60 Billion Habitable Planets in the Milky Way Alone? Astronomers say Yes!

An artist's conception of how common exoplanets are throughout the Milky Way Galaxy. Image Credit: Wikipedia

A new study suggests that the number of habitable exoplanets within the Milky Way alone may reach 60 billion.

Previous research performed by a team at Harvard University suggested that there is one Earth-sized planet in the habitable zone of each red dwarf star. But researchers at the University of Chicago and Northwestern University have now extended the habitable zone and doubled this estimate.

The research team, lead by Dr. Jun Yang considered one more variable in their calculations: cloud cover. Most exoplanets are tidally locked to their host stars – one hemisphere continually faces the star, while one continuously faces away. These tidally locked planets have a permanent dayside and a permanent nightside.

One would expect the temperature gradient between the two to be very high, as the dayside is continuously receiving stellar flux, while the nightside is always in darkness. Computer simulations that take into account cloud cover show that this is not the case.

The dayside is covered by clouds, which lead to a “stabilizing cloud feedback” on climate.  It has a higher cloud albedo (more light is reflected off the clouds) and a lower greenhouse effect. The presence of clouds actually causes the dayside to be much cooler than expected.

“Tidally locked planets have low enough surface temperatures to be habitable,” explains Jang in his recently published paper. Cloud cover is so effective it even extends the habitable zone to twice the stellar flux. Planets twice as close to their host star are still cool enough to be habitable.

But these new statistics do not apply to just a few stars. Red dwarfs “represent about ¾ of the stars in the galaxy, so it applies to a huge number of planets,” Dr. Abbot, co-author on the paper, told Universe Today. It doubles the number of planets previously thought habitable throughout the entire galaxy.

Not only is the habitable zone around red dwarfs much larger, red dwarfs also live for much longer periods of time. In fact, the Universe is not old enough for any of these long-living stars to have died yet. This gives life the amount of time necessary to form. After all, it took human beings 4.5 billions years to appear on Earth.

Another study we reported on earlier also revised and extrapolated the habitable zone around red dwarf stars.

Future observations will verify this model by measuring the cloud temperatures. On the dayside, we will only be able to see the high cool clouds. A planet resembling this model will therefore look very cold on the dayside. In fact, “a planet that does show the cloud feedback will look hotter on the nightside than the dayside,” explains Abbot.

This effect will be testable with the James Webb Space Telescope.  All in all, the Milky Way is likely to be teeming with life.

The results will be published in Astrophysical Journal Letters (preprint available here).

Astrophotos: The Galactic Desert

A 12-photo panoramic of the milky way arching over Saguaro National Park in Tucson, Arizona. Credit and copyright: Sean Parker/Sean Parker Photography.

The desert provides some of the most stunning landscapes and skycapes, as evidenced by two recent astrophotos from Universe Today readers. The gorgeous lead image by Sean Parker of Tucson, Arizona is a 12-image panoramic view of the Milky Way arching over Saguaro National Park in Tucson, Arizona. Sean noted on Flickr that if you live in Tucson, you can see this photo in a 12×36 frame at Black Crown Coffee Co for the next 3 weeks during his Astrophotography Exhibition. If you go, tell him Universe Today sent you!

The stunning image below is a frame from a timelapse being worked on by Ken Brandon of California. The image was taken on June 9, 2013 and features ancient Bristlecone pines in the foreground, with the arch of the Milky Way visible in the sky:

Ancient Bristlecone pines with an even more ancient Milky Way in the background. Credit and copyright: Ken Brandon.
Ancient Bristlecone pines with an even more ancient Milky Way in the background. Credit and copyright: Ken Brandon.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

New Video Map Shows Large-Scale Cosmic Structure out to 300 million Light Years

Map showing all galaxies in the local universe color-coded by their distance to us: blue galaxies are the closest, and red are farther, up to 300 million light-years away. Credit: University of Hawaii.

Researchers with the Cosmic Flows project have been working to map both visible and dark matter densities around our Milky Way galaxy up to a distance of 300 million light-years, and they’ve now released this new video map which shows the motions of structures of the nearby Universe in greater detail than ever before.

