Test Flight of DARPA’s Hypersonic Plane Ends in Crash

[/caption]

The potential to fly anywhere in the world in less than an hour took a nosedive today. The test flight of an unmanned, rocket-launched, Mach 20-capable, maneuverable aircraft called the Falcon Hypersonic Technology Vehicle 2 (HTV-2) ended when an anomaly caused loss of signal, and the plane crashed into the Pacific Ocean. Overseen by DARPA, the Defence Advanced Research Projects Agency, this second test flight of the HTV-2 seemingly started out well, as the Minotaur IV launch vehicle successfully inserted the aircraft into the correct trajectory, and the aircraft transitioned to Mach 20 aerodynamic flight. It flew for 9 minutes until it encountered problems and crashed.

Despite the crash, DARPA said the successful transition “represents a critical knowledge and control point in maneuvering atmospheric hypersonic flight.”

“Here’s what we know,” said Air Force Maj. Chris Schulz, DARPA HTV-2 program manager in a statement put out by DARPA. “We know how to boost the aircraft to near space. We know how to insert the aircraft into atmospheric hypersonic flight. We do not yet know how to achieve the desired control during the aerodynamic phase of flight. It’s vexing; I’m confident there is a solution. We have to find it.”
From launch until crash, the flight lasted for about a half an hour.

DARPA’s Falcon is designed to fly anywhere in the world in less than 60 minutes. This capability requires an aircraft that can fly at 13,000 mph, while experiencing temperatures in excess of 3500F.

During the first test flight of HTV-2 on April 23, 2010, telemetry was lost 9 minutes into the flight. A subsequent investigation found that the vehicle encountered unexpected yaw, followed by an uncontrollable roll. The onboard computer then set the vehicle to crash into the ocean.

“In the April 2010 test, we obtained four times the amount of data previously available at these speeds,” said DARPA Director Regina Dugan. “Today more than 20 air, land, sea and space data collection systems were operational. We’ll learn. We’ll try again. That’s what it takes. Filling the gaps in our understanding of hypersonic flight in this demanding regime requires that we be willing to fly.”

The military had hopes of using this type of super-fast plane to reach problem spots around the world quickly.

DARPA said that in the coming weeks, an independent Engineering Review Board will review and analyze the data collected. This data will inform policy, acquisition and operational decisions for future -hypersonic aircraft of this kind. It’s not clear yet whether any development of Falcon HTV-2 will continue.

This is the second major hypersonic setback of 2011. In June, the Boeing X-51 waverider failed when its scramjet encountered a problem on engine startup.

Source: DARPA

Atlas V Roars to Space with Sophisticated New Missile Warning Surveillance Satellite

[/caption]CAPE CANAVERAL – An Atlas V rocket carrying a highly sophisticated Space-Based Infrared System (SBIRS) GEO-1 satellite for the United States Air Force lifted off from the seaside Space Launch Complex-41 at 2:10 p.m. EDT on Saturday (May 7) into a gorgeous clear blue sky following a one day delay due to cloudy weather conditions surrounding the Florida space coast on Friday.

SBIRS GEO-1 is the maiden satellite in a new constellation of next generation military space probes that will provide US military forces with an early warning of missile launches that could pose a threat to US national security.

Atlas V rocket roars to space with SBIRS GEO-1 satellite Pad 41 at Cape Canaveral Air Force Station on May 7, 2011.
Credit: Alan Walters/awaltersphoto.com
“Today, we launched the next generation missile warning capability. It’s taken a lot of hard work by the government-industry team and we couldn’t be more proud. We look forward to this satellite providing superb capabilities for many years to come,” said General Gen. William Shelton, Air Force Space Command commander in a statement.

The planned quartet of SBIRS satellites will deliver a quantum leap in infrared event detection and reporting compared to the current generation of orbiting Defense Support Program (DSP) satellites, according to Michael Friedman of Lockheed Martin in an interview with Universe Today at the Kennedy Space Center (KSC).

