Lockheed Martin Unveils Details of their Proposed Base Camp for Mars

Artist's impression of the Mars Base Camp in orbit around Mars. When missions to Mars begin, one of the greatest risks will be that posed by space radiation. Credit: Lockheed Martin

Before NASA can mount its proposed “Journey to Mars“, which will see astronauts set foot on the Red Planet for the first time in history, a number of logistical and technical issues need to be addressed first. In addition to a launch vehicle (the Space Launch System), a crew capsule (the Orion Multi-Purpose Crew Vehicle), and a space station beyond the Moon (the Deep Space Gateway), the astronauts will also need a space habitat in orbit of Mars.

To build this habitat, NASA has reached out to its long-time contractor, Lockheed Martin. And on Saturday, September 28th, at the International Astronautical Congress (IAC) in Adelaide, Australia, the aerospace company revealed new details about its Mars Base Camp. When NASA’s proposed crewed mission to Mars takes place in the 2030s, this base will be the outpost from which crews will conduct research on the Martian surface.

The details revealed at the conference included how their proposed base camp aligns with other key components of NASA’s Mars mission, which Lockheed Martin is also working with NASA to develop. These include the Deep Space Gateway positioned in cislunar orbit, and a Mars surface lander – a reusable, single-stage craft capable of descending to the Martian surface from orbit.

Diagram of Lockheed Martin’s Mars Base Camp. Credit: Lockheed Martin

Along with NASA’s SLS and Orion spacecraft, these vital pieces of infrastructure will allow for not just one, but repeated crewed mission to Mars. As Lisa Callahan – the vice president and general manager of Commercial Civil Space at Lockheed Martin – said in the course of the company’s presentation at the IAC:

“Sending humans to Mars has always been a part of science fiction, but today we have the capability to make it a reality. Partnered with NASA, our vision leverages hardware currently in development and production. We’re proud to have Orion powered-on and completing testing in preparation for its Exploration Mission-1 flight and eventually its journey to Mars.”

Overall, the purpose of the Mars Base Camp is very simple. Basically, it consists of an orbital outpost where scientist-astronauts will be transported to after leaving Earth and flying from the Deep Space Gateway into orbit around Mars. From this base, crews will be able to conduct real-time scientific exploration of the Martian atmosphere, followed by missions to the surface.

As Lockheed Martin’s indicates on their website, the major components of their base camp will be launched separately. Some will be pre-positioned in orbit around Mars ahead of time while others will be assembled in cis-lunar space for the journey to Mars. In the end, six astronauts will launch on an Orion spacecraft – which serves as the heart of the Mars Base Camp interplanetary ship – and assemble all the component in orbit around Mars.

Artist’s impression of Lockheed Martin’s proposed Mars Lander. Credit: Lockheed Martin

This is also consistent with Phase II and Phase III of NASA’s “Journey to Mars”, which are known as the “Proving Ground” and “Earth Independent” phases, respectively. Phase II calls for a series of missions to test the capabilities of the Space Launch System (SLS), Orion spacecraft, and deep space habitats, as well as multiple crewed missions and spacewalks in cislunar space.

Phase III will then consist of the refinement and testing of entry, descent, and landing techniques, as well as in-situ resource utilization. Once these are complete, Phase III will culminate with crewed missions to Martian orbit, followed by landed missions to the Martian surface. The first mission involving the Mars Base Camp are intended to be an extended stay in orbit around the Red Planet.

This will allow astronauts to gain vital experience with extended operations far from Earth and its protective magnetic field. This will be followed by the arrival of the surface lander, which would allow the astronauts to land and conduct missions on the surface. The lander would be mated to the base camp between missions and descend to the surface using supersonic retro-propulsion.

The lander also relies on Orion avionics and systems as its command deck, and is powered by engines that use a liquid-hydrogen/liquid-oxygen propellant. Each mission to the surface would likely last two weeks at a time and consist of four astronauts conducting research and collecting samples for return to the base camp. The crews would then take off in the Lander and return it the station, where it would refuel and restock for future missions.

Artist illustration of Habitation Module. Credit: Lockheed Martin
Artist illustration of Habitation Module. Credit: Lockheed Martin

Since the lander’s fuel can be manufactured from water, it is likely that a source of subsurface water ice will also come into play during these surface missions. If the necessary infrastructure is brought to the surface, it could even be used for the in-situ manufacture of rocket fuel. As such, it is understandable by locating a source of subsurface water ice is a major focal point of future NASA and SpaceX missions.

As noted, the Mars Base Camp is aligned with other mission components, which include the Deep Space Gateway. Here too, NASA has contracted Lockheed Martin to develop the concept’s architecture. This past summer, the company was awarded a Phase II contract by NASA to create designs for this space habitat, which is intended to build on the lessons learned from the International Space Station (ISS).

