Curiosity Halfway to Red Planet Touchdown

Curiosity Mars Science Laboratory (MSL) Spacecraft Cruising to Mars. Guided by the stars, Curiosity has reached the halfway point of its interplanetary cruise phase from the Earth to Mars in between launch on Nov. 26, 2011 and final approach in August 2012. MSL will use the stars to navigate. The spacecraft includes a disc-shaped solar powered cruise stage (on the left) attached to the aeroshell (right). Curiosity and the descent stage are tucked inside the aeroshell. Along the way to Mars, the cruise stage will perform six trajectory correction maneuvers (TCM’s) to adjust the spacecraft's path toward its final, precise landing site on Mars. Credit: NASA/JPL-Caltech

[/caption]

As of today, NASA’s car sized Curiosity rover has reached the halfway point in her 352 million mile (567 million km) journey to Mars – No fooling on April 1, 2012.

It’s T Minus 126 days until Curiosity smashes into the Martian atmosphere to brave the hellish “6 Minutes of Terror” – and, if all goes well, touch down inside Gale Crater at the foothills of a Martian mountain taller than the tallest in the continental United States – namely Mount Rainier.

Curiosity will search for the ingredients of life in the form of organic molecules – the carbon based molecules which are the building blocks of life as we know it. The one-ton behemoth is packed to the gills with 10 state of the art science instruments including a 7 foot long robotic arm, scoop, drill and laser rock zapper.

The Curiosity Mars Science laboratory (MSL) rover was launched from sunny Florida on Nov. 26, 2011 atop a powerful Atlas V rocket for an 8.5 month interplanetary cruise from the Earth to Mars and is on course to land on the Red Planet early in the morning of Aug. 6, 2012 EDT and Universal Time (or Aug. 5 PDT).

Curiosity’s Position in Space on April 1, 2012 - Halfway to Mars
This roadmap shows Curiosity's flight path through the Solar System - From Earth to Mars during the 8.5 month interplanetary cruise. Credit: NASA/JPL-Caltech

On March 26, engineers at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., successfully ignited the spacecrafts thrusters for the second of six planned trajectory correction maneuvers (TCM’s) to adjust the robot’s flight path during the long journey to achieve a pinpoint landing beside the Martian mountain.

“It is satisfying to get the second maneuver under our belts and know we are headed in the right direction,” said JPL’s Erisa Hines, systems lead for the maneuver. “The cruise system continues to perform very well.”

This maneuver was one-seventh as much as the flight’s first course adjustment, on Jan. 11. The cruise stage is equipped with eight thrusters grouped into two sets of four that fire as the entire spacecraft spins at two rotations per minute. The thruster firings change the velocity of the spacecraft in two ways – along the direction of the axis of rotation and also perpendicular to the axis. Altogether there were more than 60 pulsing maneuvers spaced about 10 seconds apart.

“The purpose is to put us on a trajectory to the point in the Mars atmosphere where we need to be for a safe and accurate landing,” said Mau Wong, maneuver analyst at JPL.

Atlas V rocket and Curiosity Mars rover poised at Space Launch Complex 41 at Cape Canaveral, Florida prior to Nov. 26, 2011 liftoff. Credit: Ken Kremer

Marking another crucial milestone, the flight team has also powered up and checked the status of all 10 MSL science instruments – and all are nominal.

“The types of testing varied by instrument, and the series as whole takes us past the important milestone of confirming that all the instruments survived launch,” said Betina Pavri of NASA’s Jet Propulsion Laboratory, Pasadena, Calif., science payload test engineer for the mission. “These checkouts provide a valuable calibration and characterization opportunity for the instruments, including camera dark images and a measurement of zero pressure in the vacuum of space for the rover weather station’s pressure sensor.”

Ever since it was the first of MSL’s science instruments to be switched on three months ago, the Radiation Assessment Detector (RAD) has been collecting valuable measurements about the potentially lethal radiation environment in space and acting as a stunt double for determining the potential health effects on future human travelers to Mars.

RAD has been collecting data on the recent wave of extremely powerful solar flares erupting from the sun.

Curiosity has another 244 million kilometers to go over the next 4 months.

All hopes ride on Curiosity as America’s third and last generation of Mars rovers.

Devastating and nonsensical funding cuts to NASA’s Planetary Science budget have forced NASA to cancel participation in the 2018 ExoMars lander mission that had been joint planned with ESA, the European Space Agency. ESA now plans to forge ahead with Russian participation.

Stay tuned

Simulated view to Mars over the shoulder of Curiosity on 1 April 2012 - from current location halfway to the Red Planet. Credit: NASA/JPL-Caltech

Read Ken’s recent Curiosity feature here:
A Penny for your Curiosity on Mars

Did Water or Lava Carve the Outflow Channels on Mars?

Outflow channel in the Tharsis region on Mars. Credit: NASA/JPL/University of Arizona

Large features on Mars called outflow channels have been a point of contention among planetary scientists. “Most Mars scientists accept that outflow channels were carved by water, but alternate hypotheses persist, especially that lava carved the outflow channels,” said Alfred McEwen Principal Investigator of the HiRISE camera on the Mars Reconnaissance Orbiter. McEwen said that water is still the preferred mechanism and he doubts that all the channels could have been created by lava flows.