“The SBIRS GEO satellites will have both a scanning and starring sensor with faster revisit rates. They will be able to detect missile launches from the earliest stages of the boost phase and track the missiles to determine their trajectory and potential impact points,” said Friedman.

“SBIRS can see targets quicker and characterize the actual missile,’” explained Steve Tatum of Lockheed Martin at KSC.

In addition to providing improved and persistent missile warning capabilities in a global arena, SBIRS will simultaneously support missile defense, technical intelligence, battlespace awareness and defense of the US homeland.

“The 10,000 pound SBIRS GEO-1 satellite is the size of two Hummers. About 9000 people in 23 states were involved in constructing the satellite.”

“SBIRS GEO-2 will launch in the next year or two,” Friedman told me.

“GEO-2 is built and undergoing testing now,” added Tatum.

The $1.2 Billion SBIRS satellite was launched into a 22,000 mile high Geosynchronous orbit by the 189 foot tall Atlas V rocket. The Atlas rocket was in the 401 vehicle configuration with no solid rocket motors and includes a 4-meter diameter payload fairing.

The first stage was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by a single Pratt & Whitney Rocketdyne RL-10A engine.

SBIRS GEO-1 satellite bolted atop Atlas V Centaur rocket at Space Launch Complex 41 prior to launch. SBIRS is housed inside a 4 meter diameter Payload Fairing. Credit: Ken Kremer

The Atlas V rocket was built and launched by United Launch Alliance (ULA). This marks the 50th successful launch for ULA since the company was formed in December 2006.

“With this launch, ULA continues to demonstrate its commitment to 100 percent mission success,” said Michael Gass, ULA President and CEO. “This milestone is a testament to the dedicated employees that for every mission deliver excellence, best value and continuous improvement to our customers.”

Read my Atlas V SBIRS preview story here:
Atlas Rocket Poised for Blast Off with Advanced Missile Early Warning Spy Satellite

SBIRS GEO-1 Launch Photo Album by the Universe Today team of Ken Kremer and Alan Walters:

Atlas V rocket and bird soar skywards at Florida Space Coast
Liftoff of Atlas V rocket with SBIRS GEO-1 satellite as an Egret flies into camera field of view on May 7, 2011 at 2:10 p.m. EDT. View from the Press Site at the Kennedy Space Center:
Credit: Ken Kremer -- kenkremer.com
Atlas V rocket soars off pad 41 with SBIRS GEO-1 satellite for the US Air Force as another bird flies into camera field of view on May 7, 2011 at 2:10 p.m. EDT. View from the Press Site at the Kennedy Space Center: Credit: Ken Kremer
Atlas V SBIRS GEO-1 launch from Cape Canaveral on May 7, 2011. Credit: Alan Walters/awaltersphoto.com
Atlas V SBIRS GEO-1 launch from Cape Canaveral on May 7, 2011. Credit: Alan Walters/awaltersphoto.com
Exhaust trail from Atlas V SBIRS GEO-1 launch on May 7, 2011. Credit: Ken Kremer
Ken Kremer with Atlas V rocket and SBIRS GEO-1 satellite at Launch Pad 41, prior to blast off from Cape Canaveral Air Force Station. Credit: Ken Kremer

Air Force and ULA to launch second X-37B

[/caption]
CAPE CANAVERAL – From all appearances the first flight of the U.S. Air Force’s secretive X-37B space plane was a complete success. As such, the Air Force is planning to launch a second Orbital Test Vehicle (OTV) on March 4 from Cape Canaveral Air Force Station in Florida on top of a United Launch Alliance (ULA) Atlas rocket. The Air Force has not yet released a specific launch time.

The first flight of an OTV took place on Apr. 22, 2010 on top of an Atlas V 501 rocket and was designated USA-212. Built by Boeing, the spacecraft is unmanned and is in many ways similar to the space shuttle. It has a payload bay, maneuvering thrusters up front and to the rear of the spacecraft and a single, primary engine.

