Swirls, Gullies and Bedrock Create Two Jaw-Dropping Ethereal Mars Landscapes

A new image from the HiRISE camera on the Mars Reconnaissance Orbiter shows an ethereal landscape near Mars north pole. Credit: NASA/HiRISE team

[/caption]

Wow! These two latest images from the HiRISE Camera on the Mars Reconnaissance Orbiter are simply amazing. I couldn’t decide which to post on top as the lead image, so did a coin flip. This observation shows dune gullies laced with beautiful swirls of tracks left by dust devils. Just like on Earth, dust devils move across the Martian surface and expose the underlying darker material, creating a striking view. The HiRISE team has been tracking changes in this location (-70.3 degrees latitude and 178.2 degrees Longitude East), and they also compare it with dune gully activity going on in other regions. The science team says the activity here is rather anomalous for their high altitude location.

And the other image….

Dunes and bedrock near Noachis Terra on Mars. Credit: NASA/HiRISE team.

This HiRISE image shows a very unique butter brickle-like landscape — it is actually dunes and bedrock on the floor of a crater near Noachis Terra. What strikes me most is the clarity of the detail in this image — it is absolutely stunning.

Scientifically, this crater is unique because it has been very well characterized as being olivine-rich. Olivine is a magnesium-iron silicate that is very common on Earth. There are other regions of Mars that are also rich in olivine, and since olivine turns into other minerals in the presence of water, scientists are interested in looking for those minerals as well.

The science team says that while the large scale morphology of these craters is well characterized, this is not the case with fine scale layering and fracturing, such as what is seen here. Studying landscapes like this could help the understanding of large scale crustal processes on Mars, including the genesis of magmas and the creation of regolith.

All I know is that it is just plain pretty.

See more images at the HiRISE website.

NanoSail-D Caught on Video

When you have an automated video camera, it’s amazing what you can pick up in the night sky. Dr. Robert Suggs used the Automated Lunar and Meteor Observatory at Marshall Space Flight Center to catch NanoSail-D on video as it slipped across the sky back on March 2nd, 2011. This video is from the small finder camera for the observatory and the solar sail appears just how it would be seen by the naked eye. The NanoSail-D twitter feed said that this video is actually upside down. “I am actually sailing out of the trees and higher into the night sky,” the solar sail Tweeted. The same facility also captured images of NanoSail-d with 80mm and 14″ telescopes.

NanoSail-D won’t be visible for very much longer, just a couple of weeks or less until it will burn up in the atmosphere. See our previous article on how to observe NanoSail-D before it de-orbits.

Source: NanoSail-D website

Gravity Probe B Confirms Two of Einstein’s Space-Time Theories

Einstein's predicted geodetic and frame-dragging effects, and the Schiff Equation for calculating them. Credit: Stanford University

[/caption]

Researchers have confirmed two predictions of Albert Einstein’s general theory of relativity, concluding one of NASA’s longest-running projects. The Gravity Probe B experiment used four ultra-precise gyroscopes housed in an Earth-orbiting satellite to measure two aspects of Einstein’s theory about gravity. The first is the geodetic effect, or the warping of space and time around a gravitational body. The second is frame-dragging, which is the amount a spinning object pulls space and time with it as it rotates.

Gravity Probe-B determined both effects with unprecedented precision by pointing at a single star, IM Pegasi, while in a polar orbit around Earth. If gravity did not affect space and time, GP-B’s gyroscopes would point in the same direction forever while in orbit. But in confirmation of Einstein’s theories, the gyroscopes experienced measurable, minute changes in the direction of their spin, while Earth’s gravity pulled at them.

The project as been in the works for 52 years.

The findings are online in the journal Physical Review Letters.

Artist concept of Gravity Probe B orbiting the Earth to measure space-time, a four-dimensional description of the universe including height, width, length, and time. Image credit: NASA

“Imagine the Earth as if it were immersed in honey,”.said Francis Everitt, Gravity Probe-B principal investigator at Stanford University. “As the planet rotates, the honey around it would swirl, and it’s the same with space and time,” “GP-B confirmed two of the most profound predictions of Einstein’s universe, having far-reaching implications across astrophysics research. Likewise, the decades of technological innovation behind the mission will have a lasting legacy on Earth and in space.”