But in what could be seen as a type of compromise, he offered a new theory for the outflow channels, based on observations by HiRISE: the channels were originally carved by huge water flows on ancient Mars and later were partially filled in by lava.

“This sequence of events provides a better explanation,” McEwen said.

Large outflow channels can be 10 km or more in width and may be hundreds of kilometers long. From orbital images, they appear to be huge, dry river beds, carved by very large volumes of running water.

While these features are too large to have been caused by flooding from rainfall, other explanations have been offered. One model involves large amounts of water frozen as permafrost in the soil and when a major source of local heating occurred, such as volcanic activity, there was melting and catastrophic flooding.

However, other explanations don’t involve water at all, but suggest flowing lava created these channels.

Speaking at the 2012 Lunar and Planetary Science Conference last week, McEwen mentioned specifically one proponent of the lava hypothesis, David Leverington from Texas Tech University, who proposed last year that slippery, low-viscosity lavas created the channels. Leverington says the lava hypothesis offers a simpler explanation that fits well within a wider geological framework of Mars and compares well with similar channel-like features on the Moon and Venus.

“He makes some good points,” McEwen said, “and argues for a form of Occam’s Razor. But we have been searching extensively with HiRISE and finding things that satisfy Leverington’s challenges.”

McEwen said the abundant evidence of water carving the channels is too hard to dismiss. Several examples of outflow channels show deposits from water-based flooding that lava flow can’t explain; additionally, there is ample evidence of bedrock erosion by water on Mars.

McEwen also said crater dating areas of several outflow channels show that the channels themselves are older than the lava flow.

Part of Athabasca Valles, draped in lava. Credit: NASA/JPL/University of Arizona

“In the Athabasca Valles channels, MRO data showed that lava completely filled the channels and even overflow in places,” he said. “The lava can actually make channels look young.”

Uzboi Valles offers the best counterexample to Leverington’s hypothesis, McEwen said. “No lava fills in this highlands channel, and the channel preserves local layered alluvial deposits and shorelines. So that means we cannot explain all outflows channels from lava erosion.”

McEwen and his team suggest that large floods may have occurred in the Hesperian to early Amazonian, ending about 1 to 1.5 billion years ago, carving the channels. Then, later came the lava flows that formed Mars’ broad plains and sand dunes that we now see – which also filled in some of the outflow channels.

Bedrock Exposures in Uzboi Vallis. Credit: NASA/JPL/University of Arizona

But McEwen said the debate about these channels is good science. “Did water create these channels? That is a good question,” he said. “We shouldn’t just assume the answer is yes. But we propose water must have carved at least some of the channels, and that water outflow is the main mechanism. If you disagree with anything I’ve said, go to the HiRISE website’s “HiWish” page to suggest areas for further imaging of these features. I’ve been disappointed how few members of the science community have used this tool,” he said.

Further reading:

McEwen and team’s LPSC abstract (pdf)
Leverington’s paper in Geomorphology (pdf)

Clouds Get in the Way on Mars

Clouds give a fuzzy view of ice-topped dunes on Mars. Credit: NASA/JPL/University of Arizona

[/caption]

The science team from the HiRISE camera on the Mars Reconnaissance Orbiter wanted to take another look at a region of icy sand dunes on Mars to look for seasonal changes as spring is now arriving on the Red Planet’s northern hemisphere. But the view was obstructed by clouds, creating this unusual hazy view.

“This happens occasionally. We’ve found that weather forecasting on Mars is just as challenging — if not more — than on Earth,” said HiRISE team member Candy Hansen, who I nabbed in the hallway during the Lunar and Planetary Science Conference today, to ask about this unique image. “The clouds are likely made of water ice crystals, and the dunes have a coating of CO2 ice that is just starting to sublimate away as the Sun’s rays are getting stronger in this region.”

Hansen said these are dark barchan, or crescent-shaped dunes. During the winter, this region was completely covered with carbon dioxide ice, but now just the the tops of the dune have ice; also visible are what looks like white cracks, which is ice protected in shallow grooves on the ground. HiRISE will likely check back on this region later during the Martian summer to provide the science team with a seasonal sequence portfolio of images of the region, a benefit of having a mission in orbit for several years. MRO and HiRISE are workhorses, having been in orbit since March of 2006.

See the original image on the HiRISE website.

Orion Crew Capsule Targeted for 2014 Leap to High Orbit

The Orion Exploration Flight Test-1 (EFT-1) is scheduled to launch the first unmanned Orion crew cabin into a high altitude Earth orbit in 2014 atop a Delta 4 Heavy rocket from Cape Canaveral, Florida. Artist’s concept. Credit: NASA

[/caption]

NASA is on course to make the highest leap in human spaceflight in nearly 4 decades when an unmanned Orion crew capsule blasts off from Cape Canaveral, Fla., on a high stakes, high altitude test flight in early 2014.

A new narrated animation (see below) released by NASA depicts the planned 2014 launch of the Orion spacecraft on the Exploration Flight Test-1 (EFT-1) mission to the highest altitude orbit reached by a spaceship intended for humans since the Apollo Moon landing Era.

Orion is NASA’s next generation human rated spacecraft and designed for missions to again take humans to destinations beyond low Earth orbit- to the Moon, Mars, Asteroids and Beyond to deep space.