“The complexity of what we are seeing is almost overwhelming,” says researcher Hélène Courtois, associate professor at the University of Lyon, France, and associate researcher at the Institute for Astronomy (IfA), University of Hawaii (UH) at Manoa. Courtois narrates the video.

The video zooms into our local area of the Universe — our Milky Way galaxy lies in a supercluster of 100,000 galaxies — and then slowly draws back to show the cosmography of the Universe out to 300 million light years.

The map shows how the large-scale structure of the Universe is a complex web of clusters, filaments, and voids. Large voids are bounded by filaments that form superclusters of galaxies. These are the largest structures in the universe.

The team explains:

The movements of the galaxies reveal information about the main constituents of the Universe: dark energy and dark matter. Dark matter is unseen matter whose presence can be deduced only by its effect on the motions of galaxies and stars because it does not give off or reflect light. Dark energy is the mysterious force that is causing the expansion of the universe to accelerate.

Read more about this video here, and read the team’s paper here.

Cosmography of the Local Universe from Daniel Pomarède on Vimeo.

Amazing Astrophoto and Video: Colors of the Sky

A 360° horizon panorama taken from southern Alberta on June 5, 2013, showing the Milky Way, a low aurora to the north, perpetual twilight glow to the north (left of centre) and bands of green airglow across the sky, and the ATV-4 Albert Einstein heading to the International Space Station. Credit and copyright: Alan Dyer.

Yep, you really want to click on this image to see the larger version on Flickr. Wow — what a view!!

This is a 360° horizon pan, seen by Alan Dyer — who has an aptly named website, The Amazing Sky. This is a view seen from southern Alberta on June 5, 2013, and there is a lot going on in this image. Alan described it on Flickr: “There’s the Milky Way arching across the sky on the right, a low aurora to the north, perpetual twilight glow to the north (left of center) and bands of green airglow across the sky. Left of the house and also left of the main area of Milky Way are horizon glows from urban light pollution. A satellite, the ESA Einstein ATV going to the ISS, is at left of frame.”

I get extremely excited if I can see *one* of those things in a night, and here Alan has captured all at once — superb!

But wait, there’s more!

On June 10, Alan was able to take a timelapse of the Northern Lights and some noctilucent clouds, and it is gorgeous. See below:

Alan said on his website, “This was certainly one of the best NLC displays I’d seen and my best shot at capturing them.”

Find out more about this video here, and Alan shared his technical data on the image:
The Panorama was stitched in PTGui software from 8 images taken at 45° spacing with the 8mm lens at f/3.5 on the Canon 5D MkII at ISO 3200. Each is an untracked 1 minute exposure.

© 2013 Alan Dyer

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Stunning Astrophoto: The Milky Way Seen in ‘Daylight’

A rocky region of Portinho da Arrábida, Portugal, with the center of Milky Way behind it, visible at dawn. Credit and copyright: Miguel Claro

Ever seen the arc of the Milky Way in daylight? Astrophotographer Miguel Claro came as close as possible by capturing this view of ‘Via Lactea’ at dawn on May 11, 2013, with the stars of Saggitarius and Scorpius clearly visible, while the sky is slowly turning blue. The image was taken with a rocky region of the resort area of Portinho da Arrábida, in Portugal, visible in the foreground. Also visible is the Red Supergiant star Antares.

See Claro’s website for an annotated version of this image that identifies the various features.

Miguel used a Canon 60Da – ISO 1600; Exp.15 Sec; f/2.8; 24mm. The image was taken on May 11, 2013 at 5:14 AM local time.

What a great way to start the day!

Thanks to Miguel Claro for sharing his images.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Our Place in the Galactic Neighborhood Just Got an Upgrade

The sun's newly classified neighborhood -- the Local Arm, as shown in this picture -- is more prominent than previously supposed. Credit: Robert Hurt, IPAC; Bill Saxton, NRAO/AUI/NSF

Some cultures used to say the Earth was the center of the Universe. But in a series of “great demotions,” as astronomer Carl Sagan put it in his book Pale Blue Dot, we found out that we are quite far from the center of anything. The Sun holds the prominent center position in the center of the Solar System, but our star is just average-sized, located in a pedestrian starry suburb — a smaller galactic arm, far from the center of the Milky Way Galaxy.

