Pure Metal Asteroid Has Mysterious Water Deposits

Water has been showing up in all sorts of unexpected places in our Solar System, such as the Moon, Mercury and Jupiter’s moon Ganymede. Add one more place to the list: Asteroid 16 Psyche. This metal-rich asteroid may have traces of water molecules on its surface that shouldn’t be there, researchers say.

Psyche is thought to be the largest metallic asteroid in the Solar System, at 300 km (186 miles) across and likely consists of almost pure nickel-iron metal. Scientists had thought Psyche was made up of the leftover core of a protoplanet that was mostly destroyed by impacts billions of years ago, but they may now be rethinking that.

“The detection of a 3 micron hydration absorption band on Psyche suggests that this asteroid may not be metallic core, or it could be a metallic core that has been impacted by carbonaceous material over the past 4.5 Gyr,” the team said in their paper.

While previous observations of Psyche had shown no evidence for water on its surface, new observations with the NASA Infrared Telescope Facility found evidence for volatiles such as water or hydroxyl on the asteroid’s surface. Hydroxyl is a free radical consisting of one hydrogen atom bound to one oxygen atom.

“We did not expect a metallic asteroid like Psyche to be covered by water and/or hydroxyl,” said Vishnu Reddy, from the University of Arizona’s Lunar and Planetary Laboratory, a co-author of the new paper about Psyche. “Metal-rich asteroids like Psyche are thought to have formed under dry conditions without the presence of water or hydroxyl, so we were puzzled by our observations at first.”

Asteroids usually fall into two categories: those rich in silicates, and those rich in carbon and volatiles. Metallic asteroids like Psyche are extremely rare, making it a laboratory to study how planets formed.

he asteroid Psyche is one of the larger asteroids.  Credit: Lindy T. Elkins-Tanton
he asteroid Psyche is one of the larger asteroids. Credit: Lindy T. Elkins-Tanton

For now, the source of the water on Psyche remains a mystery. But Redddy and his colleagues propose a few different explanations. One is, again, Psyche may not be as metallic as previously thought. Another option is that the water or hydroxyl could be the product of solar wind interacting with silicate minerals on Psyche’s surface, such as what is occurring on the Moon.

The most likely explanation, however is that the water seen on Psyche might have been delivered by carbonaceous asteroids that impacted Psyche in the distant past, as is thought to have occurred on early Earth.

“Our discovery of carbon and water on an asteroid that isn’t supposed to have those compounds supports the notion that these building blocks of life could have been delivered to our Earth early in the history of our solar system,” said Reddy.

If we’re lucky, we won’t have to wait too long to find out more about Psyche. A mission to Psyche is on the short list of mission proposals being considered by NASA, with a potential launch as early as 2020. Reddy and team said an orbiting spacecraft could explore this unique asteroid and determine if whether there is water or hydroxyl on the surface.

Sources: Europlanet, University of Arizona, paper: Detection of Water and/or Hydroxyl on Asteroid (16) Psyche.

MAVEN Takes This Trippy, Nightglowing Photo of Mars in UV

Mars’ atmosphere is about 100 times thinner than Earth’s, but there’s still a lot going on in that wispy, carbon dioxide Martian air. The MAVEN spacecraft recently took some exceptional images of Mars using its Imaging UltraViolet Spectrograph (IUVS), revealing dynamic and previously invisible subtleties.

MAVEN took the first-ever images of nightglow on Mars. You may have seen nightglow in images of Earth taken by astronauts on the International Space Station as a dim greenish light surrounding the planet. Nightglow is produced when oxygen and nitrogen atoms collide to form nitric oxide. This is ionized by ultraviolet light from the Sun during the day, and as it travels around to the nightside of the planet, it will glow in ultraviolet.

An image of nightglow in Earth's atmosphere, taken from the International Space Station. Credit: NASA.
An image of nightglow in Earth’s atmosphere, taken from the International Space Station. Credit: NASA.

“The planet will glow as a result of this chemical reaction,” said Nick Schneider, from the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, speaking today at the American Astronomical Society Division for Planetary Sciences meeting. “This is a common planetary reaction that tells us about the transport of these ingredients and around the planet and show how winds circulate at high altitudes.”

MAVEN’s images show evidence of strong irregularities in Mars’ high altitude winds and circulation patterns and Schneider said these first images will lead to an improved understanding of the circulation patterns that control the behavior of the atmosphere from approximately 37 to 62 miles (about 60 to 100 kilometers) high.

MAVEN's Imaging UltraViolet Spectrograph obtained these images of rapid cloud formation on Mars on July 9-10, 2016. Mars’ prominent volcanoes, topped with white clouds, can be seen moving across the disk and show how rapidly and extensively the clouds topping the volcanoes form in the afternoon. Credits: NASA/MAVEN/University of Colorado
MAVEN’s Imaging UltraViolet Spectrograph obtained these images of rapid cloud formation on Mars on July 9-10, 2016. Mars’ prominent volcanoes, topped with white clouds, can be seen moving across the disk and show how rapidly and extensively the clouds topping the volcanoes form in the afternoon. Credits: NASA/MAVEN/University of Colorado

MAVEN’s ultraviolet images also provide insight into cloud formation and ozone in Mars atmosphere.

The images show how water ice clouds form, especially in the afternoon, over the four giant volcanoes on Mars in the Tharsis region. Cloud formation in the afternoon is a common occurrence on Earth, as convection causes water vapor to rise.

“Water ice clouds are very common on Mars and they can tell us about water inventory on the planet,” Schneider said. “In these images you can see an incredible expansion of the clouds over the course of seven hours, forming a cloud bank that must be a thousand miles across.”