Orion Video Caption – Orion: Exploration Flight Test-1 Animation (with narration by Jay Estes). This animation depicts the proposed test flight of the Orion spacecraft in 2014. Narration by Jay Estes, Deputy for flight test integration in the Orion program.

Lockheed Martin Space Systems is making steady progress constructing the Orion crew cabin that will launch atop a Delta 4 Heavy booster rocket on a two orbit test flight to an altitude of more than 3,600 miles and test the majority of Orion’s vital vehicle systems.

The capsule will then separate from the upper stage, re-enter Earth’s atmosphere at a speed exceeding 20,000 MPH, deploy a trio of huge parachutes and splashdown in the Pacific Ocean off the west coast of California.

Lockheed Martin is responsible for conducting the critical EFT-1 flight under contract to NASA.

Orion will reach an altitude 15 times higher than the International Space Station (ISS) circling in low orbit some 250 miles above Earth and provide highly valuable in-flight engineering data that will be crucial for continued development of the spaceship.

Orion Exploration Flight Test One Overview. Credit: NASA

“This flight test is a challenge. It will be difficult. We have a lot of confidence in our design, but we are certain that we will find out things we do not know,” said NASA’s Orion Program Manager Mark Geyer.

“Having the opportunity to do that early in our development is invaluable, because it will allow us to make adjustments now and address them much more efficiently than if we find changes are needed later. Our measure of success for this test will be in how we apply all of those lessons as we move forward.”

Lockheed Martin is nearing completion of the initial assembly of the Orion EFT-1 capsule at NASA’s historic Michoud Assembly Facility (MAF) in New Orleans, which for three decades built all of the huge External Fuel Tanks for the NASA’s Space Shuttle program.

In May, the Orion will be shipped to the Kennedy Space Center in Florida for final assembly and eventual integration atop the Delta 4 Heavy rocket booster and launch from Space Launch Complex 37 at nearby Cape Canaveral. The Delta 4 is built by United Launch Alliance.

The first integrated launch of an uncrewed Orion is scheduled for 2017 on the first flight of NASA’s new heavy lift rocket, the SLS or Space Launch System that will replace the now retired Space Shuttle orbiters

Continued progress on Orion, the SLS and all other NASA programs – manned and unmanned – is fully dependent on the funding level of NASA’s budget which has been significantly slashed by political leaders of both parties in Washington, DC in recent years.

…….

March 24 (Sat): Free Lecture by Ken Kremer at the New Jersey Astronomical Association, Voorhees State Park, NJ at 830 PM. Topic: Atlantis, the End of Americas Shuttle Program, Orion, SpaceX, CST-100 and the Future of NASA Human & Robotic Spaceflight

Weekly SkyWatcher’s Forecast – March 19-25, 2012

NGC 2539 - Credit: Palomar Observatory Courtesy of Caltech

[/caption]

Greetings, fellow SkyWatchers! The week starts off with new Moon and the perfect opportunity to do a Messier Marathon. The planets continue to dazzle as we not only celebrate the Vernal Equinox, but the March Geminid meteor shower as well! If that doesn’t get your pulsar racing – nothing will. It’s time to get out your binoculars and telescopes and meet me in the backyard!

Monday, March 19 – Right now the Moon is between the Earth and the Sun, and you know what that means…New Moon! Tonight we’ll start in northern Puppis and collect three more Herschel studies as we begin at Alpha Monoceros and drop about four fingerwidths southeast to 19 Puppis.

NGC 2539 (Right Ascension: 8 : 10.7 – Declination: -12 : 50) averages around 6th magnitude and is a great catch for binoculars as an elongated hazy patch with 19 Puppis on the south side. Telescopes will begin resolution on its 65 compressed members, as well as split 19 Puppis – a wide triple. Shift about 5 degrees southwest and you find NGC 2479 (Right Ascension: 7 : 55.1 – Declination: -17 : 43) directly between two finderscope stars. At magnitude 9.6 it is telescopic only and will show as a smallish area of faint stars at low power. Head another degree or so southeast and you’ll encounter NGC 2509 (Right Ascension: 8 : 00.7 – Declination: -19 : 04) – a fairly large collection of around 40 stars that can be spotted in binoculars and small telescopes.

Tuesday, March 20 – Today is Vernal Equinox, one of the two times of the year that day and night become equal in length. From this point forward, the days will become longer – and our astronomy nights shorter! To the ancients, this was a time a renewal and planting – led by the goddess Eostre. As legend has it, she saved a bird whose wings were frozen from the winter’s cold, turning it into a hare which could also lay eggs. What a way to usher in the northern spring!

With the Moon still out of the picture, let’s finish our study of the Herschel objects in Puppis. Only three remain, and we’ll begin by dropping south-southeast of Rho and center the finder on a small collection of stars to locate NGC 2489 (Right Ascension: 7 : 56.2 – Declination: -30 : 04). At magnitude 7, this bright collection is worthy of binoculars, but only the small patch of stars in the center is the cluster. Under aperture and magnification you’ll find it to be a loose collection of around two dozen stars formed in interesting chains.

