NASA is Getting the Plutonium it Needs for Future Missions

Close-up of NASA’s Perseverance Mars rover as it looks back at its wheel tracks on March 17, 2022, the 381st Martian day, or sol, of the mission. Credit: NASA

Radioisotope Thermoelectric Generators (RTGs) have a long history of service in space exploration. Since the first was tested in space in 1961, RTGs have gone on to be used by 31 NASA missions, including the Apollo Lunar Surface Experiments Packages (ALSEPs) delivered by the Apollo astronauts to the lunar surface. RTGs have also powered the Viking 1 and 2 missions to Mars, the Ulysses mission to the Sun, Galileo mission to Jupiter, and the Pioneer, Voyager, and New Horizons missions to the outer Solar System – which are currently in (or well on their way to) interstellar space.

In recent years, RTGs have allowed the Curiosity and Perseverance rovers to continue the search for evidence of past (and maybe present) life on Mars. In the coming years, these nuclear batteries will power more astrobiology missions, like the Dragonfly mission that will explore Saturn’s largest moon, Titan. In recent years, there has been concern that NASA was running low on Plutonium-238, the key component for RTGs. Luckily, the U.S. Department of Energy (DOE) recently delivered a large shipment of plutonium oxide, putting it on track to realize its goal of regular production of the radioisotopic material.

Continue reading “NASA is Getting the Plutonium it Needs for Future Missions”

Plants Could Grow in Lunar Regolith Using Bacteria

Plants grown in a volcanic ash lunar simulant (left) compared with those grown in the lunar soil (right) Credit: UF/IFAS/Tyler Jones

In the next decade, NASA, China, and their international and commercial partners plan to establish habitats on the Moon. Through the Artemis Program, NASA will deploy the orbiting Lunar Gateway and the Artemis Base Camp on the lunar surface. Meanwhile, China (and its partner Roscosmos) will deploy the International Lunar Research Station (ILRS), consisting of an orbital and surface element. The creation of this infrastructure will enable a “sustained program of lunar exploration and development” that could lead to a permanent human presence there.

To ensure that humans can work and live sustainably beyond Earth, astronauts and crews will need to be able to harvest local resources to see to their needs – in-situ resource utilization (ISRU). This includes using lunar water ice and regolith to grow plants, providing astronauts with food and an additional source of oxygen and biomass. To test the potential for growing plants on the Moon, a Chinese research team conducted a series of experiments where they grew tobacco plants in simulated lunar soil with the help of bacteria.

Continue reading “Plants Could Grow in Lunar Regolith Using Bacteria”

Japan Tests Robotic Earth-Moving Equipment in a Simulated Lunar Jobsite

Artist's impression of the A4CSEL technology creating a lunar base. Credit: Kajima

Japan has embarked on an exciting new lunar program that will test automated remote construction machinery for the Moon. In 2021, representatives from the Kajima Corporation, the National Research and Development Agency, the Japan Aerospace Exploration Agency (JAXA), and the Shibaura Institute of Technology announced they would be working with the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) to develop a next-generation construction system (A4CSEL®) that will enable the creation of lunar infrastructure.

This new collaborative venture, known as the Space Unmanned Construction Innovative Technology Development Promotion Project, will create an A4CSEL system capable of operating in the harsh lunar environment. In a recent statement, Kajima announced that it would connect the approximately 20-square kilometer (7.72 mi2) Kashima Seisho Experimental Field with JAXA’s Sagamihara Campus. Here, they are conducting experiments to validate automated remote construction machinery in a simulated lunar environment, which could lead to the creation of a lunar base!

