Astrophoto: Galactic Relaxation

Ah, the good life! “Probably one of my favorite things to do is sit outside underneath the stars,” said astrophotographer Harley Grady from Texas, who took this self- and galactic-portrait on June 19, 2012. Grady said this is a single 30 second exposure, with a red LED light to illuminate himself and 6″ Dob telescope.

How many of our other readers could take a similar picture of themselves?

Shot with a Nikon D700,Tokina 16-28mm f2.8 Lens, ISO 3200, WB 4000K.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Image caption: Galactic Relaxing. Credit and copyright: Harley Grady 2012

Galactic Gong – Milky Way Struck and Still Ringing After 100 Million Years

Small Magellanic Cloud
Small Magellanic Cloud

When galaxies collide, stars are thrown from orbits, spiral arms are stretched and twisted, and now scientists say galaxies ring like a bell long after the cosmic crash.

A team of astronomers from the United States and Canada say they have heard echoes of that ringing, possible evidence of a galactic encounter 100 million years ago when a small satellite galaxy or dark matter object passed through the Milky Way Galaxy; close to our position in the galaxy, as if a rock were thrown into a still pond causing the stars to bounce up and down on the waves. Their results were published in the Astrophysical Journal Letters.

“We have found evidence that our Milky Way had an encounter with a small galaxy or massive dark matter structure perhaps as recently as 100 million years ago,” said Larry Widrow, professor at Queen’s University in Canada. “We clearly observe unexpected differences in the Milky Way’s stellar distribution above and below the Galaxy’s midplane that have the appearance of a vertical wave — something that nobody has seen before.”

Astronomers took observations from about 300,000 nearby stars in the Sloan Digital Sky Survey. Stars move up and down at 20-30 kilometers per second while see-sawing around the galaxy at 220 kilometers per second. By comparison, the International Space Station putters around Earth at 7.71 kilometers per second; Voyager 1, the fastest man-made object, currently is leaving the solar system at about 17.46 kilometers per second. Widrow and colleagues at the University of Kentucky, The University of Chicago and Fermi National Accelerator Laboratory found that the positions of nearby stars is not quite as regular as previously thought. The team noticed a small but statistically significant difference in the distribution of stars above and below the midplane of the Milky Way.

“Our part of the Milky Way is ringing like a bell,” said Brian Yanny, of the Department of Energy’s Fermilab. “But we have not been able to identify the celestial object that passed through the Milky Way. It could have been one of the small satellite galaxies that move around the center of our galaxy, or an invisible structure such as a dark matter halo.”

Susan Gardner, professor of physics at the University of Kentucky added, “The perturbation need not have been a single isolated event in the past, and it may even be ongoing. Additional observations may well clarify its origin.”

Other possibilities considered for the variations were the effect of interstellar dust or simply the way the stars were selected in the survey. But as those events failed to explain fully the observations, the astronomers began to explore possible recent events in the history of the galaxy.

More than 20 visible satellite galaxies circle the Milky Way. Invisible satellites made up of dark matter, hypothetical matter that cannot be seen but is thought to make up a majority of the mass of the Universe, might also orbit our galaxy. Scientists believe that most of the mass orbiting the galaxy is in the form of dark matter. Using computer simulations to explore the effects of a small galaxy or dark matter structure passing through the disk of the Milky Way, the scientists developed a clearer picture of the see-saw effects they were seeing.

In terms of the nine-billion lifetime of the Milky Way Galaxy, the effects are short-lived. This part of the galaxy has been “ringing” for 100 million years and will continue for 100 million years more as the up-and-down motion dissipates, say the astronomers – unless we are hit again.

Image caption: The Small Magellanic Cloud is one of 20 visible satellite galaxies that orbit the Milky Way Galaxy. Astronomers report that a smaller counterpart or dark matter object passed through the Milky Way near our position about 100 million years ago.

Milky Way to Concordia Base… Come In, Concordia Base…

This stunning photo of the Milky Way was captured from what may be the coldest and most isolated research facility on Earth: the French-Italian Concordia Base station, located at 3,200 meters (nearly 10,500 feet) altitude on the Antarctic plateau, 1,670 km (1,037 miles) from the geographic south pole.

Taken by Dr. Alexander Kumar, a doctor, researcher and photographer who’s been living at the Base since January, the image shows the full beauty of the sky above the southern continent — a sky that doesn’t see the Sun from May to August.

During the winter months no transportation can be made to or from Concordia Base — no deliveries or evacuations, not for any reason. The team there is truly alone, very much like future space explorers will one day be. This isolation is one reason that Concordia is used by ESA for research for missions to Mars.