The next are a north-south oriented pair around 4 degrees due east of NGC 2489. You’ll find the northernmost – NGC 2571 (Right Ascension: 8 : 18.9 – Declination: -29 : 44) – at the northeast corner of a small finderscope or binocular triangle of faint stars. At magnitude 7, it will show as a fairly bright hazy spot with a few stars beginning to resolve with around 30 mixed magnitude members revealed to aperture. Less than a degree south is NGC 2567 (Right Ascension: 8 : 18.6 – Declination: -30 : 38). At around a half magnitude less in brightness, this rich open cluster has around 50 members to offer the larger telescope, which are arranged in loops and chains.

Congratulations on completing these challenging objects!

Are you up for another challenge? Then test your ability to judge magnitude as Mars has now dimmed to approximately -1.0. Does it look slightly different in size and brightness than it did a week or so ago? Keep watching!

Wednesday, March 21 – Take your telescopes or binoculars out tonight to look just north of Xi Puppis for a celebration of starlight known as M93 (Right Ascension: 7 : 44.6 – Declination: -23 : 52). Discovered in March of 1781 by Charles Messier, this bright open cluster is a rich concentration of various magnitudes that will simply explode in sprays of stellar fireworks in the eyepiece of a large telescope. Spanning 18 light-years of space and residing more than 3400 light-years away, it contains not only blue giants, but lovely golds as well. Jewels in the night…

Thursday, March 22 – Today in 1799 Friedrich Argelander was born. He was a compiler of star catalogues, studied variable stars and created the first international astronomical organization.

Tonight let’s celebrate no Moon and have a look at an object from an alternative catalog that was written by Lacaille, and which is about two fingerwidths south of Eta Canis Majoris.

Also known as Collinder 140, Lacaille’s 1751 catalog II.2 “nebulous star cluster” is a real beauty for binoculars and very low power in telescopes. More than 50% larger than the Full Moon, it contains around 30 stars and may be as far as 1000 light-years away. When re-cataloged by Collinder in 1931, its age was determined to be around 22 million years. While Lacaille noted it as nebulous, he was using a 15mm aperture reflector, and it is doubtful that he was able to fully resolve this splendid object. For telescope users, be sure to look for easy double Dunlop 47 in the same field.

Now, kick back and enjoy a spring evening with two meteor showers. In the northern hemisphere, look for the Camelopardalids. They have no definite peak, and a screaming fall rate of only one per hour. While that’s not much, at least they are the slowest meteors – entering our atmosphere at speeds of only 7 kilometers per second!

Far more interesting to both hemispheres will be the March Geminids which peak tonight. They were first discovered and recorded in 1973 and then confirmed in 1975. With a much faster fall rate of about 40 per hour, these slower than normal meteors will be fun to watch! When you see a bright streak, trace it back to its point of origin. Did you see a Camelopardalid, or a March Geminid?

Friday, March 23 – Today in 1840, the first photograph of the Moon was taken. The daguerreotype was exposed by American astronomer and medical doctor J. W. Draper. Draper’s fascination with chemical responses to light also led him to another first – a photo of the Orion Nebula.

Our target for tonight is an object that’s better suited for southern declinations – NGC 2451 (Right Ascension: 7 : 45.4 – Declination: -37 : 58). As both a Caldwell object (Collinder 161) and a southern skies binocular challenge, this colorful 2.8 magnitude cluster was probably discovered by Hodierna. Consisting of about 40 stars, its age is believed to be around 36 million years. It is very close to us at a distance of only 850 light-years. Take the time to closely study this object – for it is believed that due to the thinness of the galactic disk in this region, we are seeing two clusters superimposed on each other.

With the Moon out of the picture early, why not get caught up in a galaxy cluster study – Abell 426. Located just 2 degrees east of Algol in Perseus, this group of 233 galaxies spread over a region of several degrees of sky is easy enough to find – but difficult to observe. Spotting Abell galaxies in Perseus can be tough in smaller instruments, but those with large aperture scopes will find it worthy of time and attention.

At magnitude 11.6, NGC 1275 (Right Ascension: 3 : 19.8 – Declination: +41 : 31) is the brightest of the group and lies physically near the core of the cluster. Glimpsed in scopes as small as 150 mm aperture, NGC 1275 is a strong radio source and an active site of rapid star formation. Images of the galaxy show a strange blend of a perfect spiral being shattered by mottled turbulence. For this reason NGC 1275 is thought to be two galaxies in collision. Depending on seeing conditions and aperture, galaxy cluster Abell 426 may reveal anywhere from 10 to 24 small galaxies as faint as magnitude 15. The core of the cluster is more than 200 million light-years away, so it’s an achievement to spot even a few!

Saturday, March 24 – Today is the birthday of Walter Baade. Born in 1893, Baade was the first to resolve the Andromeda galaxy’s individual stars using the Hooker telescope during World War II blackout times, and he also developed the concept of stellar populations. He was the first to realize that there were two types of Cepheid variables, thereby refining the cosmic distance scale. He is also well known for discovering an area towards our galactic center which is relatively free of dust, now known as “Baade’s Window.”

Just after sunset, you really need to take a look out your western window for a really beautiful bit of scenery. As the sky darkens, look for the very tender crescent Moon lit with “Earthshine”. Above it you will see bright Jupiter. Above that you will see blazing Venus. And, if that’s not enough, just a little higher will bring you to the Pleiades! What a great way to start a weekend evening!