The OTV is different from the space shuttle in that it can operate on-orbit for up to 270 days. During the vehicle’s maiden flight it was spotted by a number of amateur astronomers who verified that the craft changed orbits a number of times before it landed safely at Vandenberg Air Force base on Dec. 3, 2010.

The first X-37B lifted off from Cape Canaveral Air Force Station last April. Photo Credit: ULA T.V.

“We are tremendously excited to launch the second OTV space vehicle for the Air Force Rapid Capabilities Office. Our combined Air Force and ULA mission partner team has worked hard to prepare the Atlas V for this mission which is the first launch of the year for ULA from the east coast in 2011,” said ULA’s Director of Communications, Mike Rein. “I fully expect this launch to be a 100 percent successful mission – just like the first OTV launch in April 2010.”

Originally the OTV was to be deployed from the space shuttle’s payload bay, after the Columbia accident however, it was decided to launch from an EELV instead. At first a Delta II was given the nod to launch the space plane – before the Atlas V was confirmed as the launch vehicle that would be used.

The X-37B is similar in many ways to NASA's space shuttle - but it is far smaller and unmanned. Photo Credit: Air Force

The U.S. Air Force has disclosed only minimal information regarding the first mission and has said little about the upcoming mission as well. The Air Force has stated that the length of the OTV’s mission’s will be determined by the completion rates of the experiments that are onboard. Mission control is based out of Colorado with the 3d Space Experimentation Squadron.

The X-37B is only the second reusable spacecraft that is capable of conducting an automated landing. The only other reusable craft that has demonstrated this capability was Russia’s Buran shuttle which returned safely to Earth on Nov. 15, 1988.

The X-37B was a program initially handled by NASA; however the program was eventually turned over to the U.S. Defense Advanced Research Projects Agency (DARPA) and the Pentagon. The OTV flew several times on Scaled Composites’ White Knight aircraft and was drop tested twice successfully in 2006.

As seen in this diagram, the X-37B is encapsulated within the fairing of the Atlas rocket. Image Credit: ULA
[

Navy Railgun Sets a New Record

*Gulp* If you haven’t seen this video yet, its worth a look. On December 10, 2010, the Office of Naval Research Electromagnetic Railgun fired a world-record setting 33 megajoule shot, breaking the previous record of 32 MJ. Railguns accelerate a conductive projectile along a pair of metal rails, and are being researched as weapons. The projectiles do not contain explosives, but with extremely high velocities can do quite a bit of damage. “Velocitas Eradico” indeed. (Speed destroys). Of course the other potential use for a railgun would be to launch payloads off Earth or the Moon. Make sure you watch the high-speed portion of the camera following the projectile along its flight. And you might flinch (I know I did!) in the portion where the projectile basically comes right at you.

Gallery: X-37B Space Plane Returns to Earth

[/caption]

The secret military space plane has returned home, and while the mission was classified, the Air Force and Boeing have supplied pictures of the craft after landing. With this mission appearing to be a success, the Air Force is preparing to launch the next X-37B, OTV-2, in Spring 2011 aboard an Atlas V booster.

See more images below.

X-37B is shown here after landing at 1:16 a.m. Pacific time today, concluding its more than 220-day experimental test mission. Credit: Boeing
The X-37B after landing. Credit: 30th Space Wing (Vandenberg Air Force Base, Calif.
X-37B on the runway at Vandenburg Air Force Base. Credit: Boeing.
X-37B after landing. Credit: 30th Wing, Vandenberg Air Force Base.
X-37B is shown here after landing at 1:16 a.m. Pacific time today, concluding its more than 220-day experimental test mission. Credit: Boeing
X-37B Landing by 30th Space Wing (Vandenberg Air Force Base, Calif.)