He added that this is just the kind of info scientists want to be plugging in to their circulation models to study circulation and the chemistry of Mars’ atmosphere. “This is helping us advance our understanding in these areas, and we’ll be able to study it with MAVEN through full range of Mars’ seasons.”

MAVEN's Imaging UltraViolet Spectrograph obtained images of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in false color, to show what we would see with ultraviolet-sensitive eyes. Mars’ tallest volcano, Olympus Mons, appears as a prominent dark region near the top of the image, with a small white cloud at the summit that grows during the day. Three more volcanoes appear in a diagonal row, with their cloud cover (white areas near center) merging to span up to a thousand miles by the end of the day. Credits: NASA/MAVEN/University of Colorado
MAVEN’s Imaging UltraViolet Spectrograph obtained images of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in false color, to show what we would see with ultraviolet-sensitive eyes. Mars’ tallest volcano, Olympus Mons, appears as a prominent dark region near the top of the image, with a small white cloud at the summit that grows during the day. Three more volcanoes appear in a diagonal row, with their cloud cover (white areas near center) merging to span up to a thousand miles by the end of the day.
Credits: NASA/MAVEN/University of Colorado

Schneider explained that MAVEN’s unique orbit allows it to get views of the planet that other orbiters don’t have. One part of its elliptical orbit takes it high above the planet that allows for global views, but it still orbits fast enough to get multiple views as Mars rotates over the course of a day.

“We get to see daily events evolve over time because we return to that orbit every few hours,” he said.

This ultraviolet image near Mars’ South Pole was taken by MAVEN on July 10 2016 and shows the atmosphere and surface during southern spring. The white region centered on the pole is frozen carbon dioxide (dry ice) on the surface. Pockets of ice are left inside craters as the polar cap recedes in the spring, giving its edge a rough appearance. High concentrations of atmospheric ozone appear magenta in color, and the wavy edge of the enhanced ozone region highlights wind patterns around the pole. Credits: NASA/MAVEN/University of Colorado
This ultraviolet image near Mars’ South Pole was taken by MAVEN on July 10 2016 and shows the atmosphere and surface during southern spring. The white region centered on the pole is frozen carbon dioxide (dry ice) on the surface. Pockets of ice are left inside craters as the polar cap recedes in the spring, giving its edge a rough appearance. High concentrations of atmospheric ozone appear magenta in color, and the wavy edge of the enhanced ozone region highlights wind patterns around the pole.
Credits: NASA/MAVEN/University of Colorado

In addition, dayside ultraviolet imagery from the spacecraft shows how ozone amounts change over the seasons. Ozone is destroyed when water vapor is present, so ozone accumulates in the winter polar region where the water vapor has frozen out of the atmosphere. The images show ozone lasting into spring, indicating that global winds are constraining the spread of water vapor from the rest of the planet into winter polar regions.

Wave patterns in the ozone images show wind pattern, as well, helping scientists to study the chemistry and global circulation of Mars’ atmosphere.

Additional reading:
NASA

President Obama Puts US All In For Mars

In the waning days of his presidency, Barack Obama has made a bold statement in favor of the US getting to Mars. Obama didn’t mince any words in his opinion piece written for CNN. He said that America’s next goal in space is “…sending humans to Mars by the 2030s and returning them safely to Earth, with the ultimate ambition to one day remain there for an extended time.”

President Obama has long been a proponent of a strong presence in space for the US, and of the science and technology that supports those efforts. He has argued for healthy NASA budgets in his time, and under his administration, NASA has reached some major milestones.

“Last year alone, NASA discovered flowing water on Mars and evidence of ice on one of Jupiter’s moons, and we mapped Pluto — more than 3 billion miles away — in high-resolution,” Obama said. He also mentioned the ongoing successful hunt for exoplanets, and the efforts to understand asteroids.

Some of his work in support of space and science in general has been more symbolic. His annual White House Science Fairs in particular. He was the first president to hold these fairs, and he hosted 6 of them during his 8 years in office.

Presidents go different directions once they leave office. Some keep a low profile (Bush Jr.), some get targeted for assassination (Bush Sr.), and some become advocates for humanitarian efforts and global peace (Jimmy Carter.) But Obama made it clear that his efforts to promote America’s efforts in space won’t end when his presidency ends. “This week, we’ll convene some of America’s leading scientists, engineers, innovators and students in Pittsburgh to dream up ways to build on our progress and find the next frontiers,” Obama said.

In his piece, Obama gave a laundry list of the USA’s achievements in space. He also pointed out that “Just five years ago, US companies were shut out of the global commercial launch market.” Now they own a third of that market. And, according to Obama, they won’t stop there.

In 2010 he set a goal for American space efforts: to reach Mars by the 2030s. “The next step is to reach beyond the bounds of Earth’s orbit. I’m excited to announce that we are working with our commercial partners to build new habitats that can sustain and transport astronauts on long-duration missions in deep space.” He didn’t elaborate on this in his opinion piece, but it will be interesting to hear more.

Other presidents have come out strongly in favor of efforts in space. The first one was Eisenhower, and Obama mentioned him in his piece. Eisenhower is the one who created NASA in 1958, though it was called NACA (National Advisory Committee for Aeronautics) at the time. This put America’s space efforts in civilian control rather than military.

President Kennedy got the Apollo program off the ground in 1961. Image: White House Press Office (WHPO)
President Kennedy got the Apollo program off the ground in 1961. Image: White House Press Office (WHPO)

President Kennedy asked Congress in 1961 to commit to the Apollo program, an effort to get a man on the Moon before the 60s ended. Apollo achieved that, of course, but with only a few months to spare. Kennedy’s successor, President Lyndon Johnson, was a staunch supporter of NASA’s Apollo Program, especially in the wake of disaster.