Continue reading “Japan Tests Robotic Earth-Moving Equipment in a Simulated Lunar Jobsite”

Balloon Animals and Bouncy Castles on the Moon. The Case for Inflatable Habitats

Artist’s Conceptual Image of Inflatable Applications on the Lunar Surface. Credit: AMA Advanced Concepts Lab

Every year, NASA’s Breakthrough, Innovative, and Game-Changing (BIG) Idea Challenge invites student innovators to build and demonstrate concepts that can benefit future human missions to the Moon and beyond. This year’s theme is “Inflatable Systems for Lunar Operations,” which could greatly reduce the mass and stowed volume of payloads sent to the Moon. This is critical for the Artemis Program as it returns astronauts to the Moon for the first time since the Apollo Era over fifty years ago. It will also reduce the costs of sending payloads to the Moon, Mars, and other deep-space destinations.

Continue reading “Balloon Animals and Bouncy Castles on the Moon. The Case for Inflatable Habitats”

China Set Up a Tiny Farm on the Moon in 2019. How Did it Do?

A 3D reconstruction based on image processing and data analysis shows two cotton leaves grown in the Chang’e-4 lander on the far side of the moon. Image Credit: Chongqing University.

On January 3rd, 2019, China’s Chang’e-4 lander touched down on the far side of the Moon and deployed the Yutu rover. In addition to its many instruments, the rover carried an important science experiment known as the Biological Experiment Payload (BEP). Over the next eight days, this payload conducted a vital experiment where it attempted to grow the first plants on the Moon. Included in the payload were cotton, potato, arabidopsis, and rape seeds, along with fly eggs, yeast, and 18 ml (0.6 fluid oz) of water, which was kept at a constant atmospheric pressure.

The results of this experiment will help inform future Bioregenerative Life Support System (BLSS), which will prove vital to habitats and missions beyond Low Earth Orbit (LEO). A team of scientists from China recently released a study that reviewed the experiment, its results, and its potential implications for future missions to the Moon, Mars, and other deep-space locations. As they concluded, the experiment demonstrated that plants can grow on the Moon despite the intense radiation, low gravity, and prolonged intense light.

Continue reading “China Set Up a Tiny Farm on the Moon in 2019. How Did it Do?”

China Showcases its Lunar Exploration Plans

A bootleg video appeared online that provides a detailed look at China's future plans for lunar exploration. Credit: Chen Junlong/Youtube

The China National Space Agency (CNSA) has drawn a lot of attention to its space programs in recent years. In addition to their Tiangong space station and crewed missions to Low Earth Orbit (LEO), there’s also been a lot of buzz surrounding the China Manned Space Agency (CMSA) and its Human Lunar Space Program. The high points have included the announcement of the International Lunar Research Station (ILRS) – a joint operation with Roscosmos – and shared concept art for their next-generation spacecraft and lunar lander.

As always, what we know about China’s plans for space exploration is limited to snippets of news, public statements, and the occasional video, which are the direct result of state-controlled media and tight secrecy regarding the country’s space program. The latest is a bootleg video that recently appeared online, which shows a video presentation that provides some insight into China’s long-term plans for crewed lunar exploration. The video is captioned with the words “China’s lunar space station and development of lunar molten cave base plan,” and it certainly lives up to that description!

Continue reading “China Showcases its Lunar Exploration Plans”

Lunar Astronauts Will Need Easy Walking Trails Around the Moon's South Pole

Illustration of Artemis astronauts on the Moon. Credits: NASA

Before this decade is out, NASA plans to return astronauts to the Moon for the first time since the Apollo Era and build the necessary infrastructure to keep sending them back. And they will hardly be alone. Alongside NASA’s Artemis Program, the European Space Agency also plans to send astronauts to the Moon and establish a permanent habitat there (the Moon Village), while China and Russia are working towards creating the International Lunar Research Station (ILRS). Numerous commercial space companies will also be there to provide crew transportation, cargo, and logistical services.

All of this will happen in the Moon’s southern polar region, a topographically complex region characterized by craters, permanently shadowed regions (PSRs), and undulating slopes. This terrain could prove difficult for crews conducting extravehicular activities (EVAs) away from landing sites and habitats. In a recent study, an international team of researchers used data from NASA’s Lunar Reconnaissance Orbiter (LRO) to create a detailed atlas of the region that accounts for all the traverses and descents. This atlas could prove very useful for mission planners as they select landing sites for future exploration.

Continue reading “Lunar Astronauts Will Need Easy Walking Trails Around the Moon's South Pole”

Astronomers are Working to Put a Radio Telescope on the Far Side of the Moon by 2025

This artist’s rendering shows LuSEE-Night atop the Blue Ghost spacecraft scheduled to deliver the experiment to the far side of the moon. Credit: Firefly Aerospace

The Moon will be a popular destination for space programs worldwide in the coming years. By 2025, NASA’s Artemis III mission will land the first astronauts (“the first woman and first person of color”) onto the lunar surface for the first time since the end of the Apollo Era, over fifty years ago. They will be joined by multiple space agencies, as per the Artemis Accords, that will send European, Canadian, Japanese, and astronauts of other nationalities to the lunar surface. These will be followed in short order by taikonauts (China), cosmonauts (Russia), and vyomanauts (India), who will conduct similarly lucrative research and exploration.

Having facilities in orbit of the Moon, like the Artemis Base Camp, the International Lunar Research Station, and others, will enable all manner of scientific research that is not possible on Earth or in Earth orbit. This includes radio astronomy, which would be free of terrestrial interference on the far side of the Moon and sensitive enough to detect light from previously unexplored cosmological periods. This is the purpose of a pathfinder project known as the Lunar Surface Electromagnetics Experiment-Night (LuSEE-Night) that will leave for the Moon next year and spend the next 18 months listening to the cosmos!

Continue reading “Astronomers are Working to Put a Radio Telescope on the Far Side of the Moon by 2025”

The Moon's Southern Ice is Relatively Young

Elevation data of the Moon showing the South Pole-Aitken Basin. Credit: NASA/GSFC/University of Arizona
Elevation data of the Moon showing the South Pole-Aitken Basin. Credit: NASA/GSFC/University of Arizona

Around the Moon’s southern polar region lies the South Pole-Aitken Basin, the single-largest impact basin on the lunar surface. Within this basin, there are numerous permanently shadowed regions (PSRs) that are thought to have trapped water ice over time. These deposits are crucial to future missions like the Artemis Program that will lead to the creation of permanent infrastructure. This water ice will supply crews with a steady source of water for drinking and irrigation and the means for chemically producing oxygen gas and rocket fuel.

For scientists, these PSRs are believed to have emerged when the Moon began migrating away from Earth roughly 2.5 billion years ago. Over time, these regions acted as “cold sinks” and trapped water ice that existed on the lunar surface at the time. However, according to a recent study led by the Planetary Science Institute (PSI), the Moon’s permanently shadowed areas arose less than 2.2 billion years ago and trapped ice even more recently than that. These findings could significantly impact future crewed missions as they indicate that the water ice found in lunar craters could be of more recent origin.

Continue reading “The Moon's Southern Ice is Relatively Young”

Some Lunar Regolith is Better for Living Off the Land on the Moon

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

Between now and the mid-2030s, multiple space agencies hope to send crewed missions to the Moon. of These plans all involve establishing bases around the Moon’s southern polar region, including the Artemis Base Camp and the International Lunar Research Station (ILRS). These facilities will enable a “sustained program of lunar exploration and development,” according to the NASA Artemis Program mission statement. In all cases, plans for building facilities on the surface call for a process known as In-Situ Resource Utilization (ISRU), where local resources are used as building materials.

This presents a bit of a problem since not all lunar soil (regolith) is well-suited for construction. Much like engineering and construction projects here on Earth, builders need to know what type of soil they are building on and if it can be used to make concrete. In a recent study, planetary scientist Kevin M. Cannon proposed a lunar soil classification scheme for space resource utilization. This could have significant implications for future missions to the Moon, where it would help inform the construction of bases, habitats, and other facilities based on soil type and location.

Continue reading “Some Lunar Regolith is Better for Living Off the Land on the Moon”