Mars is Still an Active World. Here’s a Landslide in Nili Fossae

Credit: UofA/LPL

Since the 1960s and 70s, scientists have come to view Mars as something of a “dead planet.” As the first close-up images from orbit and the surface came in, previous speculation about canals, water, and a Martian civilization were dispelled. Subsequent studies also revealed that the geological activity that created features like the Tharsis Mons region (especially Olympus Mons) and Valles Marineris had ceased long ago.

However, in the past few decades, robotic missions have found ample evidence that Mars is still an active place. A recent indication was an image taken by the Mars Reconnaissance Orbiter (MRO), which showed relatively fresh landslides in a crater near Nili Fossae. This area is part of the Syrtis Major region and is located just north of the Jezero Crater (where the Perseverance rover will be landing in six weeks!)

Continue reading “Mars is Still an Active World. Here’s a Landslide in Nili Fossae”

Another Incredible Picture of Mars, This Time From a Region Just Outside Valles Marineris

HiRISE image showing the terrain in Juventae Chasma. Credit: NASA/JPL/UArizona

The Mars Reconnaissance Orbiter (MRO) delivers once again! Using its advanced imaging instrument, the High Resolution Imaging Experiment (HiRISE) camera, the orbiter captured a breathtaking image (shown below) of the plains north of Juventae Chasma. This region constitutes the southwestern part of Valles Marineris, the gigantic canyon system that runs along the Martian equator.

Continue reading “Another Incredible Picture of Mars, This Time From a Region Just Outside Valles Marineris”

A Meteor Smashed Into Mars in 2005, Making this Crater

A meteorite struck Mars sometime between February and July 2005 and formed this crater. It's the HiRise Picture of the Day for February 5, 2020. Image Credit: NASA/JPL/UoArizona.

NASA has repeatedly imaged the Martian surface, and sometimes a feature appears that wasn’t there in prior images. That’s what happened when a meteorite survived the plunge through Mars’ thin atmosphere sometime between February and July, 2005. It created this impact crater north of Valles Marineris.

Continue reading “A Meteor Smashed Into Mars in 2005, Making this Crater”

This is the Spot Where ESA’s Schiaparelli Crashed Into Mars

Credit: HiRISE/LPL/University of Arizona

On October 19th, 2016, the NASA/ESA ExoMars mission arrived at the Red Planet to begin its study of the surface and atmosphere. While the Trace Gas Orbiter (TGO) successfully established orbit around Mars, the Schiaparelli Lander crashed on its way to the surface. At the time, the Mars Reconnaissance Orbiter (MRO) acquired images of the crash site using its High Resolution Imaging Science Experiment (HiRISE) camera.

In March and December of 2019, the HiRISE camera captured images of this region once again to see what the crash site looked like roughly three years later. The two images show the impact crater that resulted from the crash, which was partially-obscured by dust clouds created by the recent planet-wide dust storm. This storm lasted throughout the summer of 2019 and coincided with Spring in Mars’ northern hemisphere.

Continue reading “This is the Spot Where ESA’s Schiaparelli Crashed Into Mars”

This is Probably Sandstone Layers on Mars. Absolutely Beautiful

Light-toned layered deposits thought to be sandstones in West Candor Chasma, Mars. They may have formed in an ancient wet and potentially habitable environment. Image Credit: NASA/JPL/University of Arizona

NASA’s Mars Reconnaissance Orbiter (MRO) has been in orbit around Mars for almost 14 years. It carries a variety of instruments with it, including the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument. That instrument has collected thousands of images of Mars.

Continue reading “This is Probably Sandstone Layers on Mars. Absolutely Beautiful”

There’s the Curiosity Rover, On the Move, Seen from Space

MSL Curiosity as imaged by the Mars Reconnaissance Orbiter. Image Credit: NASA/CalTech-JPL

If the Curiosity rover was paranoid, would it feel like it was being watched? Well, it is being watched, by its brother in orbit, the Mars Reconnaissance Orbiter. The MRO watched Curiosity as it travelled through the ‘Clay-Bearing Unit‘ in Gale Crater, during June and July, 2019.