Here’s a video which includes the landing (which we showed on our previous article) plus post landing activities.

Secret X-37B Mini Space Shuttle Lands

The X-37B mini space shuttle made a stealth landing during the early morning hours, landing at Vandenberg Air Force base at 1:16 a.m. PDT (0916 GMT) today (Friday, Dec. 3.) The US Air Force’s first unmanned space plane successfully glided to a landing after nearly 225 days in space.

X-37B program manager Lt Col Troy Giese stated moments after landing, “We are very pleased that the program completed all the on-orbit objectives for the first mission.”

Above is an infrared camera view of the space plane taxiing after landing this morning.

The space plane’s exact mission was not divulged, and the Air Force did not immediately report anything about the performance of the spacecraft or if any issues arose.

The X-37B’s mission is to “demonstrate a reliable, reusable, unmanned space test platform for the United States Air Force,” according to a fact sheet put out by the military. “Objectives of the OTV program include space experimentation, risk reduction and concept of operations development for reusable space vehicle technologies.”

[/caption]

Source: Space Launch News

Secret Mini Space Shuttle Could Land on Friday

[/caption]

The US Air Force announced that the X-37B Orbital Test Vehicle, a miniature, unmanned space shuttle could return to Earth as soon as this Friday, December 3. It has been in Earth orbit for about nine months on a classified mission for the military. It will land at Vandenberg Air Force Base in Los Angeles sometime between Friday and Monday, Air Force officials said in a statement. The exact time of touchdown will depend on weather conditions and technical factors.

Preparations for the landing began on Tuesday, the Air Force Space Command said. The backup landing site would be Edwards Air Force Base.

The X-37B launched from Cape Canaveral, Florida on April 22. It was built by Boeing, and the vehicle looks like a space shuttle orbiter, but is much smaller: at 9 meters long and 4.5 meter wide (29 X 15 ft), with a payload bay that is 2.1 by 1.2 meters (7 by 4 feet) the X-37B is about 1/4th the size of a shuttle.

Launch of the X37-B. Credit: Alan Walters (awaltersphoto.com) for Universe Today

The X-37B uses solar arrays and lithium ion batteries to generate power instead of fuel cells like the space shuttle, a major reason why it can stay on orbit for much longer.

Originally the vehicle was scheduled for launch in from the payload bay of the Space Shuttle, but that plan was axed following the Columbia accident.

The X-37B’s mission is to “demonstrate a reliable, reusable, unmanned space test platform for the United States Air Force,” according to a fact sheet put out by the military. “Objectives of the OTV program include space experimentation, risk reduction and concept of operations development for reusable space vehicle technologies.”

It will be interesting to see if the military will share any of the on-orbit activities of the space plane and what capabilities and uses this vehicle might have in the future.

See our previous article “What is the Air Force’s Secret X-37B Space Plane Doing in Orbit?” for more information.

Source: Air Force Space Command

What is the Air Force’s Secret X-37B Space Plane Doing in Orbit?

[/caption]

Last month’s launch of the US Air Force X-37B secret mini space plane has fueled speculation about the real mission of this vehicle and if it could possibly be used for a new type of military weapon. The X-37B launched on April 22, 2010 and has the ability to stay in orbit for up to 270 days. While the Air Force provided a webcast of the launch, since then there has been no word — leaked or official – about the status of the mission. “There has been a lot of speculation about what this vehicle could do and what sort of capabilities it could provide to the U.S. military, and some of that speculation was based on more science fiction than fact,” said Brian Weeden from the Secure World Foundation. “While a successful completion of the X-37B flight, landing, and turn-around will certainly be a significant step forward in reusable space vehicle technology, it is a long ways away from a single-stage-to-orbit capability.”


Weeden has put together a fact sheet on the X-37B, looking at the technical feasibility of some of the proposed missions for the mini space shuttle look-alike, and says that there’s almost no chance it could be used as a new weapon or a new weapon delivery system.