With the Moon so near the horizon, we have only a short time to view its features. Tonight let’s start with a central feature – Langrenus – and continue further south for crater Vendelinus. Spanning 92 by 100 miles and dropping 14,700 feet below the lunar surface, Vendelinus displays a partially dark floor with a west wall crest catching the brilliant light of an early sunrise. Notice also that its northeast wall is broken by a younger crater – Lame. Head’s up! It’s an Astronomical League challenge.

Once the Moon has set, revisit M46 in Puppis – along with its mysterious planetary nebula NGC 2438. Follow up with a visit to neighboring open cluster M47 – two degrees west-northwest. M47 may actually seem quite familiar to you already. Did you possibly encounter it when originally looking for M46? If so, then it’s also possible that you met up with 6.7 magnitude open cluster NGC 2423 (Right Ascension: 7 : 37.1 – Declination: -13 : 52), about a degree northeast of M47 and even dimmer 7.9 magnitude NGC 2414 (Right Ascension: 7 : 33.3 – Declination: -15 : 27 ) as well. That’s four open clusters and a planetary nebula all within four square arc-minutes of sky. That makes this a cluster of clusters!

Let’s return to study M47. Observers with binoculars or using a finderscope will notice how much brighter, and fewer, the stars of M47 are when compared to M46. This 12 light-year diameter compact cluster is only 1600 light-years away. Even as close as it is, not more than 50 member stars have been identified. M47 has about one tenth the stellar population of larger, denser, and three times more distant, M46.

Of historical interest, M47 was “discovered” three times: first by Giovanni Batista Hodierna in the mid-17th century, then by Charles Messier some 17 years later, and finally by William Herschel 14 years after that. How is it possible that such a bright and well-placed cluster needed “re-discovery?” Hodierna’s book of observations didn’t surface until 1984, and Messier gave the cluster’s declination the wrong sign, making its identification an enigma to later observers – because no such cluster could be found where Messier said it was!

Sunday, March 25 – Today in 1655, Titan – Saturn’s largest satellite – was discovered by Christian Huygens. He also discovered Saturn’s ring system during this same year. 350 years later, the probe named for Huygens stunned the world as it reached Titan and sent back information on this distant world. How about if we visit Saturn? You’ll find the creamy yellow planet located about a fistwidth northwest of bright, white Spica! Even a small telescope will reveal Titan, but remember… it orbits well outside the ring plane, so don’t mistake it for a background star! While you’re there, look closely around the ring edges for the smaller moons. A 4.5” telescope can easily show you three of them. How about the shadow the rings on the planet’s surface? Or how about the shadow of the planet on the rings? Is the Cassini division visible? If you have a larger telescope, look for other ring divisions as well. All are part and parcel of viewing incredible Saturn!

If you missed yesterday evening’s scenic line-up, don’t despair. Just after the Sun sets tonight – and above the western horizon – you’ll find the young Moon very closely paired with Jupiter. Keep traveling eastward (up) and you’ll encounter Venus. Continue east and the next stop is M45. Watch in the days ahead as the Moon sweeps by, continuing to provide us with a show! Need more? Then check out Leo and Mars! You’ll find a great triangulation of Regulus to the west, Mars to the east and Algieba to the north. If you didn’t know better, you’d almost swear the Lion swallowed the red planet.

Tonight let’s return to our previous studies of the Moon and revisit a challenging crater. Further south than Vendelinus, look for another large, mountain-walled plain named Furnerius, located not too far from the terminator. Although it has no central peak, its walls have been broken numerous times by many smaller impacts. Look at a rather large one just north of central on the crater floor. If skies are stable, power up and search for a rima extending from the northern edge. Keep in mind as you observe that our own Earth has been pummeled just as badly as its satellite.

On this day in 1951, 21 cm wavelength radiation from atomic hydrogen in the Milky Way was first detected. 1420 MHz H I studies continue to form the basis of a major part of modern radio astronomy. If you would like to have a look at a source of radio waves known as a pulsar, then aim your binoculars slightly more than a fistwidth east of bright Procyon. The first two bright stars you encounter will belong to the constellation of Hydrus and you will find pulsar CP0 834 just above the northernmost – Delta.

Unitl next week? May all your journeys be at light speed!

New Analysis of Clay Deposits in Ancient Martian Lakes

Map of 226 ancient lakes on Mars. Credit: Goudge, T.A., Head, J.W., Mustard, J.F. and Fassett, C.I./MOLA/NASA

[/caption]

Mars was once a much wetter world than it is now, with hot springs, rivers, lakes and perhaps even oceans. Just how wet exactly, and for how long, is still a subject of considerable debate. One vital clue comes from clay mineral deposits and sediments left over after the water disappeared, but still visible now. They provide a valuable insight into what Mars used to be like, and why it is the cold, dry place we see today.

A team of scientists from Brown University has just completed a new study of ancient lake beds on Mars, specifically looking at the clay deposits within them, to try to determine how many of these lakes still contain such deposits and their composition. So what do they tell us about conditions on early Mars? How does this affect the search for evidence of life?

As it turns out, about a third of the lake beds examined still show evidence for clay deposits. A total of 79 lake beds out of 226 studied to be exact, indicating that they are less common on Mars than on Earth. The reason for this may be that the chemistry of the water was not ideal for preserving clays or that the lakes were relatively short-lived.