But perhaps our suburb isn’t as quiet or lowly as we thought. A new model examining the Milky Way’s structure says our “Local Arm” of stars is more prominent than we believed.

“We’ve found there is not a lot of difference between our Local Arm and the other prominent arms of the Milky Way, which is in contrast what astronomers thought before,” said researcher Alberto Sanna, of the Max-Planck Institute for Radio Astronomy, speaking today at the American Astronomical Society’s annual meeting in Indianapolis, Indiana.

Sanna said that one of the main questions in astronomy is how the Milky Way would appear to an observer outside our galaxy.

If you imagine the Milky Way as a rippled cookie, our star is in a neighborhood in between two big ripples (the Sagittarius Arm and the Perseus Arm). Before, we thought the Local Arm (or Orion Arm) was just a small spur between the arms. New research using trigonometric parallax measurements, however, suggests the Local Arm could be a “significant branch” of one of those two arms.

In a few words, our stellar neighborhood is a bigger and brighter one than we thought it was.

Astrophoto: Colorado Milky Way by Michael Underwood
Colorado Milky Way. Credit: Michael Underwood

As part of the BeSSeL Survey (Bar and Spiral Structure Legacy Survey) using the Very Long Baseline Array (VLBA), astronomers are able to make more precise measurements of cosmic distances. The VLBA uses a network of 10 telescopes that work together to figure out how far away stars and other objects are.

It’s hard to figure out the distance from the Earth to other stars. Generally, astronomers use a technique called parallax, which measures how much a star moves when we look at it from the Earth.

VLBA telescope locations, courtesy of NRAO/AUI
VLBA telescope locations, courtesy of NRAO/AUI

When our planet is at opposite sites of its orbit — in spring and fall, for example — the apparent location of stellar objects changes slightly.

The more precisely we can measure this change, the better a sense we have of a star’s distance.

The VLBA undertook a search for spots in our galaxy where water and methanol molecules (also known as masers) enhance radio waves — similar to how lasers strengthen light waves. Masers are like stellar lighthouses for radio telescopes, the National Radio Astronomy Observatory stated.

Trigonometric Parallax method determines distance to star or other object by measuring its slight shift in apparent position as seen from opposite ends of Earth's orbit. CREDIT: Bill Saxton, NRAO/AUI/NSF
Trigonometric Parallax method determines distance to star or other object by measuring its slight shift in apparent position as seen from opposite ends of Earth’s orbit. CREDIT: Bill Saxton, NRAO/AUI/NSF

Between 2008 and 2012, the VLBA tracked the distances to (and movements of) several masers to higher precision than previously, leading to the new findings.

Will the findings help ease our “inferiority complex” after all those great demotions?

“I would say yes, that’s a nice conclusion to say we are more important,” Sanna told Universe Today. “But more importantly, we are now mapping the Milky Way and discovering how the Milky Might appear to an outside observer. We now know the Local Arm arm is something that an observer from afar would definitely notice!”

The results will be published in the Astrophysical Journal, (preprint available here) and were presented today (June 3) at the AAS meeting.

Source: National Radio Astronomy Observatory

Lovely Astrophoto: Cottonwoods and the Milky Way

Cottonwood trees and the Milky Way on May 12, 2013. Credit and copyright: Randy Halverson/Dakotalapse.

Admittedly, I’m partial to Randy Halverson’s night sky photography from South Dakota. Having grown up in neighboring North Dakota myself, Halverson’s images bring back memories of the dark skies that grace the northern plains. But this one is just stunning, not to mention my early childhood home was surrounded by cottonwood trees — towering giants with ample limbs, and one of the few trees that grew well in the harsh prairies of the Dakotas.

Randy said he was trying out some new gear with this image, which is a frame from a timelapse he is shooting (can’t wait!) He used ased a Canon 6D and a Rokinon 24mm F1.4 lens (set at F2), using Emotimo TB3 Black timelapse equipment, shot at ISO 3200 for 20 seconds.

See more of Randy’s work at his Dakotalapse website, or his Facebook page.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

Timelapse Video Captures a Year of Incredible Night Sky Views

'North Country Dreamland' -a northern Michigan dark sky exposition. Credit: Shawn Malone.

