-12, 2012

Globular Cluster M15 from Hubble - Credit: ESA, Hubble, NASA

Greetings, fellow SkyWatchers! While you start your observing week out by watching the Mars Curiosity Landing, be sure to step outside and view the Aquarid meteor shower, too! It’s going to be a grand week for globular cluster studies and breezing along the Milky Way. Whenever you’re ready to learn some more history, mystery and just plain fun things about the night sky, then meet me in the back yard.

Monday, August 6 – Today in 2001 the Galileo spacecraft made its flyby of Jupiter’s moon – Io -sending back incredible images of the surface. For southern hemisphere observers, be on watch as the Iota Aquarid meteor shower peaks on this Universal date.

Tonight our studies of globular clusters continues as we look deeper into structure. As a rule, globular clusters normally contain a large number of variable stars, and most are usually the RR Lyrae type such as in earlier study M54. At one time they were known as “cluster variables,” with their number differing from one globular to another. Many globulars also contain vast numbers of white dwarfs. Some have neutron stars which are detected as pulsars, but out of all 151, only four have planetary nebulae in them.

Now, let us head toward the emerging constellation of Pegasus and the magnitude 6.5, class IV M15 (Right Ascension: 21 : 30.0 – Declination: +12 : 10). Easily located with even small binoculars about four degrees northwest of Enif, this magnificent globular cluster is a true delight in a telescope. Amongst the globulars, M15 ranks third in variable star population with 112 identified. As one of the densest of clusters, it is surprising that it is considered to be only class III. Its deeply concentrated core is easily apparent, and has begun the process of core collapse. The central core itself is very small compared to the cluster’s true size and almost half M15?s mass is contained within it. Although it has been studied by the Hubble, we still do not know if this density is caused by the cluster stars’ mutual gravity, or if it might disguise a supermassive object similar to those in galactic nuclei.

M15 was the first globular cluster in which a planetary nebula, known as Pease 1, could be identified. Larger aperture scopes can easily see it at high power. Surprisingly, M15 also is home to 9 known pulsars, which are neutron stars left behind from previous supernovae during the cluster’s evolution, and one of these is a double neutron star. While total resolution is impossible, a handful of bright stars can be picked out against that magnificent core region and wonderful chains and streams of members await your investigation tonight!

Tuesday, August 7 – On this date in 1959, Explorer 6 became the first satellite to transmit photographs of the Earth from its orbit.

Tonight, let’s return again to look at two giant globular clusters roughly equal in size, but not equal in class. To judge them fairly, you must use the same eyepiece. Start first by re-locating previous study M4. This is a class IX globular cluster. Notice the powder-like qualities. It might be heavily populated, but it is not dense. Now return to previous study M13. This is a class V globular cluster. Most telescopes will make out at least some resolution and a distinct core region. It is the level of condensation that determines the class. It is no different from judging magnitudes and simply takes practice.

Try your hand at M55 (Right Ascension:19 : 40.0 – Declination: -30 : 58) along the bottom of the Sagittarius “teapot” – it’s a class XI. Although it is a full magnitude brighter than class I M75, which we looked at earlier in the week, can you tell the difference in concentration? For those with GoTo systems, take a quick hop through Ophiuchus and look at the difference between NGC 6356 (class II) and NGC 6426 (class IX). If you want to try one that they can’t even classify? Look no further than M71 (Right Ascension: 19 : 53.8 – Declination: +18 : 47) in Sagitta. It’s all a wonderful game and the most fun comes from learning!

In the meantime, don’t forget all those other wonderful globular clusters such as 47 Tucanae, Omega Centauri, M56, M92, M28 and a host of others!