NASA began development of this project starting in the fall of 1963 with initial funding to develop a relativity gyroscope experiment. Subsequent decades of development led to groundbreaking technologies to control environmental disturbances on spacecraft, such as aerodynamic drag, magnetic fields and thermal variations. The mission’s star tracker and gyroscopes were the most precise ever designed and produced.

GP-B completed its data collection operations and was decommissioned in December 2010.

“The mission results will have a long-term impact on the work of theoretical physicists,” said Bill Danchi, senior astrophysicist and program scientist at NASA Headquarters in Washington. “Every future challenge to Einstein’s theories of general relativity will have to seek more precise measurements than the remarkable work GP-B accomplished.”

Innovations enabled by GP-B have been used in GPS technologies that allow airplanes to land unaided. Additional GP-B technologies were applied to NASA’s Cosmic Background Explorer mission, which accurately determined the universe’s background radiation. That measurement is the underpinning of the big-bang theory, and led to the Nobel Prize for NASA physicist John Mather.

The drag-free satellite concept pioneered by GP-B made a number of Earth-observing satellites possible, including NASA’s Gravity Recovery and Climate Experiment and the European Space Agency’s Gravity field and steady-state Ocean Circulation Explorer. These satellites provide the most precise measurements of the shape of the Earth, critical for precise navigation on land and sea, and understanding the relationship between ocean circulation and climate patterns.

GP-B also advanced the frontiers of knowledge and provided a practical training ground for 100 doctoral students and 15 master’s degree candidates at universities across the United States. More than 350 undergraduates and more than four dozen high school students also worked on the project with leading scientists and aerospace engineers from industry and government. One undergraduate student who worked on GP-B became the first female astronaut in space, Sally Ride. Another was Eric Cornell who won the Nobel Prize in Physics in 2001.

“GP-B adds to the knowledge base on relativity in important ways and its positive impact will be felt in the careers of students whose educations were enriched by the project,” said Ed Weiler, associate administrator for the Science Mission Directorate at NASA Headquarters.

Sources: NASA, Stanford University

Voyager Spacecraft Will Soon Enter Interstellar Space

After 33 years, NASA’s twin Voyager spacecraft are still actively working – gathering information, communicating with Earth, (and Tweeting!), and they are about to go where no space probe has gone before: into interstellar space. Because of the unfamiliar nature of the heliosphere, and especially its outermost layer, the heliosheath, it is not known exactly when the Voyagers will actually reach the “great beyond.”

“The heliosheath is 3 to 4 billion miles (4.8 to 6 billion km) in thickness,” said Voyager Project Scientist, Ed Stone. “That means we’ll be out within five years or so.” The V’ger’s Plutonium 238 heat source will keep the critical subsystems running through at least 2020, but after that, Stone says, “Voyager will become our silent ambassador to the stars.”

This video features highlights of the Voyager journeys to the outer planets and the discoveries they have made, and shows where they are now and where they are headed.

More info on the Voyagers, and here, too.

MESSENGER Finds Where X Marks the Spot on Mercury

An unnamed crater on Mercury taken by MESSENGER's Narrow Angle Camera. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

[/caption]

Buried treasure on Mercury? If so, I’d look here first. This image shows a currently unnamed crater with an “X” emblazoned on it. The perpendicular lines that cross the crater are secondary crater chains caused by ejecta from two primary impacts outside of the field of view, according to MESSENGER scientists. MESSENGER has been in orbit of Mercury since mid-March of this year, and its Mercury Dual Imaging System (MDIS) pivot and Narrow Angle Camera (NAC) spotted this unusual landform. MESSENGER will be mapping more than 90% of Mercury’s surface as part of a high-resolution surface morphology base map that will be created with MDIS.

See more about this image on the MESSENGER website.