The paper was just published in Icarus on March 2, 2012.

From the abstract:

“These results indicate that hydrated and evaporite minerals are not as commonly associated with lacustrine deposits on Mars as they are on Earth. This suggests in situ alteration and mineral precipitation, a common source of such minerals in terrestrial lakes, was not a major process occurring in these paleolacustrine systems, and that the observed minerals are likely to be present as transported material within the lacustrine deposits. The lack of widespread in situ alteration also suggests that either the water chemistry in these paleolake systems was not conducive to aqueous alteration and mineral precipitation, or that the open-basin lake systems were relatively short-lived.”

Images for the study came from the Mars Reconnaissance Orbiter, Mars Odyssey and Mars Express spacecraft.

Clay deposits have become a primary focus of study by orbiters and rovers, as they could preserve fossil traces of early life, just as they do on Earth. Even if they are less common on Mars, the fact that they do exist there is exciting, and there is now much interest in exploring them further. Apart from underground, they are the best places to look for such evidence of life. It is also possible that additional deposits have been buried underground, waiting to be discovered.

The Opportunity rover is currently very close to a treasure trove of clays in Endeavour crater, and it is expected to head straight for them after its winter “hibernation” is over in the next few months. The Curiosity rover, en route to Mars right now, will land in Gale crater next July, where there are also clay deposits near the base of a mountainous peak within the crater. Gale crater is thought to be another site of a former Martian lake.

The abstract is available here (with full paper available for purchase).

Does Mars Still Shake, Rattle and Roll?

Boulders on the floor of Cerberus Fossae. Credit: NASA/JPL/University of Arizona

[/caption]

Compared to Earth, Mars is a relatively quiet planet, geologically speaking. Actually, very quiet, as in pretty much dead. While it has volcanoes much larger than any here, they have been inactive for a very long time; the latest studies suggest however that volcanic activity may have continued until only a matter of millions of years ago. That seems like an eternity to our human sense of time, but geologically, it is quite recent.

There is also the massive canyon system Valles Marineris, much larger than the Grand Canyon here on Earth, and evidence for ancient hot springs, glaciers, etc. which also show that Mars was once much more active than it is today.

Now, there is also evidence that marsquakes (as in earthquakes here) continued to shake the planet until only a few million years ago, and may even still happen today.

Earthquakes are a common, daily occurrence on our planet, but what about Mars? If they do still happen, they would seem to be much more infrequent than they are here. The new study, however, supports the idea that Mars was geologically active for longer than previously thought, and perhaps still is.

Scientists in Europe have been examining images of a Martian fault system, Cerberus Fossae, taken by the Mars Reconnaissance Orbiter. They’ve found a spot where boulders have tumbled down cliffs near the fault; what’s interesting is that they are primarily found in one location, best explained by marsquakes rather than melting ice and avalanches. This grouping of boulders suggests that they were near the epicentre of a marsquake. The trails behind the rolling boulders are still visible, indicating that they must have fallen relatively recently, with not enough time yet for winds to erase the trails.

Closeup of boulders and trails in Cerberus Fossae. Credit: NASA/JPL/University of Arizona

Marsquakes would also be evidence for possible continued volcanism on the planet, even if only deep underground. That itself has further implications, since it is already known that there are massive ice deposits beneath the surface, even closer to the equator. Heat from any recent or current activity could create liquid water in places, which of course leads back to the question of possible present or past life.

Falling boulders, then, while an interesting observation in themselves, may actually also help to solve some of the ongoing mysteries about the Red Planet.

The study was published in the Journal of Geophysical Research. The paper is available here (by subscription or for $25.00 US).

Valuable Space Rock Crashes Into Oslo Cabin

This meteorite struck the Thomassen family's cabin in Oslo. (Photo: Rune Thomassen)

[/caption]

A family in Oslo got a surprise when they visited their allotment garden cabin for the first time this season and found that a 585-gram (20 oz.) meteorite had ripped a hole through the roof. The space rock was discovered “lying five or six metres away,” the cabin’s owner, Rune Thomassen, told the local newspaper VG.

Such an event is rare in Norway; since 1848 the country has noted only 14 meteorite discoveries.

Astrophysicist Knut Jørgen Røed Ødegaard from the University of Oslo investigated the report and found it to be genuine.

“You can tell immediately that it’s genuine from the burned crust, and you can also recognize it from how rough and unusual it is. It gives me goosebumps,” Ødegaard told VG.

NASA Astrobiology Institute’s Hans Amundsen noted the meteorite’s unusual composition: “This is a very rare meteorite because you can see from the cut of it that it contains fragments from many different kinds of rock that have cemented together, forming a so-called breccia.”

Such meteorites are caused by previous collisions, cementing together different types of material from impacts with asteroids or planets.This means the meteorite that landed on the Thomassens’ cabin may very well have been blown off the surface of Mars at some point in the distant past!

“This is unique. This is double-unique,” Ødegaard noted to VG.

According to Amundsen, such a meteorite is very valuable to researchers as well as private collectors, who may be willing to pay highly for it. Chunks of Mars have fetched USD $877 per gram in the past… making the Thomassens’ find potentially worth over $500,000!

Norway’s geological museum has the country’s only meteorite collection “and they’re the right ones to determine what kind of meteorite this is,” Amundsen said.