The X-37B will land unpiloted at Edwards Air Force Base in California. It uses solar arrays and lithium ion batteries to generate power instead of fuel cells like the space shuttle, a major reason why it can stay on orbit for much longer.

Artist impression of the Boeing X-37B (USAF)

Weeden said that after looking at all the proposed missions for the X-37B, he concluded the most likely probability is that it will be used as a flexible, responsive spacecraft to collect intelligence from space and as a platform to flight test new sensors and satellite hardware.

“One of the downsides to using satellites for collecting intelligence is that once they are launched they have a fixed set of sensors and capabilities,” Weeden said. “The X-37B brings to space the capability to customize the on-board sensor package for a specific mission, similar to what can be done with U.S. reconnaissance aircraft such as the U-2 and SR-71. In many ways, this gives the X-37B the best of both worlds,” he added.

Here’s a brief look at the potential uses for the X-37B:

On-orbit sensor platform and test bed, with the ability to return payload. “What it offers that we have seldom had is the ability to bring back payloads and experiments to examine how well the experiments performed on-orbit,” said Gary Payton, the undersecretary of the Air Force for space programs. “That’s one new thing for us.”

Given the R&D that likely was put into the X-37B, this approach probably isn’t very cost-effective, but Weeden said this is the most likely use the spaceplane. X-37B payload bay could hold various sensors used for intelligence collection of the Earth from space, potentially including radar, optical, infrared, and signals/electronic intelligence suites to flight-test and evaluate new sensors and hardware.

Deployment platform for operationally responsive space satellites. Weeden said this has a midrange chance of being X-37B’s mission, and he quotes Payton: “We could have an X-37 sitting at Vandenberg or at the Cape, and on comparatively short notice, depending on warfighter requirements, we could put a specific payload into the payload bay, launch it up on an Atlas or Delta, and then have it stay in orbit, do the job for the combatant commander, and come back home. And then the next flight, we could have a different payload inside, maybe even for a different combatant commander.”

But given it still would be dependent on the availability of EELV, it may not have a very quick response time for launch.

On-orbit repair vehicle. Weeden said this option has a fairly low chance of being X-37B’s real mission. While it could be used to rendezvous with malfunctioning satellites and repair or refuel them, the X-37B is limited in altitude (it has been rumored that it will have a maximum altitude range of 700 or 800 km (about 500 nautical miles), potentially high enough to access most Sun-synchronous satellites, but this is unconfirmed, plus not many existing operational military satellite components will fit in the X-37B cargo bay. And as the engineers who tried to figure out how to fix the Hubble Space Telescope robotically, without humans, on-orbit repair is extremely difficult, if not impossible.

Launch of the X37-B. Credit: Alan Walters (awaltersphoto.com) for Universe Today

On-orbit inspection of satellites. This option has a low potential, as well. The X-37B could be used to rendezvous and inspect satellites, either friendly or adversary, and potentially grab and de-orbit satellites. However, the X-37B cargo bay is much smaller than many operational satellites, and most of the space in the bay is likely to be filled by the required robotic arm and other gear.

Conventional Prompt Global Strike (CPGS) weapon or delivery system. Weedend says that chance of this being X-37B’s mission is zero. It could be launched in response to a pending crisis and remain on orbit for a length of time to respond to high value/very time sensitive targets. However, since the X-37B re-enters like the space shuttle and lands at an estimated 200 mph (321 kph), this means it travels in the atmosphere much slower than a ballistic arc or a hyperkinetic weapon, so it would need to carry conventional explosives to do any significant damage. Also, after re-entry would be a slow moving, not-very-maneuverable glide bomb, easy prey for any air defense system along its path to the target.

For more information, a four-page, fact-filled X-37B Orbital Test Vehicle Fact Sheet is now available on Secure World Foundation’s website.

Source: Secure World Foundation, special thanks to Leonard David.