In 1967 the entire Apollo 1 crew was killed in a fire while testing the craft on its launch pad. The press erupted after that, and Congress began to question the Apollo Program, but Johnson stood firmly in NASA’s corner.

Like some other Presidents before him, Obama has always been a good orator. That was in full view when he ended his piece with these words: “Someday, I hope to hoist my own grandchildren onto my shoulders. We’ll still look to the stars in wonder, as humans have since the beginning of time.”

The focus has really been on Mars lately, and with Obama’s continued support, maybe humans will make it to Mars in the next decade or two. Then, from the surface of that planet, we can do what we’ve always done: continue to look to the stars with a sense of wonder.

Journey’s End: Comet Crash for Rosetta Mission Finale

With a soft “awwww” from the mission team in the control center in Darmstadt, Germany, the signal from the Rosetta spacecraft faded, indicating the end of its journey. Rosetta made a controlled impact onto Comet 67P/Churyumov–Gerasimenko, sending back incredible close-up images during descent, after two years of investigations at the comet.

“Farewell Rosetta. You have done the job. That was space science at its best,” said Patrick Martin, Rosetta mission manager.

Rosetta’s final resting spot appears to be in a region of active pits in the Ma’at region on the two-lobed, duck-shaped comet.

The information collected during the descent – as well as during the entire mission – will be studied for years. So even though the video below about the mission’s end will likely bring a tear to your eye, rest assured the mission will continue as the science from Rosetta is just getting started.

“Rosetta has entered the history books once again,” says Johann-Dietrich Wörner, ESA’s Director General. “Today we celebrate the success of a game-changing mission, one that has surpassed all our dreams and expectations, and one that continues ESA’s legacy of ‘firsts’ at comets.”

Launched in 2004, Rosetta traveled nearly 8 billion kilometers and its journey included three Earth flybys and one at Mars, and two asteroid encounters. It arrived at the comet in August 2014 after being in hibernation for 31 months.

After becoming the first spacecraft to orbit a comet, it deployed the Philae lander in November 2014. Philae sent back data for a few days before succumbing to a power loss after it unfortunately landed in a crevice and its solar panels couldn’t receive sunlight. But Rosetta continued to monitor the comet’s evolution as it made its closest approach and then moved away from the Sun. However, now Rosetta and the comet are too far away from the Sun for the spacecraft to receive enough power to continue operations.

“We’ve operated in the harsh environment of the comet for 786 days, made a number of dramatic flybys close to its surface, survived several unexpected outbursts from the comet, and recovered from two spacecraft ‘safe modes’,” said operations manager Sylvain Lodiot. “The operations in this final phase have challenged us more than ever before, but it’s a fitting end to Rosetta’s incredible adventure to follow its lander down to the comet.”

Compilation of the brightest outbursts seen at Comet 67P/Churyumov–Gerasimenko by Rosetta’s OSIRIS narrow-angle camera and Navigation Camera between July and September 2015. Credit: OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.
Compilation of the brightest outbursts seen at Comet 67P/Churyumov–Gerasimenko by Rosetta’s OSIRIS narrow-angle camera and Navigation Camera between July and September 2015. Credit: OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.

Rosetta’s Legacy and Discoveries

Of its many discoveries, Rosetta’s close-up views of the curiously-shaped Comet 67P have already changed some long-held ideas about comets. With the discovery of water with a different ‘flavor’ to that of Earth’s oceans, it appears that Earth impacts of comets like 67P/Churyumov–Gerasimenko may not have delivered as much of Earth’s water as previously thought.

From Philae, it was determined that even though organic molecules exist on the comet, they might not be the kind that can deliver the chemical prerequisites for life. However, a later study revealed that complex organic molecules exist in the dust surrounding the comet, such as the amino acid glycine, which is commonly found in proteins, and phosphorus, a key component of DNA and cell membranes. This reinforces the idea that the basic building blocks may have been delivered to Earth from an early bombardment of comets.

Rosetta’s long-term monitoring has also shown just how important the comet’s shape is in influencing its seasons, in moving dust across its surface, and in explaining the variations measured in the density and composition of the comet’s coma.

And because of Rosetta’s proximity to the comet, we all went along for the ride as the spacecraft captured views of what happens as a comet comes close to the Sun, with ice sublimating and dusty jets exploding from the surface.

Studies of the comet show it formed in a very cold region of the protoplanetary nebula when the Solar System was forming more than 4.5 billion years ago. The comet’s two lobes likely formed independently, but came together later in a low-speed collision.

“Just as the Rosetta Stone after which this mission was named was pivotal in understanding ancient language and history, the vast treasure trove of Rosetta spacecraft data is changing our view on how comets and the Solar System formed,” said project scientist Matt Taylor.

Sequence of images captured by Rosetta during its descent to the surface of Comet 67P/C-G on September 30, 2016. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.
Sequence of images captured by Rosetta during its descent to the surface of Comet 67P/C-G on September 30, 2016. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

Journey’s End

During the final hours of the mission on Friday morning, the instrument teams watched the data stream in and followed the spacecraft as it moved closer to its targeted touchdown location on the “head” of the 4km-wide comet. The pitted region where Rosetta landed appear to be the places where 67P ejects gas and dust into space, and so Rosetta’s swan song will provide more insight into the comet’s icy jets.

“With the decision to take Rosetta down to the comet’s surface, we boosted the scientific return of the mission through this last, once-in-a-lifetime operation,” said Martin. ““It’s a bittersweet ending, but … Rosetta’s destiny was set a long time ago. But its superb achievements will now remain for posterity and be used by the next generation of young scientists and engineers around the world.”