Read more on this story here, and see coverage with photos and video on the VG site here (in Norwegian).

Weekly SkyWatcher’s Forecast – March 12-18, 2012

Venus & Jupiter above Backyard Observatory - Credit: John Chumack

[/caption]

Greetings, fellow SkyWatchers! What an awesome display of planets! Please take the time to walk outdoors just after skydark – regardless of where you live – and enjoy the bright display of Venus and Jupiter! However, this isn’t the only planetary action going on this week… Mars and M96 pair up, as well as Uranus and the Moon. There’s even a Southern Hemisphere meteor shower to enjoy! Pretty exciting, huh? Join the party by getting out your binoculars or telescopes and meet me for more in the backyard…

Monday, March 12 – No. That’s not the “headlights” of a UFO on the western horizon tonight… It’s a very cool pairing of Venus and Jupiter! It’s not often you see the two visually brightest planets making a close visual pass at each other and tonight you’ll spot the inner planet to the south and the outer planet to the north. This would make a great photo opportunity! Why not consider adding something interesting to your picture like a scenic building, tree, or even a person? Watch in the days ahead as Jupiter appears to stay in the same spot at the same time, yet Venus will climb higher.

Tonight let’s return again to NGC 2362 and start at the cluster’s north-northeast corner to have a look at a single, unusual star – UW Canis Majoris. At magnitude 4.9, this super-giant spectroscopic binary is one of the most massive and luminous in our galaxy. Its two stars are separated by only 27 million kilometers (17 million miles) and revolve around each other at a frenzied pace – in less than four and a half days. This speed means the stars themselves are flattened and would appear to be almost egg-shaped. The primary itself is shedding material that’s being collected by the secondary star.

Now drop southwest of NGC 2362 for another open cluster – NGC 2354 (Right Ascension: 7 : 14.3 – Declination: -25 : 44). While at best this will appear as a small, hazy patch to binoculars, NGC 2354 is actually a rich galactic cluster containing around 60 metal-poor members. As aperture and magnification increase, the cluster shows two delightful circle-like structures of stars, similar to a figure 8. Be sure to make a note… You’ve captured another Herschel 400 object!

Tuesday, March 13 – On this day in 1781, Uranus was discovered by William Herschel. Also on this day, in 1855, Percival Lowell was born in Boston. Educated at Harvard, Lowell went on to found the observatory which bears his name in Flagstaff, Arizona, and spent a lifetime studying Mars. During the early morning hours, you can honor Lowell by seeing Mars yourself – it’s best viewed when as high a possible on the ecliptic. While there won’t be a great many details, think of how many strides have been made since Lowell’s time and how advanced our knowledge of Mars has become!

Tonight let’s hop about four fingerwidths east-northeast of Sirius. Look for 5th magnitude SAO 152641 to guide you to a faint patch of stars in binoculars and a superb cluster in a telescope – NGC 2360 (Right Ascension: 7 : 17.8 – Declination: -15 : 37). Comprised of around eighty 10th magnitude and fainter stars, this particular cluster will look like a handful of diamond dust scattered on the sky. Discovered by Caroline Herschel in 1783, this intermediate-aged galactic cluster is home to red giants and heavy in metal abundance. Mark your notes, because not only is this a Herschel object, but is known as Caldwell 58 as well!

Wednesday, March 14 – Today is the birthday of Albert Einstein. Born in 1879, Einstein was one of the finest minds of our times. He developed the theory of gravity in terms of spacetime curvature – dependent on the energy density. Winner of the 1921 Physics Nobel prize, Einstein’s work on the photoelectric effect is the basis of modern light detectors.

Tonight let’s hop about a fistwidth north of bright Eta Canis Majoris and have a look at a “double cluster” – NGC 2383 (Right Ascension: 7 : 24.8 – Declination: -20 : 56) and NGC 2384 (Right Ascension: 7 : 25.1 – Declination: -21 : 02). Just showing in binoculars as a faint patch, this pair will begin resolution with larger scopes. Studied photometrically, it would appear these fairly young clusters have contaminated each other by sharing stars – which has also occurred in some clusters located in the Magellanic Clouds. Enjoy this unusual collection of stars…

Thursday, March 15 – Today celebrates the birth of Nicolas Lacaille. Born in 1713, Lacaille’s measurements confirmed the Earth’s equatorial bulge. He also named fourteen southern constellations. To honor Lacaille tonight, let’s begin some explorations in a constellation he named – Puppis!

For SkyWatchers living in high northern latitudes, you’ll never see all of this constellation, but there will be some things for you to explore, as well as a great deal for our friends in the southern hemisphere. The first is a Herschel object that lies directly on the galactic equator around five degrees north-northwest of Xi.

NGC 2421 (Right Ascension: 7 :36.3 – Declination: -20 : 37) is a magnitude 8.3 open cluster that will look like an exquisitely tiny “Brocchi’s Cluster” in binoculars and begin good resolution of its 50 or so members to an intermediate telescope, in an arrowhead-shaped pattern. It’s bright, it’s fairly easy to find, and it’s a great open cluster to add to your challenge study lists!