10 Years of the Mars Odyssey

This view across western Candor Chasma on Mars was created with data from the 2001 Mars Odyssey. Credit: NASA/JPL/Arizona State University, R. Luk

[/caption]

A 2001 space odyssey indeed! On this day in 2001, the Mars Odyssey spacecraft launched, and now, 3,333 days later, the robotic spacecraft is still going strong. In orbit around the Red Planet, Mars Odyssey has collected more than 130,000 images and continues to send information to Earth about Martian geology, climate, and mineralogy. Last December, Mars Odyssey broke the record for the longest-serving spacecraft at Mars, besting the Mars Global Surveyor, which operated in orbit of Mars from 1997 to 2006.

An artist's impression of the Odyssey orbiter around Mars. . Image Credit: NASA

Measurements by Odyssey have enabled scientists to create maps of minerals and chemical elements and identify regions with buried water ice. Images that measure the surface temperature have provided spectacular views of Martian topography.

Early in the mission, Odyssey determined that radiation in low-Mars orbit is twice that in low-Earth orbit. This is an essential piece of information for eventual human exploration because of its potential health effects — Odyssey has provided vital support to ongoing exploration of Mars by relaying data from the Mars rovers to Earth via the spacecraft’s UHF antenna.

Odyssey will support the 2012 landing of the Mars Science Laboratory and surface operations of that mission. Mars Science Laboratory, a.k.a Curiosity, will assess whether its landing area has had environmental conditions favorable for microbial life and preserving evidence about whether life has existed there. The rover will carry the largest, most advanced set of instruments for scientific studies ever sent to the Martian surface.

Mars Odyssey carries three main science instruments: The Gamma Ray Spectrometer (GRS), the Thermal Emission Imaging System (THEMIS), and the Mars Radiation Environment Experiment (MARIE).

More info: Mars Odyssey website, THEMIS website (tons of great images)

Hopes Dim for Contacting Spirit Rover

A composite image of how the Spirit rover probably looks, stuck in Gusev Crater. Credit: NASA, image editing by Stu Atkinson.

[/caption]

Still no response from Spirit, the Mars Exploration Rover that became stuck in a sand trap on the Red Planet, and went into hibernation without sufficient solar power. March 10 was the point at which the rover should have received its maximum amount of sunshine – i.e. power — for this Martian year, and with the passage of that date, optimism is dimming for being able to revive Spirit. But, the rover teams have not yet given up all hope and have a few unique strategies up their sleeves to try and wake the sleeping rover.

Over the past few months, engineers at JPL said they used strategies to contact Spirit based on the possibility that increasing energy availability might wake the rover from hibernation. Now, the team has switched to communication strategies designed to address more than one problem on the rover.

“The commands we are sending starting this week should work in a multiple-fault scenario where Spirit’s main transmitter is no longer working and the mission clock has lost track of time or drifted significantly,” said JPL’s John Callas, project manager for Spirit and Opportunity.

No one probably wants to hear this, but if no signal is heard from Spirit in the next month or two, the rover will officially be declared as lost, and the rover teams will shift to single-rover operations, continuing to operate Spirit’s active twin, Opportunity.

The Spirit rover, as seen by the HiRISE camera on the Mars Reconnaissance Orbiter. Credit: NASA, image enhanced by Stu Atkinson.

Spirit has not communicated for almost one Earth year — since March 22, 2010. Being stuck as the Martian winter approached, the rover could not move into a favorable position for its solar panels to gather enough energy from the Sun to keep the rover completely “alive,” and it eventually went into a low-power hibernation mode.

Officials from JPL said that during the Martian winter with most heaters turned off, Spirit experienced colder internal temperatures than in any of its three previous winters on Mars. The cold could have damaged any of several electronic components that, if damaged, would prevent reestablishing communication with Spirit.

But the rover teams have worked for more than 8 months to try and regain contact, just in case the increased solar power available would have awoken Spirit. NASA’s Deep Space Network of antennas in California, Spain and Australia has been listening for Spirit daily. The rover team has also sent commands to elicit a response from the rover even if the rover has lost track of time, or if its receiver has degraded in frequency response.