See more stunning, final images in Bob King’s compilation article, and we bid Rosetta farewell with this lovely poem written by astropoet Stuart Atkinson (used here by permission).

Rosetta’s Last Letter Home

By Stuart Atkinson

And so, my final day dawns.
Just a few grains are left to drain through
The hourglass of my life.
The Comet is a hole in the sky.
Rolling, turning, a black void churning
Silently beneath me.
Down there, waiting for me, Philae sleeps,
Its bed a cold cave floor,
A quilt of sparkling hoarfrost
Pulled over its head…

I have so little time left;
I sense Death flying behind me,
I feel his breath on my back as I look down
At Ma’at, its pits as black as tar,
A skulls’s empty eye sockets staring back
At me, daring me to leave the safety
Of this dusty sky and fly down to join them,
Never to spread my wings again; never
To soar over The Comet’s tortured pinnacles and peaks,
Or play hide and seek in its jets and plumes…

I don’t want to go.
I don’t want to be buried beneath that filthy snow.
This is wrong! I want to fly on!
There is so much more for me to see,
So much more to do –
But the end is coming soon.
All I ask of you is this: don’t let me crash.
Help me land softly, kissing the ground,
Coming to rest with barely a sound
Like a leaf falling from a tree.
Don’t let me die cartwheeling across the plain,
Wings snapping, cameras shattering,
Pieces of me scattering like shrapnel
Across the ice. Let me end my mayfly life
In peace, whole, not as debris rolling uncontrollably
Into Deir el-Medina…

It’s time to go, I know.
Only hours remain until I join Philae
And my great adventure ends
So I’ll send this and say goodbye.
If I dream, I’ll dream of Earth
Turning beneath me, bathing me in
Fifty shades of blue…
In years to come I hope you’ll think of me
And smile, remembering how, for just a while,
We explored a wonderland of ice and dust
Together, hand in hand.

(c) Stuart Atkinson 2016

There It Is! Philae Lander Found

The search is over, and looking at these images, no wonder it was so hard to find the little Philae lander!

The high-resolution camera on board the Rosetta spacecraft has finally spotted Philae “wedged into a dark crack on Comet 67P/Churyumov-Gerasimenko,” the ESA team said. They also said that now, seeing the lander’s orientation, it’s clear why establishing communications was so difficult following its landing on November 12, 2014.

Close-up of the Philae lander.  Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Close-up of the Philae lander. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta, orbiting the comet and getting ready for its own demise/touchdown on 67P, focused its OSIRIS narrow-angle camera towards a few candidate sites on September 2, 2016 as the orbiter came just 2.7 km of the comet’s surface. Clearly visible in the zoomed in versions are the main body of the lander, along with two of its three legs.

“With only a month left of the Rosetta mission, we are so happy to have finally imaged Philae, and to see it in such amazing detail,” says Cecilia Tubiana of the OSIRIS camera team, the first person to see the images when they were downlinked from Rosetta on September 4.

Tubiana told Universe Today via email that Philae wasn’t too hard to find in the images. “Philae was in hiding in shadow, and as soon as we stretched the brightness to ‘see’ into the shadow, Philae was there!”

She added that nothing else about Philae’s condition has been revealed from the images so far.

The Philae lander was last seen after it first touched down at a region called Agilkia on the odd-shaped, two-lobed comet 67P. During its dramatic touchdown, the lander flew, landed, bounced and then repeated that process for more than two hours across the surface, with three or maybe four touchdowns. The harpoons that were to anchor Philae to the surface failed to fire, and scientists estimated the lander may have bounced as high as 3.2 kilometers (2 miles) before becoming wedged in the shadows of a cliff on the comet. After three days, Philae’s primary battery ran out of power and the lander went into hibernation, only to wake up again and communicate briefly with Rosetta in June and July 2015 as the comet came closer to the Sun and more power was available.

But after more than a year of silence, the Rosetta team announced in mid-August 2016 that they would no longer attempt communications with Philae.

Philae’s final location had been plotted but until yesterday, never actually seen by Rosetta’s cameras. Radio ranging data was used to narrow down the search to an area spanning a few tens of meters, and a number of potential candidate objects were identified in relatively low-resolution images taken from larger distances.

Philae close-up, labelled. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.
Philae close-up, labelled. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

Compare some of the features of the cliff in the image above to this image taken by Philae of its surroundings:

The Philae lander captured a picture of a nearby cliff, nicknamed “Perihelion Cliff”, on the nucleus of Comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/Philae/CIVA.
The Philae lander captured a picture of a nearby cliff, nicknamed “Perihelion Cliff”, on the nucleus of Comet 67P/Churyumov-Gerasimenko. Credit: ESA/Rosetta/Philae/CIVA.

“After months of work, with the focus and the evidence pointing more and more to this lander candidate, I’m very excited and thrilled that we finally have this all-important picture of Philae sitting in Abydos,” said ESA’s Laurence O’Rourke, who has been coordinating the search efforts over the last months at ESA, with the OSIRIS and SONC/CNES teams.

At 2.7 km, the resolution of the OSIRIS narrow-angle camera is about 5 cm/pixel, which is sufficient to reveal features of Philae’s 1 m-sized body and its legs.

“This wonderful news means that we now have the missing ‘ground-truth’ information needed to put Philae’s three days of science into proper context, now that we know where that ground actually is!” says Matt Taylor, ESA’s Rosetta project scientist.