The contract was awarded as part of the Next Space Technologies for Exploration Partnership (NextSTEP) program, which NASA launched in 2014. In April of 2016, during the second NextSTEP Broad Agency Announcement (NextSTEP-2), NASA selected six U.S. companies to begin building full-sized ground prototypes and concepts for this deep space habitat.

In the end, the Deep Space Gateway and the Mars Base Camp will allow for the development and testing of other space systems in cis-lunar space before sending them on to Mars. The Gateway will also allow astronauts to conduct lunar research and live and work in orbit around the Moon for months at a time. This will come in handy once they begin making transits to and from Mars.

NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

Ever since NASA first announced its proposal for a “Journey to Mars” in 2010, scientists, space enthusiasts and the general public ave eagerly awaited the release of key details. Given that such a mission comes with major technical and logistical challenges, how they intend to address them has been a major point of interest. Other points of interest have included timelines as well as the vehicles, systems and technologies that would be involved.

This latest announcement is just one of many to be made by NASA and its partners in recent months. As the “Journey to Mars” slowly approaches, more and more details have become available, and what this mission will look like has slowly taken form. As Lockheed Martin states on their website:

Since the first Viking lander touched down on Mars 40 years ago, humanity has been fascinated with the Red Planet. Lockheed Martin built NASA’s first Mars lander and has been a part of every NASA Mars mission since. We’re ready to deliver the future, faster. Mars is closer than you think. We’re ready to accelerate the journey.”

And be sure to check out this promotional video about the Mars Base Camp, courtesy of Lockheed Martin:

Further Reading: Lockheed Martin, LM – Mars Base Camp

Ready to Leave Low Earth Orbit? Prototype Construction Begins for a Deep Space Habitat

Artist illustration of Habitation Module. Credit: Lockheed Martin
Artist illustration of Habitation Module aboard the Deep Space Gateway. Credit: Lockheed Martin

In 2010, NASA announced its commitment to mount a crewed mission to Mars by the third decade of the 21st century. Towards this end, they have working hard to create the necessary technologies – such as the Space Launch System (SLS) rocket and the Orion spacecraft. At the same time, they have partnered with the private sector to develop the necessary components and expertise needed to get crews beyond Earth and the Moon.

To this end, NASA recently awarded a Phase II contract to Lockheed Martin to create a new space habitat that will build on the lessons learned from the International Space Station (ISS). Known as the Deep Space Gateway, this habitat will serve as a spaceport in lunar orbit that will facilitate exploration near the Moon and assist in longer-duration missions that take us far from Earth.

The contract was awarded as part of the Next Space Technologies for Exploration Partnership (NextSTEP) program, which NASA launched in 2014. In April of 2016, as part of the second NextSTEP Broad Agency Announcement (NextSTEP-2) NASA selected six U.S. companies to begin building full-sized ground prototypes and concepts for this deep space habitat.

Artist’s impression of the Deep Space Gateway, currently under development by Lockheed Martin. Credit: NASA

Alongside such well-known companies like Bigelow Aerospace, Orbital ATK and Sierra Nevada, Lockheed Martin was charged with investigating habitat designs that would enhance missions in space near the Moon, and also serve as a proving ground for missions to Mars. Intrinsic to this is the creation of something that can take effectively integrate with SLS and the Orion capsule.

In accordance with NASA’s specifications on what constitutes an effective habitat, the design of the Deep Space Gateway must include a pressurized crew module, docking capability, environmental control and life support systems (ECLSS), logistics management, radiation mitigation and monitoring, fire safety technologies, and crew health capabilities.

The design specifications for the Deep Space Gateway also include a power bus, a small habitat to extend crew time, and logistics modules that would be intended for scientific research. The propulsion system on the gateway would rely on high-power electric propulsion to maintain its orbit, and to transfer the station to different orbits in the vicinity of the Moon when required.

With a Phase II contract now in hand, Lockheed Martin will be refining the design concept they developed for Phase I. This will include building a full-scale prototype at the Space Station Processing Facility at NASA’s Kennedy Space Center at Cape Canaveral, Florida, as well as the creation of a next-generation Deep Space Avionics Integration Lab near the Johnson Space Center in Houston.

Artist’s concept of space habitat operating beyond Earth and the Moon. Credit: NASA

As Bill Pratt, Lockheed Martin’s NextSTEP program manager, said in a recent press statement:

“It is easy to take things for granted when you are living at home, but the recently selected astronauts will face unique challenges. Something as simple as calling your family is completely different when you are outside of low Earth orbit. While building this habitat, we have to operate in a different mindset that’s more akin to long trips to Mars to ensure we keep them safe, healthy and productive.”

The full-scale prototype will essentially be a refurbished Donatello Multi-Purpose Logistics Module (MPLM), which was one of three large modules that was flown in the Space Shuttle payload bay and used to transfer cargo to the ISS. The team will also be relying on “mixed-reality prototyping”, a process where virtual and augmented reality are used to solve engineering issues in the early design phase.