With the available solar energy at Spirit’s site estimated to peak on March 10, revised commanding then began March 15, including instructions for the rover to be receptive over UHF relay to hailing from the Mars orbiters for extended periods of time and to use a backup transmitter on the rover.

We’ll wait patiently, and hope to hear from Spirit.

She landed on Mars waaaay back on Jan. 4, 2004, for a mission originally designed to last for three months.

Spirit and Opportunity both have made important discoveries about wet environments on ancient Mars that may have been favorable for supporting microbial life. Opportunity landed three weeks after Spirit.

New Horizons Flies by Uranus

An 'overhead' view of New Horizons' location. Credit: NASA

The Pluto-bound New Horizons spacecraft will fly by another planet today (March 18, 2011). However, the robotic craft won’t be taking any images as it zooms past Uranus’ orbit at about 6 p.m. EDT, 3.8 billion kilometers (2.4 billion miles) away from the gas giant (and 2.0 billion km (1.8 billion miles) from Earth). New Horizons is currently in hibernation mode, and the great distance from Uranus means any observations wouldn’t provide much as far as data and images. But, even so, this event is a ‘landmark’ so to speak in New Horizon’s gauntlet across the solar system.

“New Horizons is all about delayed gratification, and our 9 1/2-year cruise to the Pluto system illustrates that,” said Principal Investigator Alan Stern, of the Southwest Research Institute. “Crossing the orbit of Uranus is another milepost along our long journey to the very frontier of exploration.”

[/caption]

New Horizons is now well over halfway through its journey to Pluto. Motoring along at 57,900 km/hr (36,000 mph), it will travel more than 4.8 billion km (3 billion miles) to fly past Pluto and its moons Nix, Hydra and Charon in July 2015.

But the journey doesn’t end there. After that, New Horizons will head off to a post-Pluto encounter with other objects within the Kuiper Belt, some event(s) which might take place even into the 2020’s. The planetary science community is working on the selection of potential targets.

The mission still has more than 4 years to go to get to Pluto; it will take 9 nine months to send all the data back to Earth.

The next planetary milestone for New Horizons will be the orbit of Neptune, which it crosses on Aug. 25, 2014, exactly 25 years after Voyager 2 made its historic exploration of that giant planet.

“This mission is a marathon,” says Project Manager Glen Fountain, of the Johns Hopkins University Applied Physics Laboratory. “The New Horizons team has been focused on keeping the spacecraft on course and preparing for Pluto. So far, so good, and we are working to keep it that way.”

Source: New Horizons

Aged Voyager 1 Does In-flight Gymnastics for Science

Voyager 1 Mission
Artist impression of Voyager 1, the first probe to traverse the heliosheath (NASA)

[/caption]

She might be old, but she’s still got it where it counts. The 33-year old Voyager 1 probe, flying out near the edge of the solar system conducted a roll program, spinning 70 degrees counterclockwise, and held the position by spinning gyroscopes for two hours, 33 minutes. Voyager performed its in-flight gymnastics on March 7, 2011 and scientists hope the maneuver will help answer the question of which direction is the sun’s stream of charged particles turns when it nears the edge of the solar system.

“Even though Voyager 1 has been traveling through the solar system for 33 years, it is still a limber enough gymnast to do acrobatics we haven’t asked it to do in 21 years,” said Suzanne Dodd, Voyager project manager, based at NASA’s Jet Propulsion Laboratory. “It executed the maneuver without a hitch, and we look forward to doing it a few more times to allow the scientists to gather the data they need.”

Voyager needed to get in the right orientation to enable its Low Energy Charged Particle instrument to gather data.

The last time either of the two Voyager spacecraft rolled and stopped in a gyro-controlled orientation was Feb. 14, 1990, when Voyager 1 snapped a family portrait of the planets. See the image here.

The two Voyager spacecraft are traveling through a turbulent area known as the heliosheath,the outer shell of a bubble around our solar system created by the solar wind. The solar wind is traveling outward from the sun at a million miles per hour. Scientists think the wind must turn as it approaches the heliosheath where it makes contact with the interstellar wind — , which originates in the region between stars.