Wednesday, August 8 – Today in 2001, the Genesis Solar Particle Sample Return mission was launched. In September of 2004, it crash landed in the Utah desert with its precious payload. Although some of the specimens were contaminated, some did survive the mishap. So what is “star stuff?” Mostly highly charged particles generated from a star’s upper atmosphere and flowing out in a state of matter known as plasma…

Tonight let’s study one of the grandest of all solar winds as we seek out an area about three fingerwidths above the Sagittarius “teapot’s spout” as we have a look at magnificent M8 (Right Ascension: 18 : 03.8 – Declination: -24 : 23), the “Lagoon Nebula.”

Visible to the unaided eye as a hazy spot in the Milky Way, fantastic in binoculars, and an area truly worth study in any size scope, this 5200 light-year area of emission, reflection and dark nebulae has a rich history. Its involved star cluster – NGC 6530 – was first discovered by Flamsteed around 1680, and the nebula by Le Gentil in 1747. Cataloged by Lacaille as III.14 about 12 years before Messier listed it as number 8, its brightest region was recorded by John Herschel and the dark nebulae were discovered by Barnard.

Tremendous areas of starbirth are taking place in this region; while young, hot stars excite the gases in a are known as the “Hourglass,” around Herschel star 36 and 9 Sagittarius. Look closely around cluster NGC 6530 for Barnard dark nebulae B89 and B296 at the nebula’s southern edge. No matter how long you chose to swim in the “Lagoon” you will sure find more and more things to delight both the mind and the eye!

Thursday, August 9 – Today in 1976, the Luna 24 mission was launched on a return mission of its own – not to retrieve solar winds samples, but lunar soil! Remember this mission as we take a look at its landing site in the weeks ahead.

Tonight we’ll return to the nebula hunt as we head about a fingerwidth north and just slightly west of M8 for the “Trifid”…

M20 (Right Ascension: 18 : 02.3 – Declination: -23 : 02) was discovered by Messier on June 5, 1764, and much to his credit, he described it as a cluster of stars encased in nebulosity. This is truly a wonderful observation since the Trifid could not have been easy given his equipment. Some 20 years later William Herschel (although he usually avoided repeating Messier objects) found M20 of enough interest to assign separate designations to parts of this nebula – IV.41, V.10, V.11, V.12. The word “Trifid” was used to describe its beauty by John Herschel.

While M20 is a very tough call in binoculars, it is not impossible with good conditions to see the light of an area that left its home nearly a millennium ago. Even smaller scopes will pick up this round, hazy patch of both emission and reflection, but you will need aversion to see the dark nebula which divides it. This was cataloged by Barnard as B85. Larger telescopes will find the Trifid as one of the very few objects that actually appears much in the eyepiece as it does in photographs – with each lobe containing beautiful details, rifts and folds best seen at lower powers. Look for its cruciform star cluster and its fueling multiple system while you enjoy this triple treat tonight!

Friday, August 10 – Today in 1966 Lunar Orbiter 1 was successfully launched on its mission to survey the Moon. In the weeks ahead, we’ll take a look at what this mission sent back!

Tonight we’ll look at another star forming region as we head about a palm’s width north of the lid star (Lambda) in the Sagittarius teapot as we seek out “Omega”…

Easily viewed in binoculars of any size and outstanding in every telescope, the 5000 light-year distant Omega Nebula was first discovered by Philippe Loys de Cheseaux in 1745-46 and later (1764) cataloged by Messier as object 17. This beautiful emission nebula is the product of hot gases excited by the radiation of newly born stars. As part of a vast region of interstellar matter, many of its embedded stars don’t show in photographs, but reveal themselves beautifully to the eye of the telescope. As you look at its unique shape, you realize that many of these areas are obscured by dark dust, and this same dust is often illuminated by the stars themselves.

Often known as the “Swan,” M17 (Right Ascension: 18 : 20.8 – Declination: -16 : 11) will appear as a huge, glowing check mark or ghostly “2? in the sky – but power up if you use a larger telescope and look for a long, bright streak across its northern edge, with extensions to both the east and north. While the illuminating stars are truly hidden, you will see many glittering points in the structure itself and at least 35 of them are true members of this region spanning about 40 light-years that could contain up to 800 solar masses. It is awesome…

Saturday, August 11 – On this date in 1877, Asaph Hall of the U.S. Naval Observatory was very busy. This night would be the first time he would see Mars’ outer satellite Deimos! Six nights later, he observed Phobos, giving Mars its grand total of two moons.

Tonight after midnight is the peak of the Perseid meteor shower, and this year there’s not so much Moon to contend with! Now let’s sit back and talk about the Perseids while we watch…

The Perseids are undoubtedly the most famous of all meteor showers and never fail to provide an impressive display. Their activity appears in Chinese history as far back as 36 AD. In 1839, Eduard Heis was the first observer to give an hourly count, and discovered their maximum rate was around 160 per hour at that time. He, and other observers, continued their studies in subsequent years to find that this number varied.

Giovanni Schiaparelli was the first to relate the orbit of the Perseids to periodic comet Swift-Tuttle (1862 III). The fall rates have both risen and fallen over the years as the Perseid stream was studied more deeply, and many complex variations were discovered. There are actually four individual streams derived from the comet’s 120 year orbital period which peak on slightly different nights, but tonight through tomorrow morning at dawn is our accepted peak.

Meteors from this shower enter Earth’s atmosphere at a speed of 60 km/sec (134,000 miles per hour), from the general direction of the border between the constellations Perseus and Cassiopeia. While they can be seen anywhere in the sky, if you extend their paths backward, all the true members of the stream will point back to this region of the sky. For best success, position yourself so you are generally facing northeast and get comfortable. If you are clouded out, don’t worry. The Perseids will be around for a few more days yet, so continue to keep watch!

And speaking of watching… If you’re out late, be sure to watch for a Jupiter/Moon conjunction. What an inspiring bit of sky scenery to watch them rise together! For lucky viewers in the Indonesia area, this is an occultation event, so please be sure to check resources for times and locations in your area.

Sunday, August 12 – Did you mark your calendar to be up before dawn to view the Perseid meteor shower? Good!

Tonight while dark skies are on our side, we’ll fly with the “Eagle” as we hop another fingerwidth north of M17 and head for one of the most famous areas of starbirth – IC 4703.

While the open cluster NGC 6611 was first discovered by Cheseaux in 1745-6, it was Charles Messier who cataloged the object as M16 and he was the first to note the nebula IC 4703 (Right Ascension: 18 : 18.9 – Declination: -13 : 47), more commonly known as the “Eagle.” At 7000 light-years distant, this roughly 7th magnitude cluster and nebula can be spotted in binoculars, but at best it is a hint. As part of the same giant cloud of gas and dust as neighboring M17, the Eagle is also a place of starbirth illuminated by these hot, high energy stellar youngsters which are only about five and a half million years old.

In small to mid-sized telescopes, the cluster of around 20 brighter stars comes alive with a faint nebulosity that tends to be brighter in three areas. For larger telescopes, low power is essential. With good conditions, it is very possible to see areas of dark obscuration and the wonderful “notch” where the Pillars of Creation lie. Immortalized by the Hubble Space telescope, you won’t see them as grand or colorful as it did, but what a thrill to know they are there!

Until next week? Clear skies!

What Does a Nebula Sound Like?

What do things sound like out in the cosmos? Of course, sound waves can’t travel through the vacuum of space; however, electromagnetic waves can. These electromagnetic waves can be recorded by devices called spectrographs on many of the world’s most powerful telescopes. Astronomer Paul Francis from the Australian National University has used some of these recordings and converted them into sound by reducing their frequency 1.75 trillion times to make them audible, as the original frequencies are too high to be heard by the human ear.

“This allows us to listen to many parts of the universe for the first time,” Francis wrote on his website. “We can hear the song of a comet, the chimes of stars being born or dying, the choir of a quasar eating the heart of a galaxy, and much more.”
Continue reading “What Does a Nebula Sound Like?”