An OSIRIS narrow-angle camera image taken on 2 September 2016 from a distance of 2.7 km in which Philae was definitively identified. The image has been processed to adjust the dynamic range in order to see Philae while maintaining the details of the comet's surface. Philae is located at the far right of the image, just above center. The image scale is about 5 cm/pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.
An OSIRIS narrow-angle camera image taken on 2 September 2016 from a distance of 2.7 km in which Philae was definitively identified. The image has been processed to adjust the dynamic range in order to see Philae while maintaining the details of the comet’s surface. Philae is located at the far right of the image, just above center. The image scale is about 5 cm/pixel. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

The discovery comes less than a month before Rosetta descends to the comet’s surface. On September 30, the orbiter will be sent on a final one-way mission to investigate the comet from close up, including the open pits in a region called Ma’at, where it is hoped that critical observations will help to reveal secrets of the body’s interior structure.

“Now that the lander search is finished we feel ready for Rosetta’s landing, and look forward to capturing even closer images of Rosetta’s touchdown site,” adds Holger Sierks, principal investigator of the OSIRIS camera.

The Rosetta team said they would be providing more details about the search as well as more images in the near future.

Source: ESA

Europa Clipper Team Braces For Bad News

An artist's concept of the Europa mission. The multi-year mission would conduct fly-bys of Europa designed to protect it from the extreme environment there. Image: NASA/JPL-Caltech

Jupiter’s moon Europa is a juicy target for exploration. Beneath its surface of ice there’s a warm salty, ocean. Or potentially, at least. And if Earth is our guide, wherever you find a warm, salty, ocean, you find life. But finding it requires a dedicated, and unique, mission.

If each of the bodies in our Solar System weren’t so different from each other, we could just have one or two types of missions. Things would be much easier, but also much more boring. But Europa isn’t boring, and it won’t be easy to explore. Exploring it will require a complex, custom mission. That means expensive.

NASA’s proposed mission to Europa is called the Europa Clipper. It’s been in the works for a few years now. But as the mission takes shape, and as the science gets worked out, a parallel process of budget wrangling is also ongoing. And as reported by SpaceNews.com there could be bad news incoming for the first-ever mission to Europa.

Images from NASA's Galileo spacecraft show the intricate detail of Europa's icy surface. Image: NASA/JPL-Caltech/ SETI Institute
Images from NASA’s Galileo spacecraft show the intricate detail of Europa’s icy surface. Image: NASA/JPL-Caltech/ SETI Institute

At issue is next year’s funding for the Europa Clipper. Officials with NASA’s Outer Planets Assessment Group are looking for ways to economize and cut costs for Fiscal Year (FY) 2017, while still staying on track for a mission launch in 2022.

According to Bob Pappalardo, Europa Clipper’s project scientist at the Jet Propulsion Laboratory, funding will be squeezed in 2017. “There is this squeeze in FY17 that we have,” said Pappalardo. “We’re asking the instrument teams and various other aspects of the project, given that squeeze, what will it take in the out years to maintain that ’22 launch.”

As for the actual dollar amounts, there are different numbers floating around, and they don’t all jive with each other. In 2016, the Europa Mission received $175 million from Congress, but in the administration’s budget proposal for 2017, they only requested $49.6 million.

There’s clearly some uncertainty in these numbers, and that uncertainty is reflected in Congress, too. An FY 2017 House bill earmarks $260 million for the Europa mission. And the Senate has crafted a bill in support of the mission, but doesn’t allocate any funding for it. Neither the Senate nor the Congress has passed their bills.

This is not the first time that a mis-alignment has appeared between NASA and the different levels of government when it comes to funding. It’s pretty common. It’s also pretty common for the higher level of funding to prevail. But it’s odd that NASA’s requested amount is so low. NASA’s own low figure of $49.6 million is fuelling the perception that they themselves are losing interest in the Europa Clipper.

But SpaceNews.com is reporting that that is not the case. According to Curt Niebur, NASA’s program scientist for the Europa mission, “Everyone is aware of how supportive and generous Congress has been of this mission, and I’m happy to say that that support and encouragement is now shared by the administration, and by NASA as well. Everybody is on board the Europa Clipper and getting this mission to the launch pad as soon as our technical challenges and our budget will allow.”

What all this seems to mean is that the initial science and instrumentation for the mission will be maintained, but no additional capacity will be added. NASA is no longer considering things like free-flying probes to measure the plumes of water ice coming off the moon. According to Niebur, “The additional science value provided by these additions was not commensurate with the associated impact to resources, to accommodation, to cost. There just wasn’t enough science there to balance that out.”

The Europa Clipper will be a direct shot to Europa, without any gravity assist on the way. It will likely be powered by the Space Launch System. The main goal of the mission is to learn more about the icy moon’s potential habitability. There are tantalizing clues that it has an ocean about 100 km thick, kept warm by the gravity-tidal interactions with Jupiter, and possibly by radioactive decay in the rocky mantle. There’s also some evidence that the composition of the sub-surface ocean is similar to Earth’s.

Mars is a fascinating target, no doubt about it. But as far as harbouring life, Europa might be a better bet. Europa’s warm, salty ocean versus Mar’s dry, cold surface? A lot of resources have been spent studying Mars, and the Europa mission represents a shift in resources in that regard.

It’s unfortunate that a few tens of million dollars here or there can hamper our search for life beyond Earth. But the USA is a democracy, so that’s the way it is. These discrepancies and possible disputes between NASA and the different levels of government may seem disconcerting, but that’s the way these things get done.

At least we hope it is.

Sources: SpaceNews.com

Europa on Universe Today:

SpaceNews.com

Apollo 11 Landing 47 Years Ago; See it Through New Eyes

Looking for a way to commemorate the 47th anniversary of the Apollo 11 mission landing on the Moon? Here are a few different ways look back on this historic event and take advantage of advances in technology or new data.