Of course, taking photos outside is no easy task. Temperatures outside the Base in winter can drop down to -70ºC (-100ºF)!

 Still, despite the isolation, darkness and cold, Dr. Kumar finds inspiration in his surroundings.

“The dark may cause fear, but if you take the time to adapt and look within it, you never know what you may find – at the bottom of the ocean, in the night sky, or under your bed in the middle of the night,” writes Kumar on the Concordia blog. “If you don’t overcome your fear of the ‘unknown’ and ‘monsters’, you will never see marvellous secrets hidden in the dark.

“I hope this photo inspires you too for the days, weeks and months ahead. In terms of the space exploration we are only beginning. We have to continue pushing out into the great beyond.”

Read more of the “Chronicles from Concordia” here.

 Image credits: ESA/IPEV/PNRA – A. Kumar

It’s Inevitable: Milky Way, Andromeda Galaxy Heading for Collision

This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth's night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. (Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger)

Astronomers have known for years that our Milky Way and its closest neighbor, the Andromeda galaxy, (a.k.a M31) are being pulled together in a gravitational dance, but no one was sure whether the galaxies would collide head-on or glide past one another. Precise measurements from the Hubble Space Telescope have now confirmed that the two galaxies are indeed on a collision course, headed straight for a colossal cosmic collision.

No need to panic for the moment, as this is not going to happen for another four billion years. And while astronomers say it is likely the Sun will be flung into a different region of our galaxy, Earth and the solar system will probably just go along for the ride and are in no danger of being destroyed.

“In the ‘worst-case-scenario’ simulation, M31 slams into the Milky Way head-on and the stars are all scattered into different orbits,” said team member Gurtina Besla of Columbia University in New York, N.Y. “The stellar populations of both galaxies are jostled, and the Milky Way loses its flattened pancake shape with most of the stars on nearly circular orbits. The galaxies’ cores merge, and the stars settle into randomized orbits to create an elliptical-shaped galaxy.”

The simulations Besla was talking about came from precise measurements by Hubble, painstakingly determining the motion of Andromeda, looking particularly at the sideways motion of M31, which until now has not been able to be done.

“This was accomplished by repeatedly observing select regions of the galaxy over a five- to seven-year period,” said Jay Anderson of STScI.

Right now, M31 is 2.5 million light-years away, but it is inexorably falling toward the Milky Way under the mutual pull of gravity between the two galaxies and the invisible dark matter that surrounds them both.

Of course, the collision is not like a head-on between two cars that takes place in an instant. Hubble data show that it will take an additional two billion years after the encounter for the interacting galaxies to completely merge under the tug of gravity and reshape into a single elliptical galaxy similar to the kind commonly seen in the local universe.

Astronomers said the stars inside each galaxy are so far apart that they will not collide with other stars during the encounter. However, the stars will be thrown into different orbits around the new galactic center. Simulations show that our solar system will probably be tossed much farther from the galactic core than it is today.

There’s also the complication of M31’s small companion, the Triangulum galaxy, M33. This galaxy will join in the collision and perhaps later merge with the M31/Milky Way pair. There is a small chance that M33 will hit the Milky Way first.

The astronomers working on this project said that they were able to make the precise measurements because of the upgraded cameras on Hubble, installed during the final servicing mission. This gave astronomers a long enough time baseline to make the critical measurements needed to nail down M31’s motion.

The Hubble observations and the consequences of the merger are reported in three papers that will appear in an upcoming issue of the Astrophysical Journal.

This series of photo illustrations shows the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy. Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas, and A. Mellinger

First Row, Left: Present day.
First Row, Right: In 2 billion years the disk of the approaching Andromeda galaxy is noticeably larger.
Second Row, Left: In 3.75 billion years Andromeda fills the field of view.
Second Row, Right: In 3.85 billion years the sky is ablaze with new star formation.
Third Row, Left: In 3.9 billion years, star formation continues.
Third Row, Right: In 4 billion years Andromeda is tidally stretched and the Milky Way becomes warped.
Fourth Row, Left: In 5.1 billion years the cores of the Milky Way and Andromeda appear as a pair of bright lobes.
Fourth Row, Right: In 7 billion years the merged galaxies form a huge elliptical galaxy, its bright core dominating the nighttime sky.

Source: HubbleSite See more images and videos here and here.

Ghostly Jets Haunt the Milky Way’s Black Hole

This artist's conception shows an edge-on view of the Milky Way galaxy and newly discovered gamma-ray jets extending from the central black hole. Credit: David A. Aguilar (CfA)

[/caption]

A ghost is haunting the Milky Way’s central black hole, revealing the galactic nucleus was likely much more active in the past than it is now. Scientists using the Fermi space telescope have found faint apparitions of what must have been powerful gamma-ray jets emanating from our galaxy’s center.