This beautiful new timelapse video might have folks heading in droves for northern Michigan. Shawn Malone of Lake Superior Photo put together this incredible video — her first attempt at a timelapse compilation, believe it or not — using over 10,000 photo frames showing 33 different scenes of various night sky events from northern Michigan over the past year. “It took a year to shoot and a bit of tenacity and persistence to get this into a form of coherent electrified cosmic goodness,” Malone wrote on Vimeo. And did she ever capture cosmic goodness: auroras, the Milky Way rising and setting, meteor showers, a comet, and even aurora and lightning together in one scene. Just gorgeous….

North Country Dreamland from LakeSuperiorPhoto on Vimeo.

Magnificent New Timelapse: Death Valley Dreamlapse 2

The night sky and the infamous sliding stones of Racetrack Playa Lakebed in Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.

Have you ever dreamed of camping out under the dark skies of Death Valley? Dream no more: you can enjoy this virtual experience thanks to Gavin Heffernan and his Sunchaser Pictures crew. This magnificent new timelapse video includes some insane star trails, the beautiful Milky Way, and an incredible pink desert aurora!

“As you can see, Death Valley is a crazy place to shoot at,” Gavin said via email to Universe Today, “as the horizon is so strangely uneven/malleable. I don’t know if the valley was cut by water or underground magma, but it’s almost impossible to find a straight horizon.” See some great images from their video, below:

Gavin said he and his team tried out some new timelapse techniques, like moonpainting the foreground landscapes (0:53 — 1:20), and also some experiments merging regular timelapse footage with star trails — “a technique we’ve been calling Starscaping (1:07:1:33)” he said. “If it has an actual name, let us know! 🙂 Star Trails shot at 25 sec exposures. No special effects used, just the natural rotation of the earth’s axis. Photography Merging: STARSTAX. Used two Canon EOS 5Dmkii, with a 24mm/1.4 lens & 28mm/1.8.”

A pink aurora seen in Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.
A pink aurora seen in Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.

See their original Death Valley Dreamlapse here, as well as a behind the scenes “making of” video for this second Death Valley Dreamlapse. Sunchaser Pictures also has a new Facebook page, so “like” them!

Star trails timelapse over Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.
Star trails timelapse over Death Valley. Credit and copyright: Gavin Heffernan/Sunchaser Pictures.

DEATH VALLEY DREAMLAPSE 2 from Sunchaser Pictures on Vimeo.

Dust Complicates Determinations of the Distance to Galactic Center

The plane of our Milky Way galaxy (image credit: R. Bertero/deviantart, cropped by DM).  Understanding the nature of the obscuring dust, indicated partly by the dark regions bisecting the plane, is key to establishing a precise distance to the Galactic center.

Obtaining an accurate distance between the Sun and the center of our Galaxy remains one of the principal challenges facing astronomers. The ongoing lively debate concerning this distance hinges partly on the nature of dust found along that sight-line. Specifically, are dust particles lying toward the Galactic center different from their counterparts near the Sun? A new study led by David Nataf asserts that, yes, dust located towards the Galactic center is anomalous. They also look at accurately defining both the distance to the Galactic center and the reputed bar structure that encompasses it.

The team argues that characterizing the nature of small dust particles is key to establishing the correct distance to the Galactic center, and such an analysis may mitigate the scatter among published estimates for that distance (shown in the figure below).  Nataf et al. 2013 conclude that dust along the sight-line to the Galactic center is anomalous, thus causing a non-standard ‘extinction law‘.  

The extinction law describes how dust causes objects to appear fainter as a function of the emitted wavelength of light, and hence relays important information pertaining to the dust properties.

The team notes that, “We estimate a distance to the Galactic center of [26745 light-years] … [adopting a] non-standard [extinction law] thus relieves a major bottleneck in Galactic bulge studies.”

Various estimates for the distance to the Galactic center tabulated by Malkin 2013. The x-axis describes the year, while the y-axis features the distance to the Galactic center in kiloparsecs (image credit: Fig 1 from Malkin 2013/arXiv/ARep).