Below is a video that uses data from the Lunar Reconnaissance Orbiter and its amazing suite of cameras, offering a side-by-side view of Apollo 11’s descent, comparing footage originally shot from the Eagle lunar module’s window with views created from reconstructed LRO imagery. This is a fun way to re-live the landing — 1202 alarms and all — while seeing high definition views of the lunar surface.

The National Air and Space Museum in Washington, DC has a special way to mark the Apollo 11 anniversary. They have posted online high-resolution 3-D scans of the command module Columbia, the spacecraft that carried astronauts Neil Armstrong, Buzz Aldrin and Michael Collins to the Moon. This very detailed model allows you to explore the entire spacecraft’s interior, which, if you’ve ever visited the Air & Space museum and seen Columbia in person, you probably know is a tremendous ‘upgrade,’ since you can only see a portion of the interior through couple of small hatches and windows. The Smithsonian is also making the data files of the model available for download so it can be 3-D printed or viewed with virtual-reality goggles. Find all the details here.

While 3D scanning the Apollo 11 Command Module, museum staff uncovered writing on the interior walls of the module.The main control panel of the spacecraft contains essential switches and indicators that had to be referred to and operated during the most crucial aspects of the flight. Numbers and references written by hand onto the panel can be checked against the audio and written transcripts from the mission to provide a more vivid picture of just what transpired. Credit: Smithsonian Institution.
While 3D scanning the Apollo 11 Command Module, museum staff uncovered writing on the interior walls of the module.The main control panel of the spacecraft contains essential switches and indicators that had to be referred to and operated during the most crucial aspects of the flight. Numbers and references written by hand onto the panel can be checked against the audio and written transcripts from the mission to provide a more vivid picture of just what transpired. Credit: Smithsonian Institution.

Here’s a remastered version of the original mission video as aired in July 1969 depicting the Apollo 11 astronauts conducting several tasks during the moonwalk (EVA) operations on the surface of the moon, which lasted approximately 2.5 hours.

If you’re pressed for time, here’s a quick look at the entire Apollo 11 mission, all in just 100 seconds from Spacecraft Films:

Here’s a very cool detailed look at the Apollo 11 launch in ultra-slow motion, with narration:

Enjoy, and happy anniversary!

Juno and the Deep Space Network: Bringing The Data Home

NASA's Deep Space Network is responsible for communicating with Juno as it explores Jupiter. Pictured is the Goldstone facility in California, one of three facilities that make up the Network. Image: NASA/JPL

The much-anticipated arrival of NASA’s Juno spacecraft at Jupiter is almost here. Juno will answer many questions about Jupiter, but at the cost of a mission profile full of challenges. One of those challenges is communicating with Juno as it goes about its business in the extreme radiation environment around Jupiter. Communications with Juno rely on a network of radio dishes in strategic locations around the world, receivers cooled to almost absolute zero, and a team of dedicated people.

The task of communicating with Juno falls to NASA’s Deep Space Network (DSN), a system of three facilities around the world whose job it is to communicate with all of the spacecraft that venture outside Earth’s vicinity. That network is in the hands of Harris Corporation, experts in all sorts of communications technologies, who are contracted to run these crucial facilities.

The person responsible is Sonny Giroux, DSN Program Manager at Harris. In an interview with Universe Today, Sonny explained how the DSN works, and describes some of the challenges the Juno mission poses.

“The network itself consists of three primary communication facilities; one in Goldstone, California, out in the middle of the Mojave Desert. The other facility is in Madrid Spain, and the third is in Canberra Australia. These three facilities are separated by about 120 degrees, which means that any spacecraft that’s out there is capable of communicating with Earth at any point in time,” said Giroux.

Deep Space Network facilities are positioned 120 degrees apart to give total sky coverage. Image: NASA/JPL
Deep Space Network facilities are positioned 120 degrees apart to give total sky coverage. Image: NASA/JPL

“Each facility has several antennae, the largest of which is 70 m in diameter, about the size of a football field. These antennae can be aimed at any angle. Then there are smaller antennae at 34 m in size, and we have a number of those at each complex.”

According to Giroux, the dishes can work independently, or be arrayed together, depending on requirements. At the DSN website, you can see which antenna is communicating with which of NASA’s missions at any time.

At the Deep Space Network's website, you can see which of the network's dishes are communicating with which spacecraft. Image: NASA/JPL/DSN
At the Deep Space Network’s website, you can see which of the network’s dishes are communicating with which spacecraft. During Juno’s mission, you can expect to see its name beside many of the dishes. Image: NASA/JPL/DSN

Juno is a complex mission with a dynamic orbit, and Jupiter itself is an extreme radiation environment. Juno will have to weave its way through Jupiter’s radiation belts in its polar orbit. According to Giroux, this creates additional communication problems for the DSN.

“As Juno goes into its orbital insertion phase, the spacecraft will have to turn away from Earth. Our signal strength will drop dramatically,” Giroux said. “In order to capture the data that Juno is going to send, we’re going to array all of our antennae at Goldstone and Canberra together.”

Juno's orbit around Jupiter will be highly elliptical as it contends with Jupiter's powerful radiation belts. Image: NASA/JPL
Juno’s orbit around Jupiter will be highly elliptical as it contends with Jupiter’s powerful radiation belts. Image: NASA/JPL

This means that a total of 9 antennae will be arrayed in two groups to communicate with Juno. The 4 dishes at the Canberra, Australia site will be arrayed together, and the 5 dishes at the Goldstone, California site will be arrayed together.