“We are excited to work with NASA to repurpose a historic piece of flight hardware, originally designed for low Earth orbit exploration, to play a role in humanity’s push into deep space,” said Pratt. “Making use of existing capabilities will be a guiding philosophy for Lockheed Martin to minimize development time and meet NASA’s affordability goals.”

The Deep Space Gateway will also rely on the Orion crew capsule’s advanced capabilities while crews are docked with the habitat. Basically, this will consist of the crew using the Orion as their command deck until a more permanent command module can be built and incorporated into the habitat. This process will allow for an incremental build-up of the habitat and the deep space exploration capabilities of its crews.

Credit: NASA

As Pratt indicated, when uncrewed, the habitat will rely on systems that Lockheed Martin has incorporated into their Juno and MAVEN spacecraft in the past:

“Because the Deep Space Gateway would be uninhabited for several months at a time, it has to be rugged, reliable and have the robotic capabilities to operate autonomously. Essentially it is a robotic spacecraft that is well-suited for humans when Orion is present. Lockheed Martin’s experience building autonomous planetary spacecraft plays a large role in making that possible.”

The Phase II work will take place over the next 18 months and the results (provided by NASA) are expected to improve our understanding of what is needed to make long-term living in deep space possible. As noted, Lockheed Martin will also be using this time to build their Deep Space Avionics Integration Laboratory, which will serve as an astronaut training module and assist with command and control between the Gateway and the Orion capsule.

Beyond the development of the Deep Space Gateway, NASA is also committed to the creation of a Deep Space Transport – both of which are crucial for NASA’s proposed “Journey to Mars”. Whereas the Gateway is part of the first phase of this plan – the “Earth Reliant” phase, which involves exploration near the Moon using current technologies – the second phase will be focused on developing long-duration capabilities beyond the Moon.

NASA’s Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

For this purpose, NASA is seeking to create a reusable vehicle specifically designed for crewed missions to Mars and deeper into the Solar System. The Deep Space Transport would rely on a combination of Solar Electric Propulsion (SEP) and chemical propulsion to transport crews to and from the Gateway – which would also serve as a servicing and refueling station for the spacecraft.

This second phase (the “Proving Ground” phase) is expected to culminate at the end of the 2020s, at which time a one-year crewed mission will take place. This mission will consist of a crew being flown to the Deep Space Gateway and back to Earth for the purpose of validating the readiness of the system and its ability to conduct long-duration missions independent of Earth.

This will open the door to Phase Three of the proposed Journey, the so-called “Earth Indepedent” phase. At this juncture, the habitation module and all other necessary mission components (like a Mars Cargo Vehicle) will be transferred to an orbit around Mars. This is expected to take place by the early 2030s, and will be followed (if all goes well) by missions to the Martian surface.

While the proposed crewed mission to Mars is still a ways off, the architecture is gradually taking shape. Between the development of spacecraft that will get the mission components and crew to cislunar space – the SLS and Orion – and the development of space habitats that will house them, we are getting closer to the day when astronauts finally set foot on the Red Planet!

Further Reading: NASA, Lockheed Martin

VP Pence Vows Return to the Moon, Boots on Mars during KSC Visit

Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, 2017 tour of NASA's Kennedy Space Center - along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com
Vice President Mike Pence (holding Orion model) receives up close tour of NASA’s Orion EM-1 deep space crew capsule (at right) being manufactured for 1st integrated flight with NASA’s SLS megarocket in 2019; with briefing from KSC Director/astronaut Robert D. Cabana during his July 6, tour of NASA’s Kennedy Space Center – along with acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Vice President Mike Pence, during a whirlwind visit to NASA’s Kennedy Space Center in Florida, vowed that America would fortify our leadership in space under the Trump Administration with impressive goals by forcefully stating that “our nation will return to the moon, and we will put American boots on the face of Mars.”

“American will once again lead in space for the benefit and security of all of our people and all of the world,” Vice President Mike Pence said during a speech on Thursday, July 6, addressing a huge crowd of more than 500 NASA officials and workers, government dignitaries and space industry leaders gathered inside the cavernous Vehicle Assembly Building at the Kennedy Space Center – where Apollo/Saturn Moon landing rockets and Space Shuttles were assembled for decades in the past and where NASA’s new Space Launch System (SLS) megarocket and Orion deep space crew capsule will be assembled for future human missions to the Moon, Mars and beyond.

Pence pronounced the bold space exploration goals and a reemphasis on NASA’s human spaceflight efforts from his new perch as Chairman of the newly reinstated National Space Council just established under an executive order signed by President Trump.

“We will re-orient America’s space program toward human space exploration and discovery for the benefit of the American people and all of the world.”

Vice President Mike Pence speaks before an audience of NASA leaders, U.S. and Florida government officials, and employees inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Pence thanked employees for advancing American leadership in space. Behind the podium is the Orion spacecraft flown on Exploration Flight test-1 in 2014. Credits: NASA/Kim Shiflett

However Pence was short on details and he did not announce any specific plans, timetables or funding during his 25 minute long speech inside the iconic VAB at KSC.

It remains to been seen how the rhetoric will turn to reality and all important funding support.

The Trump Administration actually cut their NASA 2018 budget request by $0.5 Billion to $19.1 Billion compared to the enacted 2017 NASA budget of $19.6 Billion – including cuts to SLS and Orion.

By contrast, the Republican led Congress – with bipartisan support – is working on a 2018 NASA budget of around 19.8 Billion.

“Let us do what our nation has always done since its very founding and beyond: We’ve pushed the boundaries on frontiers, not just of territory, but of knowledge. We’ve blazed new trails, and we’ve astonished the world as we’ve boldly grasped our future without fear.”

“From this ‘Bridge to Space,’ our nation will return to the moon, and we will put American boots on the face of Mars.” Pence declared.

Lined up behind Pence on the podium was the Orion spacecraft flown on Exploration Flight Test-1 (EFT-1) in 2014 flanked by a flown SpaceX cargo Dragon and a mockup of the Boeing CST-100 Starliner crew capsule.

The crewed Dragon and Starliner capsules are being developed by SpaceX and Boeing under NASA contracts as commercial crew vehicles to ferry astronauts to the International Space Station (ISS).

Pence reiterated the Trump Administrations support of the ISS and working with industry to cut the cost of access to space.

Vice President Mike Pence (holding Orion model) tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6 KSC visit – posing with KSC Director/astronaut Robert Cabana, acting NASA Administrator Robert M. Lightfoot, Jr., Senator Marco Rubio, Lockheed Martin CEO Marillyn Hewson and KSC Deputy Director Janet Petro inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Acting NASA Administrator Robert Lightfoot also welcomed Vice President Pence to KSC and thanked the Trump Administration for its strong support of NASA missions.

“Here, of all places, we can see we’re not looking at an ‘and/or proposition’,” Lightfoot said.

“We need government and commercial entities. We need large companies and small companies. We need international partners and our domestic suppliers. And we need academia to bring that innovation and excitement that they bring to the next workforce that we’re going to use to actually keep going further into space than we ever have before.”

View shows the state of assembly of NASA’s Orion EM-1 deep space crew capsule during inspection tour by Vice President Mike Pence on July 6, 2017 inside the Neil Armstrong Operations and Checkout Building at the Kennedy Space Center. 1st integrated flight with NASA’s SLS megarocket is slated for 2019. Credit: Ken Kremer/kenkremer.com

After the VAB speech, Pence went on an extensive up close inspection tour of KSC facilities led by Kennedy Space Center Director and former shuttle astronaut Robert Cabana, showcasing the SLS and Orion hardware and infrastructure critical for NASA’s plans to send humans on a ‘Journey to Mars’ by the 2030s.

“We are in a great position here at Kennedy, we made our vision a reality; it couldn’t have been done without the passion and energy of our workforce,” said Kennedy Space Center Director Cabana.

“Kennedy is fully established as a multi-user spaceport supporting both government and commercial partners in the space industry. As America’s premier multi-user spaceport, Kennedy continues to make history as it evolves, launching to low-Earth orbit and beyond.”

Vice President Mike Pence holds and inspects an Orion capsule heat shield tile with KSC Director/astronaut Robert Cabana during his July 6, 2017 tour/speech at NASA’s Kennedy Space Center – accompanied by acting NASA administrator Robert M. Lightfoot, Jr., Senator Marco Rubio and Lockheed Martin CEO Marillyn Hewson inside the Neil Armstrong Operations and Checkout Building at KSC. Credit: Ken Kremer/kenkremer.com

Pence toured the Neil Armstrong Operations and Checkout Building (O & C) where the Orion deep space capsule is being manufactured for launch in 2019 on the first integrated flight with SLS on the uncrewed EM-1 mission to the Moon and back – as I witnessed for Universe Today.

Vice President Mike Pence tours manufacturing of NASA’s Orion EM-1 crew capsule during July 6, 2017 KSC visit with KSC Director/astronaut Robert Cabana inside the Neil Armstrong Operations and Checkout Building. Credit: Julian Leek

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2019 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com
NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

New Age in Weather Forecasting Begins with Spectacular 1st Images from NASA/NOAA GOES-16 Observatory

GOES-16 (previously known as GOES-R) captured this view of the moon as it looked across the surface of the Earth on January 15, 2017. Like earlier GOES satellites, GOES-16 will use the moon for calibration. Credit: NOAA/NASA
GOES-16 (previously known as GOES-R) captured this view of the moon as it looked across the surface of the Earth on January 15, 2017. Like earlier GOES satellites, GOES-16 will use the moon for calibration. Credit: NOAA/NASA

KENNEDY SPACE CENTER, FL – A new age has begun in the nations weather forecasting capabilities with the release today (Jan. 23) of the spectacular first images gathered by the recently launched NASA/NOAA GOES-16 observatory.

The highly advanced Geostationary Operational Environmental Satellite-16 (GOES-16) weather observatory lifted off two months ago atop a ULA Atlas V rocket on Nov. 19, 2016 from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida.

GOES-16 (formerly known as GOES-R through the launch) is the first in a new series of revolutionary NASA/NOAA geostationary weather satellites that entails the first significant instrument upgrade to US weather forecasting capabilities in more than two decades.

“It will be like high-definition from the heavens,” says NOAA.

“Today’s release of the first images from #GOES16 signals the start of a new age in satellite weather observation!!!”

Thus the newly obtained and published imagery has been anxiously awaited by scientists, meteorologists and ordinary weather enthusiasts.

“This is such an exciting day for NOAA! One of our GOES-16 scientists compared this to seeing a newborn baby’s first pictures — it’s that exciting for us,” said Stephen Volz Ph.D. director of NOAA’s Satellite and Information Service, in a statement.

“These images come from the most sophisticated technology ever flown in space to predict severe weather on Earth. The fantastically rich images provide us with our first glimpse of the impact GOES-16 will have on developing life-saving forecasts.”

This image clearly shows the significant storm system that crossed North America that caused freezing and ice that resulted in dangerous conditions across the United States on January 15, 2017 resulting in loss of life. Credit: NOAA/NASA

An especially eye-popping image taken by GOES -16 from its equatorial vantage point situated in geostationary orbit 22,300 miles (35,800 kilometers) above Earth and published today, shows both the Earth and the Moon together – as the lead image here.

The Earth/Moon combo shot is not only fantastically pleasing to the eye, but also serves a significant scientific purpose.

“Like earlier GOES satellites, GOES-16 will use the moon for calibration,” say NOAA officials.

“GOES-16 will boost the nation’s weather observation network and NOAA’s prediction capabilities, leading to more accurate and timely forecasts, watches and warnings.”

GOES-16 is the most advanced and powerful weather observatory ever built and will bring about a ‘quantum leap’ in weather forecasting.

“Seeing these first images from GOES-16 is a foundational moment for the team of scientists and engineers who worked to bring the satellite to launch and are now poised to explore new weather forecasting possibilities with this data and imagery,” said Volz.

“The incredibly sharp images are everything we hoped for based on our tests before launch. We look forward to exploiting these new images, along with our partners in the meteorology community, to make the most of this fantastic new satellite.”

It’s dramatic new imagery will show the weather in real time enabling critical life and property forecasting, help pinpoint evacuation zones and also save people’s lives in impacted areas of severe weather including hurricanes and tornadoes.

And the huge satellite can’t come online soon enough, as demonstrated by the severe winter weather and tornadoes that just wreaked havoc and death in various regions of the US.

Another breathtaking image product (seen below) produced by the GOES-16 Advanced Baseline Imager (ABI) instrument, built by Harris Corporation, shows a full-disc view of the Western Hemisphere in high detail — at four times the image resolution of existing GOES spacecraft.

This composite color full-disk visible image shows North and South America and was taken on January 15, 2017. It was created using several of the 16 spectral channels available on the GOES-16 Advanced Baseline Imager (ABI) instrument. Credit: NOAA/NASA

The 11,000 pound satellite was built by prime contractor Lockheed Martin and is the first of a quartet of four identical satellites – comprising GOES-R, S, T, and U – at an overall cost of about $11 Billion. This will keep the GOES satellite system operational through 2036.

This next generation of GOES satellites will replace the currently operating GOES East and GOES West satellites.

NOAA will soon decide whether GOES-16 will replace either the East or West satellites. A decision from NOAA is expected in May. GOES-16 will be operational by November 2017 as either the GOES-East or GOES-West satellite. Of course everyone wants it first.

The next satellite is nearing assembly completion and will undergo about a year of rigorous environmental and acoustic testing before launch. It will go to whichever slot was not selected this year.

This 16-panel image shows the continental United States in the two visible, four near-infrared and 10 infrared channels on the Advanced Baseline Imager (ABI). These channels help forecasters distinguish between differences in the atmosphere like clouds, water vapor, smoke, ice and volcanic ash. Credit: NOAA/NASA

The six instrument science suite includes the Advanced Baseline Imager (ABI) built by Harris Corporation, the Geostationary Lightning Mapper (GLM) built by Lockheed Martin, Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS), and the Magnetometer (MAG).

ABI is the primary instrument and will collect 3 times more spectral data with 4 times greater resolution and scans 5 times faster than ever before – via the primary Advanced Baseline Imager (ABI) instrument – compared to the current GOES satellites.

Northeast Coast and New York Metropolitan region. On January 15, 2017 severe weather moved across the central United States before passing through the Northeast on the 16th and 17th where it resulted in wet and wintry weather for travelers across the region. Credit: NOAA/NASA

“The higher resolution will allow forecasters to pinpoint the location of severe weather with greater accuracy. GOES-16 can provide a full image of Earth every 15 minutes and one of the continental U.S. every five minutes, and scans the Earth at five times the speed of NOAA’s current GOES imagers.”

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of successful launch on a ULA Atlas V on Nov. 19, 2016. GOES-R/GOES-16 will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

GOES-R launched on the massively powerful Atlas V 541 configuration vehicle, augmented by four solid rocket boosters on the first stage. As I witnessed and reported here.

Blastoff of revolutionary NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) on ULA Atlas V from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida on Nov. 19, 2016. GOES-R will deliver a quantum leap in America’s weather forecasting capabilities. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Florida and The Caribbean. In May 2017, NOAA will announce the planned location for GOES-16. By November 2017, GOES-16 will be operational as either the GOES-East or GOES-West satellite. At its current check out location the satellite captured this image of the Caribbean and Florida. Here the satellite captures the shallows waters of the Caribbean. Credit: NOAA/NASA

Vital Air Force Missile Reconnaissance Satellite SBIRS GEO 3 Launched – Photo/Video Gallery

United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 early missile warning satellite for USAF lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 early missile warning satellite for USAF lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – A vital missile reconnaissance satellite for the U.S. Force soared to space atop an Atlas V rocket from Cape Canaveral at dinnertime Friday night, Jan. 20, 2017.

The United Launch Alliance Atlas V rocket carrying the $1.2 Billion Space Based Infrared System (SBIRS) GEO Flight 3 infrared imaging satellite lifted off at 7:42 p.m. ET from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla.

Check out this expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

Nighttime blastoff of ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite to orbit on Jan. 20, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Julian Leek

“GEO Flight 3 delivery and launch marks a significant milestone in fulfilling our commitment to the missile-warning community, missile defense and the intelligence community. It’s an important asset for the warfighter and will be employed for years to come,” says Lt. Gen. Samuel Greaves, SMC commander and Air Force program executive officer for space, in a statement.

The Space Based Infrared System is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands in four national security mission areas: missile warning, missile defense, technical intelligence and battlespace awareness.

“The hard work and dedication of the launch team has absolutely paid off,” Col. Dennis Bythewood, director of the Remote Sensing Directorate said in a statement.

“Today’s launch of GEO Flight 3 culminates years of preparation by a broad team of government and industry professionals.”

ULA Atlas V launch of USAF SBIRS GEO 3 missile defense satellite on Jan. 20, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Joe Sekora

The SBIRS GEO Flight 3 missile defense observatory built for the USAF will detect and track the infrared signatures of incoming enemy missiles twice as fast as the prior generation of satellites and is vital to America’s national security.

United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 missile detection satellite for USAF lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

SBIRS GEO Flight 3 was launched to geosynchronous transfer orbit to an altitude approx 22,000 miles (36,000 kilometers) above Earth.

The Atlas V was launched southeast at an inclination of 23.29 degrees. SBIRS GEO Flight 3 separated from the 2nd stage as planned 43 minutes after liftoff.

Following separation, the spacecraft began a series of orbital maneuvers to propel it to a geosynchronous earth orbit. Once in its final orbit, engineers will deploy the satellite’s solar arrays and antennas. The engineers will then complete checkout and tests in preparation for operational use, USAF officials explained.

Watch these eyepopping launch videos as the Atlas V rocket thunders to space – showing different perspectives of the blastoff from remote cameras ringing the pad and from the media’s launch viewing site on Cape Canaveral Air Force Station.

Video Caption: ULA Atlas 5 launch of the SBIRS GEO Flight 3 satellite from Pad 41 of the Cape Canaveral Air Force Station on January 20, 2017. Credit: Jeff Seibert

Video Caption: Launch of SBIRS GEO Flight 3 early missile warning satellite for USAF on a United Launch Alliance (ULA) Atlas V rocket from SLC-41 on Cape Canaveral Air Force Station, Fl., at 7:42 p.m. ET on Jan. 20, 2017 – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Lockheed Martin is the prime contractor, with Northrop Grumman as the payload integrator.

The SBIRS team is led by the Remote Sensing Systems Directorate at the U.S. Air Force Space and Missile Systems Center. Air Force Space Command operates the SBIRS system.

United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 early missile warning satellite for USAF lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying SBIRS GEO Flight 3 missile tracking observatory lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite awaits blastoff from pad 41 at Cape Canaveral Air Force Station in Florida on Jan. 20 , 2017. Credit: Dawn Taylor
A United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 satellite lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite awaits blastoff from pad 41 at Cape Canaveral Air Force Station in Florida on Jan. 20 , 2017. Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite streaks to orbit on Jan. 20, 2017 after nighttime blastoff at 7:42 p.m. ET from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Julian Leek
Banner announcing imminent launch of ULA Atlas V and USAF SBIRS GEO 3 from CCAFS on Jan. 20, 2017. Credit: Dawn Taylor
Launch of Atlas V and USAF SBIRS GEO 3 missile defense satellite from CCAFS on Jan. 20, 2017 as seen from Titusville, Fl neighborhood. Credit: Melissa Bayles
ULA Atlas V rocket stands erect alongside newly built crew access tower at Cape Canaveral Air Force Station’s Space Launch Complex-41 ahead of Jan. 19, 2017 blastoff. Credit: Ken Kremer/kenkremer.com
Launch of Atlas V and USAF SBIRS GEO 3 missile defense satellite from CCAFS on Jan. 20, 2017 as seen from Titusville, Fl neighborhood. Credit: Melissa Bayles
Pad 41 gets hosed down about 1 hour post launch of ULA Atlas V rocket delivering USAF SBIRS GEO 3 missile defense satellite to orbit on Jan. 20, 2017 from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Julian Leek
Atlas V/SBIRS GEO 3 awaits liftoff from pad 41 on Jan. 20, 2017 at Cape Canaveral Air Force Station in Florida. Credit: Lane Hermann

USAF Missile Defense SBIRS Observatory Streaks to Orbit during Spectacular Evening Blastoff

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite streaks to orbit on Jan. 20, 2017 after nighttime blastoff at 7:42 p.m. ET from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida Credit: Ken Kremer/kenkremer.com
ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite streaks to orbit on Jan. 20, 2017 after nighttime blastoff at 7:42 p.m. ET from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL – A U.S. Air Force missile defense reconnaissance observatory that will track the telltale infrared signatures of incoming enemy missiles and is vital to America’s national security blasted off in spectacular fashion this evening, Jan. 20, 2017, as it streaked to orbit from the Florida Space Coast.

The United Launch Alliance Atlas V rocket carrying the $1.2 Billion Space Based Infrared System (SBIRS) GEO Flight 3 infrared imaging satellite lifted off at 7:42 p.m. ET from Space Launch Complex-41 on Cape Canaveral Air Force Station, Fla. – marking the first US east coast launch of 2017.

The SBIRS GEO Flight 3 was launched to geosynchronous transfer orbit to an altitude approx 22,000 miles (36,000 kilometers) above Earth.

The Atlas V was launched southeast at an inclination of 23.29 degrees. SBIRS GEO Flight 3 separated from the 2nd stage as planned 43 minutes after liftoff.

It is also the first of at least eleven launches of Atlas and Delta rockets by the aerospace firm this year.

The on time launch took place at the opening of the 40 minute launch window and after a 24 hour delay – when the launch was scrubbed yesterday (Jan. 19) after an aircraft flew into the Cape’s restricted airspace and could not be diverted in time before the launch window closed.

ULA also had to address sensor issues with the Atlas rockets RD-180 main engine during Thursday’s countdown.

Due to the scrub, the Atlas liftoff counts as the first launch of the Trump Administration rather the last of the Obama Administration.

With the unpredictable North Korean dictator Kim John Un threatening to launch an upgraded long range intercontinental ballistic missile this year that could potentially strike the United States west coast, SBIRS GEO 3 is more important than ever for our national defense.

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile defense satellite streaks to orbit on Jan. 20, 2017 after nighttime blastoff at 7:42 p.m. ET from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. Credit: Julian Leek

The SBIRS GEO Flight 3 is considered to be one of the highest priority military space programs in defense of the homeland.

The Space Based Infrared System is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands in four national security mission areas: missile warning, missile defense, technical intelligence and battlespace awareness.

SBIRS will supplement and replace the legacy Defense Support Program (DSP) satellites currently in orbit and features vastly increased early missile detection and warning capabilities.

“ULA is proud to deliver this critical satellite which will improve surveillance capabilities for our national decision makers,” said Laura Maginnis, ULA vice president of Government Satellite Launch, in a statement.

“I can’t think of a better way to kick off the new year.”

A United Launch Alliance (ULA) Atlas V rocket carrying SBIRS GEO Flight 3 satellite lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

ULA is a joint venture of Boeing and Lockheed Martin with 116 successful launches under its belt after today’s liftoff.

The 194-foot-tall commercial Atlas V booster launched in the 401 rocket configuration with approximately 860,000 pounds of sea level first stage thrust powered by the dual nozzle Russian-built RD AMROSS RD-180 engine. There are no thrust augmenting solids attached to the first stage.

The satellite is housed inside a 4-meter diameter large payload fairing (LPF). The Centaur upper stage is powered by the Aerojet Rocketdyne RL10C engine.

Watch this video showing the detailed mission profile:

Video Caption: An Atlas V 401 configuration rocket will deliver the Air Force’s third Space-Based Infrared System (SBIRS) satellite to orbit. SBIRS, considered one of the nation’s highest priority space programs, is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands. Credit: ULA

This mission marks the 34th Atlas V mission in the 401 configuration.

“The Atlas V 401 configuration has become the workhorse of the Atlas V fleet, delivering half of all Atlas V missions to date” said Maginnis.

“ULA understands that even with the most reliable launch vehicles, our sustained mission success is only made possible with seamless integration between our customer and our world class ULA team.”