In June 2010, when Voyager 1 was about 17 billion kilometers (about 11 billion miles) away from the sun, data from the Low Energy Charged Particle instrument began to show that the net outward flow of the solar wind was zero. That zero reading has continued since. The Voyager science team doesn’t think the wind has disappeared in that area, but perhaps has just turned a corner. But where does it go from there: up, down or to the side?

“Because the direction of the solar wind has changed and its radial speed has dropped to zero, we have to change the orientation of Voyager 1 so the Low Energy Charged Particle instrument can act like a kind of weather vane to see which way the wind is now blowing,” said Edward Stone, Voyager project manager. “Knowing the strength and direction of the wind is critical to understanding the shape of our solar bubble and estimating how much farther it is to the edge of interstellar space.”

Voyager engineers performed a test roll and hold back on Feb. 2, just to make sure the spacecraft was still capable. No problems for the old girl, and spacecraft had no problem in reorienting itself and locking back onto its guide star, Alpha Centauri.

This artist's concept shows NASA's two Voyager spacecraft exploring a turbulent region of space known as the heliosheath, the outer shell of the bubble of charged particles around our sun. Image credit: NASA/JPL-Caltech

There will be five more of these maneuvers over the next seven days, with the longest hold lasting three hours 50 minutes. The Voyager team plans to execute a series of weekly rolls for this purpose every three months.

Over the next few months, scientists will analyze the data.

“We do whatever we can to make sure the scientists get exactly the kinds of data they need, because only the Voyager spacecraft are still active in this exotic region of space,” said Jefferson Hall, Voyager mission operations manager at JPL. “We were delighted to see Voyager still has the capability to acquire unique science data in an area that won’t likely be traveled by other spacecraft for decades to come.”

Voyager 2 was launched on Aug. 20, 1977. Voyager 1 was launched on Sept. 5, 1977. On March 7, Voyager 1 was 17.4 billion kilometers (10.8 billion miles) away from the sun. Voyager 2 was 14.2 billion kilometers (8.8 billion miles) away from the sun, on a different trajectory.

The solar wind’s outward flow has not yet diminished to zero where Voyager 2 is exploring, but that may happen as the spacecraft approaches the edge of the bubble in the years ahead.

Voyager is just another good old girl.

Source: JPL

Best Images from STS-133: Discovery’s Final Mission in Pictures

Discovery leaving the ISS on March 7, 2011 for the final time. Credit: NASA

[/caption]

As space shuttle Discovery prepares to return home from its final mission to space, let’s take a look back at the STS-133 mission, an historic “last” for the program’s most-traveled shuttle. “I think the legacy that this shuttle has made for herself is just nothing short than cause for celebration,” said mission specialist Michael Barratt during press conference from orbit on March 8.

“It’s going to be sad when it’s over, when we land tomorrow or the next day,” said STS-133 commander Steve Lindsey. “The hardest part of this for me is giving up the capability. It can do everything except leave low-Earth orbit…There is not a single thing wrong with her. Every single system and every piece of every system is working just like it’s brand new.”

After a successful launch, the Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) equipped with special cameras, begins to conduct thorough inspections of the shuttle's thermal tile system on flight day 2. Photo credit: NASA
This view of the nose, the forward underside and crew cabin of the space shuttle Discovery was provided by an Expedition 26 crew member during a survey of the approaching STS-133 vehicle prior to docking with the International Space Station. Credit: NASA
ISS tally ho! A view the space station as Discovery approaches for docking. Compare this image with one below, taken as Discovery departs to see the addition of the PMM. Credit: NASA
Backdropped by a blue and white part of Earth, space shuttle Discovery is featured in this image photographed by an Expedition 26 crew member as the shuttle approaches the International Space Station during STS-133 rendezvous and docking operations. Docking occurred at 2:14 p.m. (EST) on Feb. 26, 2011. A Russian Progress spacecraft docked to the space station is also featured in the image. Credit: NASA
A view of the docked space shuttle Discovery during the STS-133 mission, along with and the Canadian-built robot Dextre, and other parts of the ISS. Credit: NASA
European Space Agency astronaut Paolo Nespoli (left), Expedition 26 flight engineer; and NASA astronaut Steve Bowen, STS-133 mission specialist, are pictured in the Quest airlock of the International Space Station as they prepare for the start of the mission's first spacewalk. Credit: NASA
Astronauts Steve Bowen and Alvin drew work in tandem on one of the truss sections of the ISS during the first spacewalk of the STS-133 mission. Credit: NAS
Astronaut Alvin Drew during the first spacewalk of the STS-133 mission. Credit: NASA