“These faint jets are a ghost or after-image of what existed a million years ago,” said Meng Su, an astronomer at the Harvard-Smithsonian Center for Astrophysics (CfA), and lead author of a new paper in the Astrophysical Journal. “They strengthen the case for an active galactic nucleus in the Milky Way’s relatively recent past.”

This is the first time this type of jet has been detected from the Milky Way’s black hole. Scientists know that other active galaxies have cores that glow brightly, powered by supermassive black holes swallowing material, and often spit twin jets in opposite directions.

The two beams, or jets found by Fermi observations extend from the galactic center to a distance of 27,000 light-years above and below the galactic plane.
The newfound jets may be related to mysterious gamma-ray bubbles that Fermi detected in 2010. Those bubbles also stretch 27,000 light-years from the center of the Milky Way. However, where the bubbles are perpendicular to the galactic plane, the gamma-ray jets are tilted at an angle of 15 degrees. This may reflect a tilt of the accretion disk surrounding the supermassive black hole.

“The central accretion disk can warp as it spirals in toward the black hole, under the influence of the black hole’s spin,” explained co-author Douglas Finkbeiner of the CfA. “The magnetic field embedded in the disk therefore accelerates the jet material along the spin axis of the black hole, which may not be aligned with the Milky Way.”

The two structures also formed differently. The jets were produced when plasma squirted out from the galactic center, following a corkscrew-like magnetic field that kept it tightly focused. The gamma-ray bubbles likely were created by a “wind” of hot matter blowing outward from the black hole’s accretion disk. As a result, they are much broader than the narrow jets.

Both the jets and bubbles are powered by inverse Compton scattering. In that process, electrons moving near the speed of light collide with low-energy light, such as radio or infrared photons. The collision increases the energy of the photons into the gamma-ray part of the electromagnetic spectrum.

The discovery leaves open the question of when the Milky Way was last active. A minimum age can be calculated by dividing the jet’s 27,000-light-year length by its approximate speed. However, it may have persisted for much longer.

“These jets probably flickered on and off as the supermassive black hole alternately gulped and sipped material,” said Finkbeiner.

It would take a tremendous influx of matter for the galactic core to fire up again. Finkbeiner estimates that a molecular cloud weighing about 10,000 times as much as the Sun would be required.

“Shoving 10,000 suns into the black hole at once would do the trick. Black holes are messy eaters, so some of that material would spew out and power the jets,” he said.

Source: CfA

Rogue Planets Could Drive By And Scoop Up Life

Artist's rendering of an Earth-sized rogue planet approaching a star. Credit: Christine Pulliam (CfA)

[/caption]

Free-floating “rogue” planets may occasionally dip into the inner Solar System, picking up dust containing organic compounds — a.k.a. the ingredients for life — and carry it back out into the galaxy, according to new research by Professor Chandra Wickramasinghe, Director of the University of Buckingham Centre for Astrobiology in the UK.

Rogue planets are thus called because they are not in orbit around a star. Either forcibly ejected from a solar system or having formed very early on in the Universe — even within a few million years after the Big Bang, the team proposes — these vagrant worlds may vastly outnumber stars. In fact, it’s been suggested there are as much as 100,000 times more rogue planets than stars in our Milky Way galaxy alone!

Read: Rogue Planets Can Find Homes Around Other Stars

Professor Wickramasinghe — a proponent of the panspermia hypothesis whereby the ingredients for life can be transported throughout the galaxy on dust, comets, and perhaps even planets — and his team have suggested in a paper published in the journal Astrophysics and Space Science that Earth-sized rogue planets could pass through the inner Solar System, possibly as often as once every 25 million years on average. Like a cosmic drive-thru these planets could gather zodiacal dust from the plane of the Solar System during their pass, thus picking up organic compounds along the way.

The planets would then take the material gathered from one solar system and possibly bring it into another, serving as a type of interstellar cross-pollinator.

Wickramasinghe’s team propose that, by this process, there could be more life-bearing, Earth-sized planets existing between the stars than orbiting around them — a lot more. Based on their estimates there may be as much as a few hundred thousand billion such worlds in our galaxy… that’s several thousand for every star.

It will be interesting to see how this idea is received, but it definitely is an intriguing concept. As we hunt for the “Holy Grail” of life-friendly exoplanets around other stars, they may be drifting through the darkness in number, hiding in the spaces between.

Newly Discovered Satellite Galaxies: Another Blow Against Dark Matter?

Arp 302 consists of a pair of very gas-rich spiral galaxies in their early stages of interaction. Credit: NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration, and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

[/caption]

A group of astronomers have discovered a vast structure of satellite galaxies and clusters of stars surrounding our Milky Way galaxy, stretching out across a million light years. The team says their findings may signal a “catastrophic failure of the standard cosmological model,” challenging the existence of dark matter. This joins another study released last week, where scientists said they found no evidence for dark matter.

PhD student Marcel Pawlowski and astronomy professor Pavel Kroupa from the University of Bonn in Germany are no strangers to the study – and skepticism — of dark matter. Together the two have a blog called The Dark Matter Crisis, and in a 2009 paper that also studied satellite galaxies, Kroupa declared that perhaps Isaac Newton was wrong. “Although his theory does, in fact, describe the everyday effects of gravity on Earth, things we can see and measure, it is conceivable that we have completely failed to comprehend the actual physics underlying the force of gravity,” he said.

While conventional cosmology models for the origin and evolution of the universe are based on the presence of dark matter, invisible material thought to make up about 23% of the content of the cosmos, this model is backed up by recent observations of the Cosmic Microwave Background that estimate the Universe is made of 4% regular baryonic matter, 73% dark energy and the remaining is dark matter.

But dark matter has never been detected directly, and in the currently accepted model – the Lambda-Cold Dark Matter model – the Milky Way is predicted to have far more satellite galaxies than are actually seen.

Pawlowski, Kroupa and their team say they have found a huge structure of galaxies and star clusters that extends as close as 33,000 light years to as far away as one million light years from the center of the galaxy, existing in right angles to the Millky Way, or in a polar structure both ‘north’ and ‘south’ of the plane of our galaxy.

This could be the ‘lost’ matter everyone has been searching for.

They used a range of sources to try and compile this new view of exactly what surrounds our galaxy, employing twentieth century photographic plates and images from the robotic telescope of the Sloan Deep Sky Survey. Using all these data they assembled a picture that includes bright ‘classical’ satellite galaxies, more recently detected fainter satellites and the younger globular clusters.

Altogether, it forms a huge structure.

“Once we had completed our analysis, a new picture of our cosmic neighbourhood emerged,” said Pawlowski.

The team said that various dark matter models struggle to explain what they have discovered. “In the standard theories, the satellite galaxies would have formed as individual objects before being captured by the Milky Way,” said Kroupa. “As they would have come from many directions, it is next to impossible for them to end up distributed in such a thin plane structure.”

Many astronomers, including astrophysicist Ethan Siegel in his Starts With a Bang blog, say the big picture of dark matter does a good job of explaining the structure of the Universe.

Siegel asks if any studies refuting dark matter “allow us to get away with a Universe without dark matter in explaining large-scale structure, the Lyman-alpha forest, the fluctuations in the cosmic microwave background, or the matter power spectrum of the Universe? The answers, at this point, are no, no, no, and no. Definitively. Which doesn’t mean that dark matter is a definite yes, and that modifying gravity is a definite no. It just means that I know exactly what the relative successes and remaining challenges are for each of these options.”

However, via Twitter today Pawlowski said, “Unfortunately the big picture of dark matter being reportedly fine only helps if looking from far away or with broken glasses.”

One explanation for how this structure formed is that the Milky Way collided with another galaxy in the distant past.

“The other galaxy lost part of its material, material that then formed our Galaxy’s satellite galaxies and the younger globular clusters and the bulge at the galactic centre.” said Pawlowski. “The companions we see today are the debris of this 11 billion year old collision.”

The team wrote in their paper: “If all the satellite galaxies and young halo clusters have been formed in an encounter between the young Milky Way and another gas-rich galaxy about 10-11 Gyr ago, then the Milky Way does not have any luminous dark-matter substructures and the missing satellites problem becomes a catastrophic failure of the standard cosmological model.”

“We were baffled by how well the distributions of the different types of objects agreed with each other,” said Kroupa. “Our model appears to rule out the presence of dark matter in the universe, threatening a central pillar of current cosmological theory. We see this as the beginning of a paradigm shift, one that will ultimately lead us to a new understanding of the universe we inhabit.”

Read the team’s paper.

Source: Royal Astronomical Society

Grab a seat for the Celestial Lights show!

Ole's cameras capture shimmering sheets of aurora over the Arctic. (© Ole C. Salomonsen)


Painstakingly assembled from over 150,000 digital photos taken over the course of eight months, this stunning time-lapse video of aurora-filled Arctic skies is the latest creation by photo/video artist Ole C. Salomonsen. Take a moment, turn up the sound, sit back and enjoy the show!