Spitzer’s Stunning New View of the North American Nebula

This swirling landscape of stars is known as the North American nebula. In visible light, the region resembles North America, but in this new infrared view from NASA's Spitzer Space Telescope, the continent disappears. Image credit: NASA/JPL-Caltech

[/caption]

In visible light, the North American nebula resembles its namesake continent. But looking at it in the infrared spectrum, a whole new perspective explodes into view. Clouds of dust and gas come to life, as light from massive young star heats and shape the clouds, and dramatic clusters of baby stars which can only be seen in infrared burst into view.

“One of the things that makes me so excited about this image is how different it is from the visible image, and how much more we can see in the infrared than in the visible,” said Luisa Rebull of NASA’s Spitzer Science Center at the California Institute of Technology, Pasadena, Calif. Rebull is lead author of a paper about the observations, accepted for publication in the Astrophysical Journal Supplement Series. “The Spitzer image reveals a wealth of detail about the dust and the young stars here.”

Rebull and her team have identified more than 2,000 new, candidate young stars in the region. There were only about 200 known before. Because young stars grow up surrounded by blankets of dust, they are hidden in visible-light images. Spitzer’s infrared detectors pick up the glow of the dusty, buried stars.

This new view of the North American nebula combines both visible and infrared light observations, taken by the Digitized Sky Survey and NASA's Spitzer Space Telescope, respectively, into a single vivid picture. Image credit: NASA/JPL-Caltech

Combing infrared data with light from other parts of the spectrum gives astronomers a complete picture of star formation. Each different combination of observations gives insights into star formation.

But in Spitzer’s infrared view, the continent disappears. Instead, a swirling landscape of dust and young stars comes into view.

In this image, astronomers can see stars at all stages of life, from the early years when it is swaddled in dust to early adulthood, when it has become a young parent to a family of developing planets. Sprightly “toddler” stars with jets can also be identified in Spitzer’s view.

“This is a really busy area to image, with stars everywhere, from the North American complex itself, as well as in front of and behind the region,” said Rebull. “We refer to the stars that are not associated with the region as contamination. With Spitzer, we can easily sort this contamination out and clearly distinguish between the young stars in the complex and the older ones that are unrelated.”

There are a couple of mysteries about the North American Nebula still to be solved: astronomers think there must be more stars in the “Gulf of Mexico” region that must dominate the nebula and provide the main source of “power.” There is a dark tangle of clouds there that even Spitzers powerful infrared eyes can’t penetrate, but some light appears to be coming from behind that region, in the same way that sunlight creeps out from behind a rain cloud.

The nebula’s distance from Earth is also a mystery. Current estimates put it at about 1,800 light-years from Earth. Spitzer will refine this number by finding more stellar members of the North American complex.

See more info on the JPL website, where you can download full resolution versions of the images seen here, and more views of the North American nebula.

Ambitious Survey Spots Stellar Nurseries

VISTA Magellanic Cloud Survey view of the Tarantula Nebula. Credit: ESO/M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit

[/caption]

ESO’s VISTA telescope has begun a new survey of the Magellanic Cloud, and this spectacular image of the Tarantula Nebula is a taste of great things to come from this near-infrared scan of the more interesting galaxies in our neighborhood. This panoramic near-infrared view captures the nebula itself in great detail as well as the rich surrounding area of sky. “This view is of one of the most important regions of star formation in the local Universe — the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula,” said the leader of the survey team, Maria-Rosa Cioni from the University of Hertfordshire. “At its core is a large cluster of stars called RMC 136, in which some of the most massive stars known are located.”