The first spacewalk of the mission lasted six-hours and 34-minutes. Alvin Drew and Steve Bowen installed a power extension cable, move a failed ammonia pump module to the External Stowage Platform 2 on the Quest Airlock for return to Earth at a later date, installed a camera wedge on the right hand truss segment, installed extensions to the mobile transporter rail and exposed the Japanese “Message in a Bottle” experiment to space.

Cady Coleman, Expedition 26 flight engineer, is pictured near a Japanese-designed metal cylinder floating freely in the Destiny laboratory of the International Space Station while space shuttle Discovery remains docked with the station. On Feb. 28, spacewalkers Steve Bowen and Alvin Drew opened and 'filled' the cylinder, named "Message in a Bottle", with space, or rather the vacuum of outer space, and then sealed it to be brought back to Earth with the Discovery crew. Credit: NAS
The newly-attached Permanent Multipurpose Module (PMM) and a docked Russian Soyuz spacecraft. Credit: NASA
NASA astronauts Scott Kelly (foreground), Expedition 26 commander; and Steve Lindsey, STS-133 commander, are pictured in the newly-installed Permanent Multipurpose Module (PMM) of the International Space Station. Credit: NASA
Backdropped by Earth's horizon and the blackness of space, this view shows the Cupola of the International Space Station and a docked Russian Progress spacecraft, taken during the STS-133 mission. Credit: NASA
Nicole Stott, STS-133 mission specialist, is pictured in the Cupola of the International Space Station. Credit: NASA
Alvin Drew, STS-133 mission specialist, is pictured in his sleeping bag, which is attached in the Columbus laboratory of the International Space Station. Credit: NASA
The crews from STS-133 and the ISS Expedition 26 in the newly installed Permanent Multipurpose Module. Credit: NASA

Joint crew photo inside the newest module, the PMM — which is basically a big storage closet for the ISS. The STS-133 crew members, all attired in red shirts(from left)are NASA astronauts Alvin Drew, Eric Boe (below), Nicole Stott, Michael Barratt, Steve Bowen and Steve Lindsey (below). The dark blue-attired Expedition 26 crew members, from bottom left, are NASA astronaut Scott Kelly, European Space Agency astronaut Paolo Nespoli, NASA astronaut Cady Coleman along with Russian cosmonaut Oleg Skripochka. In the center of the photo are Dmitry Kondratyev and Alexander Y. Kaleri.

Russian cosmonaut Dmitry Kondratyev, Expedition 26 flight engineer, moves stowage containers in the Unity node of the International Space Station. Credit: NAS
Alvin Drew works outside during the second EVA of the STS-133 mission. Credit: NASA
Anchored to a Canadarm2 mobile foot restraint, NASA astronaut Steve Bowen works outside the ISS during the second EVA of the STS-133 mission. Credit: NASA
The space shuttle Discovery as seen from the International Space Station, flying over southwestern coast of Morocco in the northern Atlantic. During a post undocking fly-around, the crew members aboard the two spacecraft collected a series of photos of each other's vehicle. Credit: NASA
Backdropped against the blackness of spaec and clouds over Earth, the International Space Station is seen from Discovery as the shuttle departed from the station. Credit: NAS
Disovery departing the ISS for the final time. Credit: NASA

Larger versions of all these images can be found at NASA’s Human Spaceflight website, under the STS-133 gallery.

Click here to see our gallery of launch images for Discovery’s final flight.

Here’s a video recap of the STS-133 mission: