Here’s What it Looks Like When a Refrigerator Hits the Moon

Ever wonder what your refrigerator’s impacting at the speed of a tank artillery shell would do to the Moon? The Lunar Reconnaissance Orbiter’s (LRO) primary camera has provided an image of just such an event when it located the impact site of another NASA spacecraft, the Lunar Atmosphere and Dust Environment Explorer (LADEE). The fridge-sized LADEE spacecraft completed its final Lunar orbit on April 18, 2014, and then crashed into the far side of the Moon. LADEE ground controllers were pretty certain where it crashed but no orbiter had found it until now. With billions of craters across the lunar surface, finding a fresh crater is a daunting task, but a new method of searching for fresh craters is what found LADEE.

The primary purpose of the LADEE mission was to search for lunar dust in the exceedingly thin atmosphere of the Moon. NASA Apollo astronauts had taken notes and drawings of incredible spires and rays of apparent dust above the horizon of the Moon as they were in orbit. To this day it remains a mystery although LADEE researchers are still working their data to find out more.

The LRO spacecraft has been in lunar orbit since 2007. With the LROC Narrow Angle Camera, LRO has the ability to resolve objects less than 2 feet across, and it was likely just a matter of finding time to snap and to search photos for a tiny impact crater.

However, the LROC team recently developed a new algorithm in software to search for fresh craters. Having a good idea where to begin the search, they decided to search for LADEE and quickly found it. The LROC team said the impact site is “about half a mile (780 meters) from the Sundman V crater rim with an altitude of about 8,497 feet (2,590 meters) and was only about two tenths of a mile (300 meters) north of the location mission controllers predicted based on tracking data.” Sundman Crater is about 200 km (125 miles) from a larger crater named Einstein.

A Google Earth map display of the Moon shows the area of the western limb and the offset of the LADEE impact site relative to the crater Einstein. (Photo Credit: Google, Ilus. T. Reyes)
A Google Earth map display of the Moon shows the area of the western limb and the offset of the LADEE impact site relative to the crater Einstein. The Moon’s limbs are zones rather than a distinct line because of its libration. (Photo Credit: Google, Illus. T. Reyes)

The LADEE impact site is within 300 meters of the location estimated by the LADEE team. The ground control team at Ames Research Center knew the location very well within just hours after the time of the planned impact. They had to know LADEE’s location in orbit with split-second accuracy and also know very accurately the altitude of the terrain LADEE was skimming over. LADEE was traveling at 1699 meters per second (3,800 mph, 5,574 feet/sec) upon impact.

But still, finding something as small as this crater can be difficult.

Looking at these images, the scale of lunar morphology is very deceiving. Craters that are 10 meters in diameter can be mistaken for 100 meter or even 1000 meters. The first image and third images (below) in this article are showing only a small portion of the external slope of the eastern rim of Sundman V, the satellite crater to the southeast of crater Sundman. Sundman V is 19,000 meters in diameter (19 km, 11.8 miles) whereas the first image is only 223 meters across.

The following image, which is the ratioing of “before” and “after” impact images by LROC, clearly reveals the impact scar from LADEE. LADEE’s crater is only approximately 10 feet in diameter (3 m) with the ejecta fanning out 200 meters to the west by northwest. LADEE was traveling westward across the face of the Moon that we see from Earth, reached the western limb and finally encountered Sundman.

A high resolution LROC image of the LADEE impact site on the eastern rim of Sundman V crater. The image was created by ratioing two images, one taken before the impact and another afterwards. The bright area highlights what has changed between the time of the two images, specifically the impact point and the ejecta. Image (Credit: NASA/Goddard/Arizona State University)
A high resolution LROC image of the LADEE impact site on the eastern rim of Sundman V crater. The image was created by ratioing two images, one taken before the impact and another afterwards. The bright area highlights what has changed between the time of the two images, specifically the impact point and the ejecta. Full resolution of the image (click) is 1 pixel per meter [1000 m on a side]. (Credit: NASA/Goddard/Arizona State University)
In the third image of this article (above), only a 1000 meter square view of the outer slope of Sundman V’s eastern rim is seen. Rather than take the difference between the two images, which is essentially what your eye-brain does with an image pair, LROC engineers take the ratio which effectively raises the contrast dramatically. Sundman V crater is on the far side of the Moon but very near the limb. At times, due to lunar libration, this site can be seen from the Earth. In the Lunar Orbiter image, below, Sundman and satellites J & V are marked. The red circle in the image below is the area in which LROC’s high resolution images reside. Furthermore, the famous Arizona meteor crater east of Flagstaff would also easily fit inside the circle.

This Lunar Orbiter image shows the Sundman craters. The high resolution LROC images of the LADE impact site easily fit within the red circle on Sundman V eastern rim. (Photo Credit: NASA)
This Lunar Orbiter image shows the Sundman craters. The high resolution LROC images of the LADEE impact site easily fit within the red circle (2 km dia.) on “Sundman V” eastern rim. (Photo Credit: NASA, Illus. T.Reyes)

The discovery so close to the predicted impact site confirmed how accurately the LADEE team could model the chaotic orbits around the Moon – at least during short intervals of time. Gravitationally, the Moon is truly like Swiss cheese. The effects of upwelling magma during its creation, the effects of the Earth’s tidal forces, and all the billions of asteroid impacts created a very chaotic gravitational field. Where the lunar surface is higher or more dense, gravity is stronger and vice-versa. LADEE struggled to maintain an orbit that would not run into the Moon. Without a constant vigil by Ames engineers, LADEE’s orbit would be shifted and rotated relative to the Moon’s surface until it eventually would intersect the Lunar surface – run into the Moon. Eventually, this had to happen as LADEE ran out of propulsion fuel.

The blink comparator used by Clyde Tombaugh at Lowell Observatory to discover Pluto in 1930. The basic approach has since been translated into computer software capable of searching many times faster than a human. (Photo Credit: MWT Associates)
The blink comparator used by Clyde Tombaugh at Lowell Observatory to discover Pluto in 1930. The basic approach has since been translated into computer software capable of searching many times faster than a human. (Photo Credit: MWT Associates/Melitatrips)

The method used by the LROC team in its basic approach is by no means new. Clyde Tombaugh used a blink comparator to search for Planet X for several months and many frame pairs of the night sky. The comparator would essentially show one image and then a second of the same view taken a few nights apart to Clyde’s eye. Tombaugh’s eye and brain could process the two images and identify slight shifts of an object from one frame to the other. Stars are essentially fixed, don’t move but objects in our solar system do move in the night sky over hours or days. In the same way, the new software employed by LROC engineers takes two images and compares them mathematically. A human is replaced by a computer and software to weed out the slightest changes between a pair of images; images of the same area but spaced in time. Finding changes on the surface of a body such as the Moon or Mars is made especially difficult because of the slightest changes in lighting and location of the observer (the spacecraft). The new LROC software marks a new step forward in sophistication and thus has returned LADEE back to us.

The following Lunar Orbiter image from the 1960s is high contrast and reveals surface relief in much more detail. Einstein crater is clearly seen, as is Sundman with J and V satellite craters on its rim.

A NASA Lunar Orbiter image of the LADEE impact site. Einstein is actually a old low profile crater 198 km in diameter with 51 km "Einstein A" at its center. Sundman is also a low profile crater, 40 km, with satellite craters J (southwest), V (southeast). (Photo Credit: NASA)
A NASA Lunar Orbiter image of the LADEE impact site. Einstein is actually an old low profile crater 198 km in diameter with 51 km “Einstein A” at its center. Sundman is also a low profile crater, 40 km diameter, with satellite craters J (10 km dia., southwest), V (19 km dia., southeast). (Photo Credit: NASA)

References:

NASA’s LRO Spacecraft Captures Images of LADEE’s Impact Crater

Karl Frithiof Sundman (28 October 1873, Kaskinen – 28 September 1949, Helsinki)

The Blink Comparator and Clyde Tombaugh

Earth and Mars Captured Together in One Photo from Lunar Orbit

Wow, this doesn’t happen very often: Earth and Mars together in one photo. To make the image even more unique, it was taken from lunar orbit by the Lunar Reconnaissance Orbiter. This two-for-one photo was was acquired in a single shot on May 24, 2014, by the Narrow Angle Camera (NAC) on LRO as the spacecraft was turned to face the Earth, instead of its usual view of looking down at the Moon.

The LRO imaging team said seeing the planets together in one image makes the two worlds seem not so far apart, and that the Moon still might have a role to play in future exploration.

“The juxtaposition of Earth and Mars seen from the Moon is a poignant reminder that the Moon would make a convenient waypoint for explorers bound for the fourth planet and beyond!” said the LRO team on their website. “In the near-future, the Moon could serve as a test-bed for construction and resource utilization technologies. Longer-range plans may include the Moon as a resource depot or base of operations for interplanetary activities.”

Watch a video created from this image where it appears you are flying from the Earth to Mars:

The LROC team said this imaging sequence required a significant amount of planning, and that prior to the “conjunction” event, they took practice images of Mars to refine the timing and camera settings.

When the spacecraft captured this image, Earth was about 376,687 kilometers (234,062 miles) away from LRO and Mars was 112.5 million kilometers away. So, Mars was about 300 times farther from the Moon than the Earth.

The NAC is actually two cameras, and each NAC image is built from rows of pixels acquired one after another, and then the left and right images are stitched together to make a complete NAC pair. “If the spacecraft was not moving, the rows of pixels would image the same area over and over; it is the spacecraft motion, combined with fine-tuning of the camera exposure time, that enables the final image, such as this Earth-Mars view,” the LRO team explained.

Check out more about this image on the LRO website, which includes a zoomable, interactive version of the photo.

Which Of These Moon Pictures Catches Your Eye? NASA Asks You To Pick The Best

If you’re a fan of moon observation, it’s lucky for you that spacecraft such as the Lunar Reconnaissance Orbiter exist. For about the past five years, the NASA spacecraft has been in orbit around a closest large neighbor, taking images of the surface in high-definition.

To celebrate LRO’s fifth anniversary, NASA is asking members of the public to vote on which of those images (above) is their favorite. This isn’t so much a statement about the scientific data it has collected, NASA said, but more appreciating the images as art.

Voting runs from May 23 to June 6, and the winner will be announced with the full collection’s release on June 18 — the actual official fifth anniversary of the launch. You can find more information about the vote at this page.

By the way, LRO not only takes good pictures of the moon, but also of other spacecraft. You can check out its pictures of LADEE and Chang’e-3 in these past Universe Today articles.

Meanwhile, James Garvin — NASA’s chief scientist of the sciences and exploration directorate — eloquently weighs in below on his favorite images of the moon. His description of Aristarchus is interesting: “Here is Mother Nature’s expression of a gigantic landform made by a cosmic collision.” You can check out the other four below.

The Newest ‘Earthrise’ Image, Courtesy of the Lunar Reconnaissance Orbiter

That’s Earth. That’s us. Way off in the distance as a fairly small, blue and swirly white sphere. This is the newest so-called “Earthrise” image, and it was taken on February 1, 2014 by the Lunar Reconnaissance Orbiter.

“LRO experiences twelve earthrises every day, however LROC is almost always busy imaging the lunar surface so only rarely does an opportunity arise such that LROC can capture a view of the Earth,” wrote LROC Principal Investigator Mark Robinson on the instrument’s website. “On the first of February of this year LRO pitched forward while approaching the north pole allowing the LROC WAC to capture the Earth rising above Rozhdestvenskiy crater (180-km diameter).”

Robinson went on to explain that the Earth is a color composite from several frames and the colors are very close to what the average person would see if they were looking back at Earth themselves from lunar orbit. “Also, in this image the relative brightness between the Earth and the Moon is correct, note how much brighter the Earth is relative to the Moon,” Robinson said.

Gorgeous.

Below is a gif image that demonstrates how images are combined over several orbits to create a full image from the Wide Angle Camera.

A gif image showing the “venetian blind” banding demonstrates how a WAC image is built up frame-by-frame. The gaps between the frames are due to the real separation of the WAC filters on the CCD. Credit: NASA/GSFC/Arizona State University.

The frames were acquired at two second intervals, so the total time to collect the sequence was 5 minutes. The video is faster than reality by a factor of about 20.

Zoom to the Moon’s North Pole with this Incredible New Gigapixel Map

OMG – breathtaking! That was my reaction when I clicked on this incredible new interactive map of the moon’s north polar region. Be prepared to be amazed. It took four years and 10,581 images for the LROC (Lunar Reconnaissance Orbiter Camera) team to assemble what’s believed to be the largest publicly available image mosaic in existence. With over 650 gigapixels of data at a resolution of 2 meters per pixel, you’ll feel like you’re dropping in by parachute  to the lunar surface. 

The 91-km Karpinskiy Crater from the new interactive north pole mosaic. See image below for a zoomed-in view. Credit: NASA
Wide view of the 91-km Karpinskiy Crater from the new interactive north pole mosaic. See image below for a zoomed-in view. Credit: NASA/GSFC/Arizona State Univ.

When you call up the map, be sure to click first on the full-screen button below the zoom slider. Now you’re ready for the full experience. With mouse in hand, you’re free to zoom and pan as you please. Take in the view of Whipple Crater shadowed in polar darkeness or zoom to the bottom of Karpinskiy Crater and fly like a bird over its fractured floor.

In this photo, we come in for a closer look at the fracture or rill in Karpinskiy's floor. Notice the boulders on the cliff side. Credit: NASA
In this photo, we come in for a closer look at the fracture or rill in Karpinskiy’s floor. Notice the small, lighter-toned boulders on the cliff side. The images were all taken with the Lunar Reconnaissance Orbiter’s Narrow Angle Camera (NAC).  Credit: NASA/GFSC/Arizona State Univ.

The images are so detailed and the zoom so smooth, there’s nothing artificial about the ride. Except the fact you’re not actually orbit. Darn close though. All the pictures were taken over the past few years by NASA’s Lunar Reconnaissance Orbiter which can fly as low as 50 km (31 miles) over the lunar surface and resolve details the size of a desk.

Printed at 300 dpi (a high-quality printing resolution that requires you to peer very closely to distinguish pixels), the LNPM would be larger than a football field. Credit: NASA
Printed at 300 dpi – a high-quality printing resolution that requires you to peer very closely to distinguish pixels –  the mosaic map would be larger than a football field. Credit: NASA

There are 10 snapshots along the bottom of the map – click them and you’ll be swiftly carried directly to that feature. One of them is the lunar gravity probe GRAIL-B impact site.

The region the gigapixel map covers superimposed on the outline of the U.S. Credit: NASA
The region the gigapixel map covers superimposed on the outline of the U.S. Credit: NASA

To create the 2-D map, a polar stereographic projection was used in to limit mapping distortions. In addition, the LROC team used information from the LOLA and GRAIL teams and an improved camera pointing model to accurately project each image in the mosaic to within 20 meters. For more information on the project, click HERE.

OK, I’ve said enough. Now go take a look!

NASA Lunar Orbiter snaps Spectacular Images of Yutu Moon Rover driving around Chang’e-3 Lander

Yutu rover drives around Chang’e-3 lander – from Above And Below
Composite view shows China’s Yutu rover and tracks driving in clockwise direction around Chang’e-3 lander from Above And Below (orbit and surface). The Chang’e-3 timelapse lander color panorama (bottom) and orbital view (top) from NASA’s LRO orbiter shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side, passing by craters and heading south on Lunar Day 1. It then moved northwest during Lunar Day 2. Arrows show Yutu’s positions over time.
Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson
See below more mosaics and LRO imagery
Story updated[/caption]

The powerful telescopic camera aboard NASA’s Lunar Reconnaissance Orbiter (LRO) has captured spectacular new images detailing the traverse of China’s Yutu moon rover around the landing site during its first two months exploring the Moon’s pockmarked grey terrain.

The newly released high resolution LRO images even show Yutu’s tracks cutting into the lunar surface as the world famous Chinese robot drove in a clockwise direction around the Chang’e-3 lander that delivered it to the ground in mid-December 2013.

You can precisely follow Yutu’s movements over time – from ‘above and below’ – in our new composite view (shown above) combining the latest LRO image with our timelapse mosaic showing the rover’s history making path from the touchdown point last December to today’s location.

Yutu is China’s first ever Moon rover and successfully accomplished a soft landing on the Moon on Dec. 14, 2013, piggybacked atop the Chang’e-3 mothership lander.

Barely seven hours after touchdown, the six wheeled moon buggy drove down a pair of ramps onto the desolate gray plains of the lunar surface at Mare Imbrium (Sea of Rains) covered by volcanic material.

LROC February 2014 image of Chang'e 3 site. Blue arrow indicates Chang'e 3 lander; yellow arrow points to Yutu (rover); and white arrow marks the December location of Yutu. Yutu's tracks can be followed clockwise around the lander to its current location. Image width 200 meters (about 656 feet).  Credit:  NASA/Goddard/Arizona State University
LROC February 2014 image of Chang’e 3 site. Blue arrow indicates Chang’e 3 lander; yellow arrow points to Yutu (rover); and white arrow marks the December location of Yutu. Yutu’s tracks can be followed clockwise around the lander to its current location. Image width 200 meters (about 656 feet). Credit: NASA/Goddard/Arizona State University

Altogether three images of the rover and lander have been taken to date by the Lunar Reconnaissance Orbiter Camera (LROC) aboard LRO – specifically the hi res narrow angle camera (NAC).

The LROC NAC images were captured on Dec. 25, 2013, Jan. 21, 2014 and Feb. 17, 2014 as LRO soared overhead.

The four image LRO composite below includes a pre-landing image taken on June 30, 2013.

Four LROC NAC views of the Chang'e 3 landing site. A) before landing, June 30, 2013 B) after landing, Dec. 25, 2013 C) Jan. 21, 2014 D) Feb. 17, 2014 Width of each image is 200 meters (about 656 feet). Follow Yutu's path clockwise around the lander in "D."  Credit: NASA/Goddard/Arizona State University
Four LROC NAC views of the Chang’e 3 landing site. A) before landing, June 30, 2013 B) after landing, Dec. 25, 2013 C) Jan. 21, 2014 D) Feb. 17, 2014 Width of each image is 200 meters (about 656 feet). Follow Yutu’s path clockwise around the lander in “D.” Credit: NASA/Goddard/Arizona State University

Since the solar incidence angles were different, the local topography and reflectance changes between images showing different levels of details.

“In the case of the Chang’e 3 site, with the sun higher in the sky one can now see the rover Yutu’s tracks (in the February image),” wrote Mark Robinson, Principal Investigator for the LROC camera in an LRO update.

The solar powered rover and lander can only operate during periods of lunar daylight, which last 14 days each.

During each lunar night, they both must power down and enter hibernate mode since there is no sunlight available to generate power and no communications are possible with Earth.

Here is a gif animation from the NASA LRO team combining all four LROC images.

Four views of the Chang'e 3 landing site from before the landing until Feb. 2014. Credit: NASA/GSFC/Arizona State University
Four views of the Chang’e 3 landing site from before the landing until Feb. 2014. Credit: NASA/GSFC/Arizona State University

During Lunar Day 1, Yutu drove down the landers ramps and moved around the right side in a clockwise direction.

By the end of the first lunar day, Yutu had driven to a position about 30 meters (100 feet) south of the Chang’e-3 lander, based on the imagery.

See our complete 360 degree timelapse color panorama from Lunar Day 1 herein and at NASA APOD on Feb. 3, 2014 – assembled by Marco Di Lorenzo and Ken Kremer.

360-degree time-lapse color panorama from China’s Chang’e-3 lander. This new 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at five different positions, including passing by crater and heading south and away from the Chang’e-3 lunar landing site forever during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.  See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm
360-degree time-lapse color panorama from China’s Chang’e-3 lander. This new 360-degree time-lapse color panorama from China’s Chang’e-3 lander shows the Yutu rover at five different positions, including passing by crater and heading south and away from the Chang’e-3 lunar landing site forever during its trek over the Moon’s surface at its landing site from Dec. 15-22, 2013 during the 1st Lunar Day. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

After awakening for Lunar Day 2, Yutu then moved northwest and parked about 17 meters (56 feet) southwest of the lander, according to Robinson.

By comparing the Janaury and February images “it is apparent that Yutu did not move appreciably from the January location,” said Robinson.

At this moment Yutu and the companion Chang’e-3 lander are sleeping through their 3rd Lunar Night.

They entered hibernation mode on Feb. 22 and Feb. 23, 2014 respectively.

Hopefully both probes will awaken from their slumber sometime in the next week when the Moon again basks in daylight glow to begin a 4th day of lunar surface science operations.

“We all wish it would be able to wake up again,” said Ye Peijian, chief scientist of the Chang’e-3 program, according to CCTV, China’s state run broadcaster.

However, the hugely popular ‘Yutu’ rover is still suffering from an inability to maneuver its life giving solar panels. It is also unable to move – as I reported here.

The 140 kg rover is now nearing its planned 3 month long life expectancy on a moon roving expedition to investigate the moon’s surface composition and natural resources.

Chang’e-3/Yutu Timelapse Color Panorama  This newly expanded timelapse composite view shows China’s Yutu moon rover at two positions passing by crater and heading south and away from the Chang’e-3 lunar landing site forever about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree timelapse panorama. See complete 360 degree landing site timelapse panorama herein and APOD Feb. 3, 2014. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com.   See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014:  http://apod.nasa.gov/apod/ap140203.htm
Chang’e-3/Yutu Timelapse Color Panorama
This newly expanded timelapse composite view shows China’s Yutu moon rover at two positions passing by crater and heading south and away from the Chang’e-3 lunar landing site forever about a week after the Dec. 14, 2013 touchdown at Mare Imbrium. This cropped view was taken from the 360-degree timelapse panorama. See complete 360 degree landing site timelapse panorama herein and APOD Feb. 3, 2014. Chang’e-3 landers extreme ultraviolet (EUV) camera is at right, antenna at left. Credit: CNSA/Chinanews/Ken Kremer/Marco Di Lorenzo – kenkremer.com. See our complete Yutu timelapse pano at NASA APOD Feb. 3, 2014: http://apod.nasa.gov/apod/ap140203.htm

China is only the 3rd country in the world to successfully soft land a spacecraft on Earth’s nearest neighbor after the United States and the Soviet Union.

Stay tuned here for Ken’s continuing Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, LADEE, Mars and more planetary and human spaceflight news. Learn more at Ken’s upcoming presentations at the NEAF astro/space convention on April 12/13.

Ken Kremer

Chang’e-3 lander and Yutu rover – from Above And Below  Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander color panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander color panorama shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson
Chang’e-3 lander and Yutu rover – from Above And Below Composite view shows China’s Chang’e-3 lander and Yutu rover from Above And Below (orbit and surface) – lander color panorama (top) and orbital view from NASA’s LRO orbiter (bottom). Chang’e-3 lander color panorama shows Yutu rover after it drove down the ramp to the moon’s surface and began driving around the landers right side to the south. Yellow lines connect craters seen in the lander panorama and the LROC image from LRO (taken at a later date after the rover had moved), red lines indicate approximate field of view of the lander panorama. Credit: CNSA/NASA/Ken Kremer/Marco Di Lorenzo/Mark Robinson
LRO slewed 54 degrees to the east on Feb. 16, 2014, to allow the LROC instrument to snap a dramatic oblique view of the Chang'e 3 site (arrow). Crater in front of lander is 450 meters (about 1,476 feet) in diameter. Image width is 2,900 meters (about 9,500 feet) at the center. Credit: NASA/Goddard/Arizona State University
LRO slewed 54 degrees to the east on Feb. 16, 2014, to allow the LROC instrument to snap a dramatic oblique view of the Chang’e 3 site (arrow). Crater in front of lander is 450 meters (about 1,476 feet) in diameter. Image width is 2,900 meters (about 9,500 feet) at the center. Credit: NASA/Goddard/Arizona State University

NASA Extends LADEE Dust Explorer for Bonus Lunar Science

Depiction of NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) observatory as it approaches lunar orbit.Credit: NASA Ames/Dana Berry
LADEE will now orbit far lower than ever before – details below![/caption]

LADEE, NASA’s latest lunar orbiter, is getting a new lease on life and will live a little longer to study the mysteries of the body’s tenuous atmosphere, or exosphere, and make surprising new discoveries while hugging Earth’s nearest neighbor even tighter than ever before, the team told Universe Today.

NASA has announced that the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission will be granted a month long extension since the residual rocket fuel is more than anticipated due to the expertise of LADEE’s navigation engineers.

This is great news because it means LADEE’s three research instruments will collect a big bonus of science measurements about the pristine lunar atmosphere and dust during an additional 28 days in an ultra tight low orbit skimming around the Moon.

And the extension news follows closely on the heels of LADEE being photographed in lunar orbit for the first time by a powerful camera aboard NASA’s five year old Lunar Reconnaissance Orbiter (LRO), her orbital NASA sister – detailed here.

This dissolve  animation compares the LRO image (geometrically corrected) of LADEE  captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE .  LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit:  NASA/Goddard/Arizona State University
This dissolve animation compares the LRO image (geometrically corrected) of LADEE captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE . LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit: NASA/Goddard/Arizona State University

LADEE is currently flying around the moon’s equator at altitudes ranging barely eight to 37 miles (12-60 kilometers) above the surface which crosses over from lunar day to lunar night approximately every two hours.

During the extended mission lasting an additional full lunar cycle, LADEE will fly even lower to within a few miles (km) thereby allowing scientists an exceptional vantage point to unravel the mysteries of the moon’s atmosphere.

Just how low will LADEE fly?

I asked Rick Elphic, LADEE project scientist at NASA Ames Research Center, Moffett Field, Calif.

“We will be taking LADEE from its nominal 20 to 50 kilometer periapsis right down to the treetops — we want to get data from 5 kilometers or even less!” Elphic told me.

“So far we’ve been keeping a healthy margin for spacecraft safety, but after the nominal mission is completed, we will relax those requirements in the interest of new science.”

With the measurements collected so far the science team has already established a baseline of data for the tenuous lunar atmosphere, or exosphere, and dust impacts, says NASA.

Therefore the LADEE team is free to fly the spacecraft much lower than ever before.

And why even go to lower altitudes? I asked Elphic.

Basically because the team hopes to see changes in the particle density and composition.

“The density depends on the species. For instance, argon-40 is heavier than neon-20, and has a lower scale height. That means we should see a big increase in argon compared to neon.”

“And we may see the heavier species for the first time at these really low altitudes.”

“It’s remotely possible we’ll see krypton, for instance.”

“But the real boon will be in the dust measurements.”

“LDEX (The Lunar Dust Experiment) will be measuring dust densities very close to the surface, and we will see if something new shows up. Each time we’ve dropped our orbit down to lower altitudes, we’ve been surprised by new things,” Elphic told Universe Today.

The Neutral Mass Spectrometer (NMS) instrument will measure the identity and abundances of the exospheres constituents, such as argon, neon and krypton.

LADEE Science Instrument locations
LADEE Science Instrument locations

With the extension, LADEE is expected to continue capturing data in orbit until about April 21, 2014, depending on the usage of the declining on board fuel to feed its maneuvering thrusters.

“LADEE is investigating the moons tenuous exosphere, trace outgases like the sodium halo and lofted dust at the terminator,” Jim Green, Planetary Science Division Director at NASA HQ, told me earlier in an exclusive interview.

“The spacecraft has a mass spectrometer to identify the gases, a physical dust detector and an imager to look at scattered light from the dust. These processes also occur at asteroids.”

The Lunar Dust Experiment (LDEX) recorded dust impacts as soon as its cover opened, says NASA and is also seeing occasional bursts of dust impacts caused by meteoroid showers, such as the Geminids.

By studying the raised lunar dust, scientists also hope to solve a 40 year old mystery – Why did the Apollo astronauts and early unmanned landers see a glow of rays and streamers at the moon’s horizon stretching high into the lunar sky.

The science mission duration had initially been planned to last approximately 100 days and finish with a final impact on the Moon on about March 24th.

And the team had told me before launch that an extension was rather unlikely since the spacecraft would be flying in such a very low science orbit of about 50 kilometers altitude above the moon that it will require considerable fuel to maintain.

“LADEE is limited by the amount of onboard fuel required to maintain orbit,” Doug Voss, launch manager, Wallops, told me.

So what accounts for the extension?

Basically it’s because of the expert navigation by NASA’s engineers and the Orbital Sciences Minotaur V rocket and upper stages following the spectacular night time LADEE blastoff from NASA Wallops, VA, on Sept. 6, 2013 and subsequent insertion into lunar orbit.

“The launch vehicle performance and orbit capture burns using LADEE’s onboard engines were extremely accurate, so the spacecraft had significant propellant remaining to enable extra science,” said Butler Hine, LADEE project manager at NASA’s Ames where the mission was designed, built, tested, in a NASA statement.

“This extension represents a tremendous increase in the amount of science data returned from the mission.”

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com

“LADEE launched with 134.5 kilograms of fuel. After the third lunar orbit insertion burn (LOI-3), 80% of our fuel had been consumed,” said Dawn McIntosh, LADEE deputy project manager at NASA Ames Research Center, in an exclusive interview with Universe Today.

“Additional orbit-lowering maneuvers with the orbital control system (OCS) and reaction control system (RCS) of approximately 40 seconds were used to get LADEE into the science orbit.

And LADEE’s orbit capture was accomplished amidst the ridiculous US government shutdown with a skeleton crew.

The spacecraft finally entered its planned two hour science orbit around the moon’s equator on Nov. 20.

So LADEE’s orbital lifetime depends entirely on the remaining quantity of rocket fuel.

“LADEE has about 20 kg of propellant remaining today,” Butler Hine told Universe Today.

The 844 pound (383 kg) robot explorer is the size of a couch and was assembled at NASA’s Ames Research Center, Moffett Field, Calif., and is a cooperative project with NASA Goddard Spaceflight Center in Maryland.

Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

The $280 million probe is built on a revolutionary ‘modular common spacecraft bus’, or body, that could dramatically cut the cost of exploring space and also be utilized on space probes to explore a wide variety of inviting targets in the solar system.

“LADEE is the first in a new class of interplanetary exploration missions,” NASA Ames Center Director Pete Worden told me in an interview. “It will study the pristine moon to study significant questions.”

“This is probably our last best chance to study the pristine Moon before there is a lot of human activity there changing things.”

To date LADEE has traveled over 1 million miles and in excess of 1200 equatorial orbits around the Moon.

LADEE is also searching for any changes caused to the exosphere and dust by the landing of China’s maiden Chang’e-3 lander and Yutu moon rover in December 2013.

Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more news.

Ken Kremer

LADEE_Poster_01

Paul Mahaffy, LADEE Neutral Mass Spectrometer (NMS) instrument, principal investigator, and Ken Kremer/Universe Today discuss LADEE science at NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com
Paul Mahaffy, LADEE Neutral Mass Spectrometer instrument, principal investigator, and Ken Kremer/Universe Today discuss LADEE science at NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

Close Encounters of the Lunar Kind – LRO images LADEE

This dissolve animation compares the LRO image (geometrically corrected) of LADEE captured on Jan 14, 2014 with a computer-generated and labeled image of LADEE . LRO and LADEE are both NASA science spacecraft currently in orbit around the Moon. Credit: NASA/Goddard/Arizona State University
Story updated[/caption]

A pair of NASA spacecraft orbiting Earth’s nearest celestial neighbor just experienced a brief ‘Close Encounter of the Lunar Kind’.

Proof of the rare orbital tryst has now been revealed by NASA in the form of spectacular imagery (see above and below) just released showing NASA’s recently arrived Lunar Atmosphere and Dust Environment Explorer (LADEE) lunar orbiter being photographed by a powerful camera aboard NASA’s five year old Lunar Reconnaissance Orbiter (LRO) – as the two orbiters met for a fleeting moment just two weeks ago.

See above a dissolve animation that compares the LRO image (geometrically corrected) of LADEE captured on Jan. 14, 2014 with a computer-generated and labeled LADEE image.

All this was only made possible by a lot of very precise orbital calculations and a spacecraft ballet of sorts that had to be nearly perfectly choreographed and timed – and spot on to accomplish.

This subsection of the LRO image, expanded four times, shows the smeared view of LADEE against the lunar background..   LADEE is about 2 meters in the long direction. Lunar scene about 81 meter wide.  Credit:  NASA/Goddard/Arizona State University
This subsection of the LRO image, expanded four times, shows the smeared view of LADEE against the lunar background. LADEE is about 2 meters in the long direction. Lunar scene about 81 meter wide. Credit: NASA/Goddard/Arizona State University

Both sister orbiters were speeding along at over 3600 MPH (1,600 meters per second) while traveling perpendicularly to one another!