This combined strength is crucial to the success of Juno during JOI (Juno Orbital Insertion.) Said Giroux, “We need to bring Juno’s signal strength up to the maximum amount that we can. We need to know what phases Juno is in as it executes its sequence.”

“We’ve never arrayed all of our antennae together like this. This is a first for Juno.”

This combined receiving power is a first for the DSN, and another first for the Juno mission. “We’ve never arrayed all of our antennae together like this,” said Giroux. “This is a first for Juno. We’ve done a couple together before for a spacecraft like Voyager, which is pretty far out there, but never all of them like this. In order to maximize our success with Juno, we’re arraying everything. It will be the first time in our history that we’ve had to array together all of our assets.”

Arraying multiple dishes together provides another benefit too, as Giroux told us. “The DSN is able to have two centres view the spacecraft at the same time. If one complex goes down for whatever reason, we would have the other one still available to communicate with the spacecraft.”

The most visible part of the DSN are the antennae themselves. But the electronics at the heart of the system are just as important. And they’re unique in the world, too.

“We cool them down to almost absolute zero to remove all of the noise out.”

“We have very specialized receivers that are built for the DSN. We cool them down to almost absolute zero to remove all of the noise out. That allows us to really focus on the signal that we’re looking for. These are unique to DSN,” said Giroux.

Juno itself has four different transmitters on-board. Some are able to transmit a lot of data, and some can transmit less. These will be active at different times, and form part of the challenge of communicating with Juno. Giroux told us, “Juno will be cycling through all four as it performs its insertion and comes back out again on the other side of the planet.”

“We just get the ones and zeroes…”

The DSN is a communications powerhouse, the most powerful tool ever devised for communicating in space. But it doesn’t handle the science. “DSN for the most part will receive whatever the spacecraft is sending to us. We just get the ones and zeroes and relay that data over to the mission. It’s the mission that breaks that down and turns it into science data.”

The three facilities that make up the DSN. Each is separated by 120 degrees. Image: NASA/JPL
The three facilities that make up the DSN. Each is separated by 120 degrees. Image: NASA/JPL

Juno will be about 450 million miles away at Jupiter, which is about a 96 minute round trip for any signal. That great distance means that Juno’s signal strength is extremely weak. But it won’t be the weakest signal that the DSN contends with. A testament to the strength of the DSN is the fact that it’s still receiving transmissions from the Voyager probes, which are transmitting at miniscule power levels. According to Giroux, “Voyager is at a billionth of a billionth of a watt in terms of its signal strength.”

Juno is different than other missions like New Horizons and Voyager 1 and 2. Once Juno is done, it will plunge into Jupiter and be destroyed. So all of its data has to be captured quickly and efficiently. According to Giroux, that intensifies the DSN’s workload for the Juno mission.

“Juno is different. We’ve got to make sure to capture that data regularly.”

“Juno has a very defined mission length, with start and stop dates. It will de-orbit into Jupiter when it’s finished its science phase. That’s different than other missions like New Horizons where it has long periods where its able to download all of the data it’s captured. Juno is different. We’ve got to make sure to capture that data regularly. After JOI we’ll be in constant communication with Juno to make sure that’s happening.”

To whet our appetites, the ESO has released these awesome IR images of Jupiter, taken by the VLT. Credit: ESO
In preparation for the arrival of Juno, the ESO’s released stunning IR images of Jupiter, taken by the VLT. Credit: ESO

The next most important event in Juno’s mission is its orbital insertion around Jupiter, and Giroux and the team are waiting for that just like the rest of us are. “Juno’s big burn as it slows itself enough to be captured by Jupiter is a huge milestone that we’ll be watching for,” said Giroux.

The first signal that the DSN receives will be a simple three second beep. “Confirmation of the insertion will occur at about 9:40 p.m.,” said Giroux. That signal will have been sent about 45 minutes before that, but the enormous distance between Earth and Jupiter means a long delay in receiving it. But once we receive it, it will tell us that Juno has finished firing its engine for orbital insertion. Real science data, including images of Jupiter, will come later.

“We want to see a successful mission as much as anybody else.”

All of the data from the DSN flows through the nerve center at NASA’s Jet Propulsion Laboratory. When the signal arrives indicating that Juno has fired its engines successfully, Giroux and his team will be focussed on that facility, where news of Juno’s insertion will first be received. And they’ll be as excited as the rest of us to hear that signal.

“We want to see a successful mission as much as anybody else. Communicating with spacecraft is our business. We’ll be watching the same channels and websites that everybody else will be watching with bated breath,” said Giroux.

“Its great to be a part of the network. It’s pretty special.”

Launch Of World’s Largest Rocket Postponed

Mission art for NROL-37. The Delta-IV Heavy kind of looks like three cigarettes. Credit: United Launch Alliance

Next weekend’s launch of the Delta-4 Heavy has been postponed. The launch, which was to take place at Cape Canaveral, has been delayed due to unspecified payload issues. The launch is for the National Reconnaissance Office, a fairly secretive branch of the U.S. Government that’s in charge of the nation’s spy satellites. As such, they aren’t revealing too many details about the launch, or the postponement.

The Delta-4 Heavy rocket is a combination of three booster cores from the Delta Medium. Each one of these cores is a liquid hydrogen-fuelled engine that forms the Delta-4 Medium’s first stage. They’re mounted together to make a trio of engines, capped with a cryogenic upper stage.

The Delta-4 Heavy weighs 725000 kg (1.6 million lbs.) when it’s fully fuelled. It’s 71.6 meters (235 ft.) tall, and when it’s ignited it unleashes a whopping 2.1 million lbs. of thrust.