VISTA is a new survey telescope at the Paranal Observatory in Chile, and is equipped with a huge camera that detects light in the near-infrared part of the spectrum, revealing a wealth of detail about astronomical objects that gives us insight into the inner workings of astronomical phenomena. Near-infrared light has a longer wavelength than visible light, fortunately, it can pass through much of the dust that would normally obscure the views that our eyes can see. This makes it particularly useful for studying objects such as young stars that are still enshrouded in the gas and dust clouds from which they formed. Another powerful aspect of VISTA is the large area of the sky that its camera can capture in each shot.
The VISTA Magellanic Cloud Survey is one of six huge near-infrared surveys of the southern sky that will take up most of the first five years of operations of VISTA.

This project will scan a vast area — 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon) including our neighboring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system.

“The VISTA images will allow us to extend our studies beyond the inner regions of the Tarantula into the multitude of smaller stellar nurseries nearby, which also harbor a rich population of young and massive stars,” said Chris Evans who is part of the VMC team. “Armed with the new, exquisite infrared images, we will be able to probe the cocoons in which massive stars are still forming today, while also looking at their interaction with older stars in the wider region.”

The wide-field image shows a host of different objects. The bright area above the centre is the Tarantula Nebula itself, with the RMC 136 cluster of massive stars in its core. To the left is the NGC 2100 star cluster. To the right is the tiny remnant of the supernova SN1987A (eso1032). Below the centre are a series of star-forming regions including NGC 2080 — nicknamed the “Ghost Head Nebula” — and the NGC 2083 star cluster.

See more images, zoomable images, and movies of the Tarantula Nebula at the ESO website.

WISE Covers the Heart and Soul of Infrared Astronomy

The Heart and Soul nebulae are seen in this infrared mosaic from WISE. Image credit: NASA/JPL-Caltech/UCLA

[/caption]

In about six months’ time, NASA’s WISE mission, the Wide-field Infrared Survey Explorer, has captured almost a million images, covering about three-quarters, or 30,000 square degrees, of the sky. At the 216th American Astronomical Society meeting today, astronomers released a new mosaic of two bubbling clouds in space, known as the Heart and Soul nebulae.

“This image actually has two hearts; one is a Valentine’s Day heart, and the other is a surgical heart that you have in your body,” said Ned Wright of the University of California, Los Angeles who presented the new picture. “This new image demonstrates the power of WISE to capture vast regions. We’re looking north, south, east and west to map the whole sky.”

To make this huge mosaic WISE stared at this region of space which lies about 6,000 light-years away in the constellation Cassiopeia, for 3.5 hours of total exposure time, taking 1,147 images.

Both these nebulae are massive star-making factories, marked by giant bubbles blown into surrounding dust by radiation and winds from the stars. The infrared vision of WISE allows it to see into the cooler and dustier crevices of clouds like these, where gas and dust are just beginning to collect into new stars.

WISE will complete its first map of the sky in July 2010, and then spend the next three months surveying much of the sky a second time, before the solid-hydrogen coolant needed to chill its infrared detectors runs dry. Wright said the first installment of the public WISE catalog will be released in summer 2011.
Wright marveled at how in the span of his career he has gone from observing in just 4 pixels to now observing with WISE in almost 4 million pixels.

“It’s been an amazing progress in IR astronomy, with cameras growing by a factor of a million in power in just a few decades,” he said.

Screen shot from Wright's presentation at the AAS meeting showing how much of the sky WISE has covered. The small green box shows the area of the Heart and Soul nebulae.

Spotting NEO’s

One goal of the WISE mission is to study asteroids throughout our solar system and to find out more about how they vary in size and composition. Infrared helps with this task because it can get better size measurements of the space rocks than visible light.

So far, WISE has observed more than 60,000 asteroids, most of which lie in the main belt, orbiting between Mars and Jupiter. About 11,000 of these objects are newly discovered, and about 50 of them belong to a class of near-Earth objects, which have paths that take them within about 48 million kilometers (30 million miles) of Earth’s orbit.