If you’re looking for a curiosity, then look no further than Leo and Mars. Tonight the happy red planet is situated just to the east of Messier 96 (Right Ascension: 10 : 46.8 – Declination: +11 : 49)! Enjoy celestial mechanics over the next few nights as Mars gently changes its position in relation with this distant galaxy… and gets much closer!

Friday, March 16 – On this day in 1926, Robert Goddard launched the first liquid-fuel rocket. But he was first noticed in 1907 when a cloud of smoke issued from a powder rocket fired in the basement of the physics building in Worcester Polytechnic Institute. Needless to say, the school took an interest in the work of this shy student. Thankfully they did not expel him, and thus began his lifetime of work in rocket science. Goddard was also the first to realize the full implications of rocketry for missiles and space flight, and his lifetime of work was dedicated to bringing this vision to realization. While most of what he did went unrecognized for many years, tonight we celebrate the name of Robert H. Goddard. This first flight may have gone only 12 meters, but forty years later on the date of his birth, Gemini 8 was launched, carrying Neil Armstrong and David Scott into orbit!

Let’s begin our observing evening with Mars. While you may have been keeping track of its position, did you know that it’s less than a degree away from a Messier object tonight? That’s right! You’ll find the dusty red planet just to the north of M96 (Right Ascension: 10 : 46.8 – Declination: +11 : 49).

Tonight we’ll pick up a challenge cluster and a planetary nebula on the Herschel list by returning to NGC 2421 and hopping about a fingerwidth northeast for NGC 2432 (Right Ascension: 7 : 40.9 – Declination: -19 : 05). This small, loose open cluster is rather dim and contains around 20 or so faint members shaped like the letter B. About another degree northeast is NGC 2440 – an elongated, small 11th magnitude planetary nebula. Look for its central star to cause a brightening and up the magnifying power to reveal it.

While out, be on watch for the Corona-Australids meteor shower. While the fall rate is low – 5 to 7 per hour – our friends in the southern hemisphere might stand a chance with this one!

Saturday, March 17 – On this day in 1958, the first solar-powered spacecraft was launched. Named Vanguard 1, it was an engineering test satellite. From its orbital position, the data taken from its transmission helped to redefine the true shape of the Earth.

Tonight let’s return to Xi Puppis and head less than a fingerwidth east-northeast for Herschel study NGC 2482 (Right Ascension: 7 : 54.9 – Declination: -24 : 18). At magnitude 7, this small fuzzy spot in binoculars will resolve into around two dozen stars to the telescope. Look for the diagonal chain of stars along its edge.

Now let’s have a look at an open cluster easily located in northeastern Orion. This 5.9 magnitude scattered group of stars may have been first observed by Giovanni Batista Hodierna in the mid-17th century. While bright enough to have been a Messier object, William Herschel added it to his log of discoveries on October 15, 1784, as H VIII.24. Of the 30 known stars associated with this 3,600 light-year distant group, the brightest is 50 million years old. A half-dozen of the cluster’s very brightest members can be seen in small scopes at mid-range powers. Look for NGC 2169 (Right Ascension: 6 : 08.4 – Declination: +13 : 57) slightly less than a fist width north-northeast of Betelguese and slightly south of Xi and Nu Orionis.

Sunday, March 18 – Although you can’t see it with just your eyes, Uranus is less than a degree from the Moon this morning. For some areas this could be an occultation, so be sure to check IOTA information!

Today in 1965, the first ever spacewalk was performed by Alexei Leonov onboard the Soviet Voskhod spacecraft. The “walk” only lasted around 20 minutes and Alexei had problems in re-entering the spacecraft because his space suit had enlarged slightly. Imagine his fear as he had to let air leak out of his space suit in order to squeeze back inside. When they landed off target in the heavily forested Ural Mountains, the crew of two had to spend the night in the woods surrounded by wolves. It took over twenty-four hours before they were located and workers had to chop their way through the forest and recover them on skis. Brave men!

Tonight let’s honor them by studying a small area which contains not only three Herschel objects – but two Messiers as well – M46 and M47. You’ll find them less than a handspan east of Sirius and about a fistwidth north of Xi Puppis.

The brighter of the two clusters is M47 (Right Ascension: 7 : 36.6 – Declination: -14 : 30) and at 1600 light-years away, it’s a glorious object for binoculars. It is filled with mixed magnitude stars that resolve fully to aperture with the double Struve 1211 near its center. While M47 is in itself a Herschel object, look just slightly north (about a field of view) to pick up another cluster which borders it. At magnitude 6.7, NGC 2423 isn’t as grand, but it contains more than two dozen fairly compressed faint stars with a lovely golden binary at its center.

Now return to M47 and hop east to locate M46 (Right Ascension: 7 : 41.8 – Declination: -14 : 49). While this star cluster will appear to be fainter and more compressed in binoculars, you’ll notice one star seems brighter than the rest. Using a telescope, you’ll soon discover the reason. 300 million year old M47 contains a Herschel planetary nebula known as NGC 2438 in its northern portion. The cluster contains around 150 resolvable stars and may involve as many as 500. The bright planetary nebula was first noted by Sir William Herschel and then again by John. While it would appear to be a member of the cluster, the planetary nebula is just a little closer to us than the cluster. Be sure to mark your notes… There’s a lot there in just a little area!

Until next week? May all of your journeys be at light speed!

Many thanks to John Chumack for the inspiring image!