A Delta-4 Heavy blasting off in 2013.
A Delta-4 Heavy blasting off in 2013.

This configuration makes it the USA’s largest rocket, and it carries critical payloads for the government. These include not only spy satellites, but also an un-crewed test flight of the Orion Multi-Purpose Crew Vehicle.

The cancelled mission, named NROL-37, was supposed to lift an Orion 9 satellite into orbit. Orion satellites are signal interception satellites, and are placed in geo-stationary orbits to collect radio emissions. One of the Orion satellites is believed to be “… the largest satellite in the world,” according to Bruce Carlson, NRO Director. This probably refers to the size of the satellites antenna, which is over 100m (330ft.) in diameter.

The Delta-4 Heavy (D4H) is considered the largest rocket in the world. The D4H can lift a whopping 28,790 kg into Low Earth Orbit (LEO.) Contemporaries like the Ariane 5 (ECA & ES versions) can lift 21,000 kg into LEO.

It won’t be the most powerful rocket for much longer though. The upcoming Falcon Heavy from SpaceX will lift an enormous 54,400 kg into LEO. Also being developed is the US Space Launch System (SLS), which, in its Block2 configuration, will lift 130,700 kg. The Chinese are in on the most powerful rocket game too, with their Long March 9 rocket. Under development now, it is projected to lift 130,000 kg into LEO, just a shade less than the SLS.

Oddly enough, the old Saturn V could lift 140,000 kg, putting all its successors to shame. The Saturn V was developed for the Apollo Program, and was also used to launch Skylab. Saturn V was in use from 1967 to 1973. To date, the Saturn V is the only rocket capable of transporting human beings beyond LEO.

A Saturn IV launching the historic Apollo 11 mission. Image: NASA/Michael Vuijlsteke. Public Domain image.
A Saturn IV launching the historic Apollo 11 mission. Image: NASA/Michael Vuijlsteke. Public Domain image.

As for the cancelled launch, no date has been set yet for the next launch. Once it is launched, it will mark the 9th D4H configuration to fly, and the 32nd Delta 4 launch since 2002. It will also be the 6th time the D4H has launched for the NRO.

Universe Today’s Ken Kremer is at Cape Canaveral for this launch, and will report on it, and no doubt provide some stunning photos. Check back with us to see Ken’s coverage.

Gender Generates Biological Challenges For Long Duration Spaceflight

Astronaut Bruce McCandless untethered above the Earth on Feb. 12, 1984. (NASA)

Men and women look exactly the same when ensconced in a space suit. But female physiology is different from male physiology in significant ways. And those differences create challenges when those bodies have to endure long duration spaceflight, such as during proposed missions to Mars.

Some of the effects of spending a long time in space are well-known, and affect both genders. Exposure to microgravity creates most of these effects. With less gravity acting on the body, the spine lengthens, causing aches and pains. Lowered gravity also causes bone loss, as the skeletal system loses important minerals like nitrogen, calcium, and phosphorous. And the muscles atrophy, since they aren’t used as much.

Microgravity makes the body sense that it is carrying too much fluid in the chest and head, and the body tries to eliminate it. Astronauts feel less thirst, and over time the body’s fluid level decreases. With less fluid, the heart doesn’t have to work as hard. The heart’s a muscle, so it atrophies much like other muscles. The fluid level causes other changes too. Fluid accumulates in the face, causing “Puffy Face Syndrome.”

But some problems are specific to gender, and Gregor Reid, PhD, and Camilla Urbaniak, PhD Candidate at the Shulich School of Medicine and Dentistry are focusing on one fascinating and important area: the human microbiome. Female and male microbiomes are different, and they are affected by microgravity, and other aspects of space travel, in different ways.

The human microbiome is the trillions of microorganisms living on the human body and in the gut. They are important for digestion and nutrition, and also for the immune system. A healthy human being requires a healthy microbiome. If you’ve ever travelled to another part of the world, and had stomach problems from the food there, those can be caused by changes in your microbiome.

Research on astronauts shows that spending time in space changes different aspects of the microbe population in a human being. Some of these changes cause health complications when the microbes responsible for digestion and immunity are affected. Reid says that the microbe has to be understood as its own organ, and we need a better understanding of how to keep that organ healthy. Keeping the microbiome healthy will keep the astronaut healthy, and reduce the risk of disease.

After conducting a literature review, the two researchers suggested that astronauts should incorporate probiotics and fermented foods into their diet to boost the health of their microbiome. They think that astronauts should have access to probiotic bacteria that they can prepare food with. Urbaniak acknowledges that female astronauts don’t want to be limited to shorter duration space flights, and using probiotics to manipulate the microbiome of female astronauts will allow them to withstand longer voyages.

Reid and Urbaniak also highlight some other problems facing women in long distance space voyages. If a female astronaut is diagnosed with breast cancer, ovarian cancer, or a urinary tract infection during an extended journey in space, any treatment involving antibiotics would be problematic. The antibiotics themselves may work less effectively due to changes in the microbiome.

Research on male astronauts has already shown a decrease in beneficial microorganism in the gut, and in the nasal and oral pathways. Those decreases were noted in both long and short duration stays in space. The research also shows an increase in harmful microorganisms such as E. coli. and staphylococcus. But so far, the same research hasn’t been done on female astronauts.

It’s well understood that women and men have different microbial profiles, and that their microbiomes are different. But there’s a lot we still don’t know about the specifics. This is an important area of research for NASA. According to Urbaniak, though, previous studies of the human microbiome and its response to space travel have focused on male astronauts, not female astronauts. Reid and Urbaniak are hopeful that their work will start a conversation that results in a greater understanding of the effects of space travel on women.