Nataf et al. 2013 likewise notes that, “The variations in both the extinction and the extinction law made it difficult to reliably trace the spatial structure of the [Galactic] bulge.”  Thus variations in the extinction law (tied directly to the dust properties) also affect efforts to delineate the Galactic bar, in addition to certain determinations of the distance to the Galactic center.  Variations in the extinction law imply inhomogeneities among the dust particles.

“The viewing angle between the bulge’s major axis and the Sun-Galactic centerline of sight remains undetermined, with best values ranging from from  13  to …  44 [degrees],” said Nataf et al. 2013 (see also Table 1 in Vanhollebekke et al. 2009).  The team added that, “We measure an upper bound on the tilt of 40 [degrees] between the bulge’s major axis and the Sun-Galactic center line of sight.”

However, the properties of dust found towards the Galactic center are debated, and a spectrum of opinions exist.  While Nataf et al. 2013 find that the extinction law is anomalously low, there are studies arguing for a standard extinction law.  Incidentally, Nataf et al. 2013 highlight that the extinction law characterizing dust near the Galactic center is similar to that tied to extragalactic supernovae (SNe), “The … [extinction] law toward the inner Galaxy [is] approximately consistent with extra-galactic investigations of the hosts of type Ia SNe.”

The delineation of the bar at the center of our Milky Way galaxy by Nataf et al. 2013. The bar is closer toward the Sun in the 1st Galactic quadrant. The center line represents the direction toward the constellation of Sagitarrius (image credit: Fig 17 from Nataf et al. 2013/arXiv/ApJ).
Left, the delineation of the bar at the center of the Milky Way by Nataf et al. 2013. The centerline represents the direction towards Sagittarius (image credit: Fig 17 from Nataf et al. 2013/arXiv/ApJ).  Right, a macro view of the Galaxy highlighting the general orientation and location of the Galactic bar (image credit: NASA/Wikipedia).  The Galactic bar is not readily discernible in the distribution of RR Lyrae variables.

Deviations from the standard extinction law, and the importance of characterizing that offset, is also exemplified by studies of the Carina spiral arm.  Optical surveys reveal that a prominent spiral arm runs through Carina (although that topic is likewise debated), and recent studies argue that the extinction law for Carina is higher than the standard value (Carraro et al. 2013Vargas Alvarez et al. 2013).  Conversely, Nataf et al. 2013 advocate that dust towards the Galactic center is lower by comparison to the standard (average) extinction law value.

The impact of adopting an anomalously high extinction law for objects located in Carina is conveyed by the case of the famed star cluster Westerlund 2, which is reputed to host some of the Galaxy’s most massive stars.  Adopting an anomalous extinction law for Westerlund 2 (Carraro et al. 2013Vargas Alvarez et al. 2013) forces certain prior distance estimates to decrease by some 50% (however see Dame 2007).  That merely emphasizes the sheer importance of characterizing local dust properties when establishing the cosmic distance scale.

In sum, characterizing the properties of small dust particles is important when ascertaining such fundamental quantities like the distance to the Galactic center, delineating the Galactic bar, and employing distance indicators like Type Ia SNe.

The Nataf et al. 2013 findings have been accepted for publication in the Astrophysical Journal (ApJ), and a preprint is available on arXiv.  The coauthors on the study are Andrew Gould, Pascal Fouque, Oscar A. Gonzalez, Jennifer A. Johnson, Jan Skowron, Andrzej Udalski, Michal K. Szymanski, Marcin Kubiak, Grzegorz Pietrzynski, Igor Soszynski, Krzysztof Ulaczyk, Lukasz Wyrzykowski, Radoslaw Poleski.  The Nataf et al. 2013 results are based partly on data acquired via the Optical Graviational Lensing Experiment (OGLE).  The interested reader desiring additional information will find the following pertinent: Udalski 2003Pottasch and Bernard-Salas 2013Kunder et al. 2008Vargas Alvarez et al. 2013Carraro et al. 2013Malkin 2013Churchwell et al. 2009, Dame 2007Ghez et al. 2008Vanhollebekke et al. 2009.

The Nataf et al. 2013 results are based partly on observations acquired by the OGLE survey (image credit: OGLE team).