Continue reading “There’s the Curiosity Rover, On the Move, Seen from Space”

It Hasn’t Rained on Mars for a Long Time, but These Sand Dunes Look Like Raindrops, and They’re Filled with Chemicals Made in Water

Credit: NASA/JPL/University of Arizona

Mars is well-known for being a dry and arid place, where dusty red sand dunes are prevalent and water exists almost entirely in the form of ice and permafrost. An upside to this, however, is the fact that these conditions are the reason why Mars’ many surface features are so well preserved. And as missions like the Mars Reconnaissance Orbiter (MRO) have shown, this allows for some pretty interesting finds.

Consider the picture recently taken by Curiosity’s High Resolution Imaging Science Experiment (HiRISE) instrument while orbiting above the Copernicus Crater on Mars. This image showed raindrop-like features that are actually signs of sand dunes that are rich in olivine. These same types of dunes exist on Earth but are very rare since this mineral weathers quickly and turns to clay in wet environments.

Continue reading “It Hasn’t Rained on Mars for a Long Time, but These Sand Dunes Look Like Raindrops, and They’re Filled with Chemicals Made in Water”

New layers of water ice have been found beneath Mars’ North Pole

A vertically exaggerated view of Mars’ north polar cap. Researchers with The University of Texas at Austin and the University of Arizona estimate that if melted, the massive ice deposits discovered in this region would cover the planet in 1.5 meters (5 feet) of water. Credit: SA/DLR/FU Berlin; NASA MGS MOLA Science Team

One of the most profound similarities between Earth and Mars, one which makes it a popular target for research and exploration, is the presence of water ice on its surface (mainly in the form of its polar ice caps). But perhaps even more interesting is the presence of glaciers beneath the surface, which is something scientists have speculated about long before their presence was confirmed.

These caches of subsurface water could tell us a great deal about Martian history, and could even be an invaluable resource if humans ever choose to make Mars their home someday. According to a recent study by a pair of scientists from the Universities of Texas at Austin and Arizona, there are also layers of ice beneath the northern polar ice cap that could be the largest reservoir of water on the planet.

Continue reading “New layers of water ice have been found beneath Mars’ North Pole”

Weekly Space Hangout: Apr 24, 2019 – Nathaniel Putzig and Gareth Morgan of the Shallow Radar (SHARAD) Sounder Team on the Mars Reconnaissance Orbiter (MRO)

Hosts:
Fraser Cain (universetoday.com / @fcain)
Dr. Pamela Gay (astronomycast.com / cosmoquest.org / @starstryder)
Dr. Kimberly Cartier (KimberlyCartier.org / @AstroKimCartier )
Dr. Morgan Rehnberg (MorganRehnberg.com / @MorganRehnberg & ChartYourWorld.org)
Dr. Paul M. Sutter (pmsutter.com / @PaulMattSutter)

Continue reading “Weekly Space Hangout: Apr 24, 2019 – Nathaniel Putzig and Gareth Morgan of the Shallow Radar (SHARAD) Sounder Team on the Mars Reconnaissance Orbiter (MRO)”

As the Martian Dust Storm Subsides, There’s Still No Word From Opportunity

Artist's impression of the Opportunity Rover, part of NASA's Mars Exploration Program. NASA/JPL-Caltech

Martian dust storms are a pretty common occurrence, and generally happen whenever the southern hemisphere is experiencing summer. Though they can begin quite suddenly, these storms typically stay contained to a local area and last only about a few weeks. However, on occasion, Martian dust storms can grow to become global phenomena, covering the entire planet.

One such storm began back in May, starting in the Arabia Terra region and then spreading to become a planet-wide dust storm within a matter of weeks. This storm caused the skies over the Perseverance Valley, where the Opportunity rover is stationed, to become darkened, forcing the rover into hibernation mode. And while no word has been heard from the rover, NASA recently indicated that the dust storm will dissipate in a matter of weeks.