This is Ole’s second video project. The footage was shot on location in parts of Norway, Finland and Sweden from September 2011 to April 2012, and shows the glorious effects that the Sun’s increasing activity has had on our planet’s upper atmosphere.

Ole writes on his Vimeo page:

The video is a merge of two parts; the first part contains some more wild and aggressive auroras, as well as a few Milky Way sequences, hence either auroras are moving fast because they are or they are fast due to motion of the Milky Way / stars. Still, some of the straight-up shots are very close to real-time speed — although auroras mostly are slower, she can also be FAST!

The second part has some more slow and majestic auroras, where I have focused more on composition and foreground. The music should give you a clear indication of where you are.

[/caption]

The music was provided by Norwegian composer Kai-Anders Ryan.

Ole’s “hectic” aurora season is coming to a close now that the Sun is rising above the horizon in the Arctic Circle, and he figured that it was a good time to release the video. It will also be available on 4K Digital Cinema on request.

“Hope you like the video, and that you by watching it are able to understand my fascination and awe for this beautiful celestial phenomenon,” says Ole.

You can follow Ole’s work on Facebook at facebook.com/arcticlightphoto, and check out his website here.

Video © Ole C. Salomonsen. Music by Kai-Anders Ryan.

The Case of the Missing Dark Matter

Artist's impression of dark matter surrounding the Milky Way. (ESO/L. Calçada)

[/caption]

A survey of the galactic region around our solar system by the European Southern Observatory (ESO) has turned up a surprising lack of dark matter, making its alleged existence even more of a mystery.

The 2.2m MPG-ESO telescope, used in the survey. (ESO/H.H.Heyer)

Dark matter is an invisible substance that is suspected to exist in large quantity around galaxies, lending mass but emitting no radiation. The only evidence for it comes from its gravitational effect on the material around it… up to now, dark matter itself has not been directly detected. Regardless, it has been estimated to make up 80% of all the mass in the Universe.

A team of astronomers at ESO’s La Silla Observatory in Chile has mapped the region around over 400 stars near the Sun, some of which were over 13,000 light-years distant. What they found was a quantity of material that coincided with what was observable: stars, gas, and dust… but no dark matter.

“The amount of mass that we derive matches very well with what we see — stars, dust and gas — in the region around the Sun,” said team leader Christian Moni Bidin of the Universidad de Concepción in Chile. “But this leaves no room for the extra material — dark matter — that we were expecting. Our calculations show that it should have shown up very clearly in our measurements. But it was just not there!”

Based on the team’s results, the dark matter halos thought to envelop galaxies would have to have “unusual” shapes — making their actual existence highly improbable.

Still, something is causing matter and radiation in the Universe to behave in a way that belies its visible mass. If it’s not dark matter, then what is it?

“Despite the new results, the Milky Way certainly rotates much faster than the visible matter alone can account for,” Bidin said. “So, if dark matter is not present where we expected it, a new solution for the missing mass problem must be found.

“Our results contradict the currently accepted models. The mystery of dark matter has just became even more mysterious.”

Read the release on the ESO site here.

Hubble Gets Best Look Yet At Messier 9

New Hubble image of Messier 9 cluster resolves individual stars (NASA/ESA)

[/caption]

First discovered by Charles Messier in 1764, the globular cluster Messier 9 is a vast swarm of ancient stars located 25,000 light-years away, close to the center of the galaxy. Too distant to be seen with the naked eye, the cluster’s innermost stars have never been individually resolved… until now.

This image from the Hubble Space Telescope is the most detailed view yet into Messier 9, capturing details of over 250,000 stars within it. Stars’ shape, size and color can be determined — giving astronomers more clues as to what the cluster’s stars are made of. (Download a large 10 mb JPEG file here.)

Hot blue stars as well as cooler red stars can be seen in Messier 9, along with more Sun-like yellow stars.

Unlike our Sun, however, Messier 9’s stars are nearly ten billion years old — twice the Sun’s age — and are made up of much less heavy elements.

Since heavy elements (such as carbon, oxygen and iron) are formed inside the cores of stars and dispersed into the galaxy when the stars eventually go supernova, stars that formed early on were birthed from clouds of material that weren’t yet rich in such elements.

Zoom into the Messier 9 cluster with a video from NASA and the European Space Agency below:

The Hubble Space Telescope is a project of international cooperation between ESA and NASA. See more at www.spacetelescope.org.

Image credit: NASA & ESA. Video: NASA, ESA, Digitized Sky Survey 2, N. Risinger (skysurvey.org)