So the glimpse was short but sweet.

LADEE flies in an equatorial orbit (east-to-west) while LRO travels in a polar orbit (south-to-north). LADEE achieved lunar orbit on Oct. 6, 2013 amidst the federal government shutdown.

Thus their orbits align only infrequently.

The LRO orbiter did a pirouette to precisely point its high resolution narrow angle camera (NAC) while hurtling along in lunar orbit, barely 5.6 miles (9 km) above LADEE.

And it was all over in less than the wink of an eye!

LADEE entered LRO’s Narrow Angle Camera (NAC) field of view for 1.35 milliseconds and a smeared image of LADEE was snapped. LADEE appears in four lines of the LROC image, and is distorted right-to-left.

Both spacecraft are tiny – barely two meters in length.

“Since LROC is a pushbroom imager, it builds up an image one line at a time, thus catching a target as small and fast as LADEE is tricky!” wrote Mark Robinson, LROC principal investigator of Arizona State University.

So the fabulous picture was only possible as a result of close collaboration and extraordinary teamwork between NASA’s LADEE, LRO and LROC camera mission operations teams.

NASA’s LRO imaged NASA’s LADEE, about 5.6 miles (9 km) beneath it, at 8:11 p.m. EST on Jan. 14, 2014. (LROC NAC image M1144387511LR).  Image width is 821 meters, or about 898 yards.)   Credit:   NASA/Goddard/Arizona State University
NASA’s LRO imaged NASA’s LADEE, about 5.6 miles (9 km) beneath it, at 8:11 p.m. EST on Jan. 14, 2014. (LROC NAC image M1144387511LR). Image width is 821 meters, or about 898 yards.) Credit: NASA/Goddard/Arizona State University

LADEE passed directly beneath the LRO orbit plane a few seconds before LRO crossed the LADEE orbit plane, meaning a straight down LROC image would have just missed LADEE, said NASA.

LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. LRO cameras are pointing to right. LRO is piggybacked atop NASA’s LCROSS spacecraft.  Payload fairing in background protects the spacecraft during launch and ascent. Credit: Ken Kremer
LRO spacecraft (top) protected by gray colored blankets is equipped with 7 science instruments located at upper right side of spacecraft. LRO cameras are pointing to right. LRO is piggybacked atop NASA’s LCROSS spacecraft. Payload fairing in background protects the spacecraft during launch and ascent. Credit: Ken Kremer

Therefore, LRO was rolled 34 degrees to the west so the LROC detector (one line) would be precisely oriented to catch LADEE as it passed beneath.

“Despite the blur it is possible to find details of the spacecraft. You can see the engine nozzle, bright solar panel, and perhaps a star tracker camera (especially if you have a correctly oriented schematic diagram of LADEE for comparison),” wrote Robinson in a description.

See the LADEE schematic in the lead image herein.

LADEE was launched Sept. 6, 2013 from NASA Wallops in Virginia on a science mission to investigate the composition and properties of the Moon’s pristine and extremely tenuous atmosphere, or exosphere, and untangle the mysteries of its lofted lunar dust.

Since LADEE is now more than halfway through its roughly 100 day long mission, timing was of the essence before the craft takes a death dive into the moon’s surface.

You can see a full scale model of LADEE at the NASA Wallops visitor center, which offers free admission.

Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com
Full scale model of NASA’s LADEE lunar orbiter on display at the free visitor center at NASA’s Wallops Flight Facility in Virginia. Credit: Ken Kremer/kenkremer.com

LRO launched Sept. 18, 2009 from Cape Canaveral, Florida to conduct comprehensive investigations of the Moon with seven science instruments and search for potential landing sites for a return by human explorers. It has collected astounding views of the lunar surface, including the manned Apollo landing sites as well as a treasure trove of lunar data.

In addition to NASA’s pair of lunar orbiters, China recently soft landed two probes on the Moon.

So be sure to read my new story detailing how LRO took some stupendous Christmas time 2013 images of China’s maiden lunar lander and rover; Chang’e-3 and Yutu from high above- here.

Stay tuned here for Ken’s continuing LADEE, Chang’e-3, Orion, Orbital Sciences, SpaceX, commercial space, Mars rover and more news.

Ken Kremer

Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left.  Credit: Ken Kremer/kenkremer.com
Launch of NASA’s LADEE lunar orbiter on Friday night Sept. 6, at 11:27 p.m. EDT on the maiden flight of the Minotaur V rocket from NASA Wallops, Virginia, viewing site 2 miles away. Antares rocket launch pad at left. Credit: Ken Kremer/kenkremer.com