The update was posted by NASA’s Mars Exploration Program, which oversees operations for the Opportunity and Curiosity rovers, as well as NASA’s three Mars orbiters (Mars Odyssey, MRO, and MAVEN) and the Insight lander (which will land on Mars in 109 days). According to NASA, the storm is beginning to end, though it may be weeks or months before the skies are clear enough for Opportunity to exit its hibernation mode.

This global map of Mars shows a growing dust storm as of June 6, 2018. The map was produced by the Mars Color Imager (MARCI) camera on NASA’s Mars Reconnaissance Orbiter spacecraft. The blue dot indicates the approximate location of Opportunity. Image Credit: NASA/JPL-Caltech/MSSS

As noted, dust storms occur on Mars when the southern hemisphere experiences summer, which coincides with the planet being closer to the Sun in its elliptical orbit. Due to increased temperatures, dust particles are lifted higher into the atmosphere, creating more wind. The resulting wind kicks up yet more dust, creating a feedback loop that NASA scientists are still trying to understand.

Since the southern polar region is pointed towards the Sun in the summer, carbon dioxide frozen in the polar cap evaporates. This has the effect of thickening the atmosphere and increasing the surface pressure, which enhances the process by helping suspend dust particles in the air. In some cases, the dust clouds can reach up to 60 km (40 mi) or more in elevation.

Planet-wide dust storms are a relatively rare occurrence on Mars, taking place every three to four Martian years (the equivalent of approximately 6 to 8 Earth years). Such storms have been viewed many times in the past by missions like Mariner 9 (1971), Viking I (1971) and the Mars Global Surveyor (2001). In 2007, a similar storm took place that darkened the skies over where Opportunity was stationed – which led to two weeks of minimal operations and no communications.

While smaller and less intense the storm that took place back in 2007, the current storm intensified to the point where it led to a level of atmospheric opacity that is much worse than the 2007 storm. In effect, the amount of dust in the atmosphere created a state of perpetual night over the rover’s location in Perseverance Valley, which forced the rover’s science team to suspend operations.

Simulated views of a darkening Martian sky blotting out the Sun from NASA’s Opportunity rover’s point of view, with the right side simulating Opportunity’s view in the global dust storm as of June 2018. Credit: NASA/JPL-Caltech/TAMU

This is due to the fact that Opportunity – unlike the Curiosity rover, which runs on nuclear-powered battery – relies on solar panels to keep its batteries charged. But beyond suspending operations, the prolonged dust storm also means that the rover might not be to keep its energy-intensive survival heaters running – which protect its batteries from the extreme cold of Mars’ atmosphere.

Luckily, NASA scientists who have been observing the global event indicated that, as of last Monday (July 23rd), more dust was falling out of the planet’s thin air than was being raised into it. This means that the global weather event has reached its decay phase, where dust-raising events either become confined to smaller areas or stop altogether.

Using its Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), NASA’s Mars Reconnaissance Orbiter (MRO) also noted surface features were beginning to reappear and that temperatures in the middle atmosphere were no longer rising – which indicates less solar heating by dust. The Curiosity rover also noted a decline in dust above its position in the Gale Crater on the other side of the planet.

This is certainly good new for the Opportunity rover, though scientists expect that it will still be a few weeks or months before its solar panels can draw power again and communications can be reestablished. The last time communications took place with the rover was on June 10th, but if there’s one thing the Opportunity rover is known for, it’s endurance!

When the rover first landed on Mars on January 25th, 2004, its mission was only expected to last ninety Martian days (sols), which is the equivalent of about 92.5 Earth days. However, as of the writing of this article, the rover has endured for 14 years and 195 days, effectively exceeding its operational lifespan 55 times over. So if any rover can survive this enduring dust storm, its Opportunity!

In the meantime, multiple NASA missions are actively monitoring the storm in support of Opportunity and to learn more about the mechanics of Martian storms. By learning more about what causes these storms, and how smaller ones can merge to form global events, future robotic missions, crewed missions and (quite possibly) Martian colonists will be better prepared to deal with them.

Further Reading: NASA