“As WISE is orbiting the Earth, we are sweeping through the solar system like radar, and building up a map of what the solar system looks like in near infrared, looking for Near Earth Objects,” said astronomer Tommy Grav of Johns Hopkins University.

Grav told Universe Today so far there haven’t been any big surprises in the amount of NEOs the WISE team is finding. “We haven’t done full analysis of all the data WISE has sent back, but we’re finding about what we expected. We’re right in the ballpark of what we expected to find.”

The mission also studies the Trojans, asteroids that run along with Jupiter in its orbit around the sun in two packs — one in front of and one behind the gas giant. It has seen more than 800 of these objects, and by the end of the mission, should have observed about half of all 4,500 known Trojans. The results will address dueling theories about how the outer planets evolved.

“We can basically confirm and fill in the gap between ground based observations and the Spitzer Space Telescope’s observations of the Trojan asteroids,” Grav said.

Grav said WISE is an outstanding observatory. “We’ve basically done in six months what it took over 100 years to do in the optical.”

Sources: NASA, AAS press conference

Young Stars Blast a Hole in Space

The black spot in the green-tinged cloud near the top of the image is a hole blown through NGC 1999 by the jets and winds of gas from the young stellar objects in this region of space. Credits: ESA/HOPS Consortium

[/caption]

There is a black patch of space in NGC 1999, and for years astronomers have thought it was just a dense cloud of gas and dust, blocking light from passing through. But the Herschel infrared space telescope – which has the ability to peer into these dense clouds — has made an unexpected discovery. This black patch is actually a hole that has been blown in the side of the nebula by the jets and winds of gas from the young stellar objects in this region of space. “No-one has ever seen a hole like this,” said Tom Megeath, of the University of Toledo in the USA. “It’s as surprising as knowing you have worms tunneling under your lawn, but finding one morning that they have created a huge, yawning pit.”

Any previous descriptions of NCG 1999 said that the ominous dark cloud in the center was actually a condensation of cold molecular gas and dust so thick and dense that it blocks light. And astronomers had no reason to believe otherwise, until Herschel’s powerful infrared eyes took a look from space.

A Hubble image of NCG 1999 showing the dark patch. Credit: Hubble Heritage Team (STScI) and NASA

When Herschel looked in the direction of this nebula to study nearby young stars, the cloud continued to look black. But, that should not be the case. Herschel’s infrared eyes are designed to see into such clouds. Either the cloud was immensely dense or something was wrong.

Investigating further using ground-based telescopes, astronomers found the same story however they looked: this patch looks black not because it is a dense pocket of gas but because it is truly empty. Something has blown a hole right through the cloud.

Stars are born in dense clouds of dust and gas. Although jets and winds of gas have been seen coming from young stars in the past, it has always been a mystery exactly how a star uses these to blow away its surroundings and emerge from its birth cloud. With Herschel, this may be the first time we can see this process.

The astronomers think that the hole must have been opened when the narrow jets of gas from some of the young stars in the region punctured the sheet of dust and gas that forms NGC 1999. The powerful radiation from a nearby mature star may also have helped to clear the hole. Whatever the precise chain of events, it could be an important glimpse into the way newborn stars disperse their birth clouds.

Source: ESA

Herschel Spots Previously Unseen Stars in Rosette Nebula

Infrared image of the Rosette molecular cloud by the Herschel space observatory. Credits: ESA/PACS & SPIRE Consortium/HOBYS Key Programme Consortia

Wow, what a gorgeous new image from the Herschel telescope – and what makes this especially stunning is that we’ve never seen these stars before! And these stars in the Rosette Nebula are huge, as each one is up to ten times the mass of our Sun. “High-mass star-forming regions are rare and further away than low-mass ones,” said Frédérique Motte, from the Laboratoire AIM Paris-Saclay, France. “So astronomers have had to wait for a space telescope like Herschel to reveal them.”
Continue reading “Herschel Spots Previously Unseen Stars in Rosette Nebula”