ULA Atlas V rocket carrying SBIRS GEO Flight 3 missile tracking observatory lifts off at 7:42 p.m. ET on Jan. 20, 2017 from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

The two prior SBIRS GEO missions also launched on the ULA Atlas V 401 rocket.

The SBIRS team is led by the Remote Sensing Systems Directorate at the U.S. Air Force Space and Missile Systems Center. Lockheed Martin is the prime contractor, with Northrop Grumman as the payload integrator. Air Force Space Command operates the SBIRS system, according to a ULA description.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

ULA Atlas V rocket carrying the USAF SBIRS GEO 3 missile warning satellite is poised for blastoff from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida on Jan. 20, 2017. Credit: Ken Kremer/kenkremer.com
Artwork for ULA Atlas V launch of SBIRS GEO Flight 3 mission on Jan. 19, 2017 from Canaveral Air Force Station, Florida. Credit: ULA

Atlas V Fire and Fury Get Gorgeous GOES-R to Geostationary Orbit; Photo/Video Gallery

Blastoff of revolutionary NASA/NOAA GOES-R weather satellite on ULA Atlas V on Nov. 19, 2016 - as seen from remote camera at Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida. GOES-R will deliver a quantum leap in America’s weather forecasting capabilities. Credit: Ken Kremer/kenkremer.com
Blastoff of revolutionary NASA/NOAA GOES-R weather satellite on ULA Atlas V on Nov. 19, 2016 - as seen from remote camera at Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida.  GOES-R will deliver a quantum leap in America’s weather forecasting capabilities. Credit: Ken Kremer/kenkremer.com
Blastoff of revolutionary NASA/NOAA GOES-R weather satellite on ULA Atlas V on Nov. 19, 2016 – as seen from remote camera at Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida. GOES-R will deliver a quantum leap in America’s weather forecasting capabilities. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – The fire and fury of the mighty ULA Atlas V got the gorgeous NASA/NOAA GOES-R weather observatory to geostationary orbit just days ago – as a ‘Thanksgiving’ present to all the people of Earth through the combined efforts of the government/industry/university science and engineering teams of hard working folks who made it possible.

Check out this dazzling photo and video gallery from myself and several space journalist colleagues showing how GOES got going – from prelaunch to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 (SLC-41) Cape Canaveral Air Force Station at 6:42 p.m. EST in the evening on Saturday, Nov. 19, 2016.

Three and a half hours after liftoff, the bus sized spacecraft successfully separated from the Atlas Centaur upper stage and deployed its life giving solar arrays.

ULA Atlas V rocket and GOES-R weather observatory streak to orbit from launch pad 41 at Cape Canaveral, Florida. Credit:  Julian Leek
ULA Atlas V rocket and GOES-R weather observatory streak to orbit from launch pad 41 at Cape Canaveral, Florida. Credit: Julian Leek

GOES-R is the most advanced and powerful weather observatory ever built and will bring about a ‘quantum leap’ in weather forecasting.

It’s dramatic new imagery will show the weather in real time enabling critical life and property forecasting, help pinpoint evacuation zones and also save people’s lives in impacted areas of severe weather including hurricanes and tornadoes.

Here’s a pair of beautiful launch videos from space colleague Jeff Seibert and myself:

Video Caption: 5 views from the launch of the NOAA/NASA GOES-R weather satellite on 11/19/2016 from Pad 41 CCAFS on a ULA Atlas. Credit: Jeff Seibert

Video Caption: Launch of the NOAA/NASA GOES-R weather observatory satellite on Nov. 19, 2016 from pad 41 on Cape Canaveral Air Force Station on a ULA Atlas V rocket – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

GOES-R is the first in a new series of revolutionary NASA/NOAA geostationary weather satellites that will soon lead to more accurate and timely forecasts, watches and warnings for the Earth’s Western Hemisphere when it becomes fully operational in about a year.

Ignition of  ULA Atlas V rocket and GOES-R weather observatory at launch pad 41 at Cape Canaveral, Florida. Credit:  Julian Leek
Ignition of ULA Atlas V rocket and GOES-R weather observatory at launch pad 41 at Cape Canaveral, Florida. Credit: Julian Leek

GOES-R, which stands for Geostationary Operational Environmental Satellite – R Series – is a new and advanced transformational weather satellite that will vastly enhance the quality, speed and accuracy of weather forecasting available to forecasters for Earth’s Western Hemisphere.

The 11,000 pound satellite was built by prime contractor Lockheed Martin and is the first of a quartet of four identical satellites – comprising GOES-R, S, T, and U – at an overall cost of about $11 Billion. This will keep the GOES satellite system operational through 2036.

Blastoff of revolutionary NASA/NOAA GOES-R weather satellite on ULA Atlas V on Nov. 19, 2016 - as seen from remote camera at Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida.  Credit: Ken Kremer/kenkremer.com
Blastoff of revolutionary NASA/NOAA GOES-R weather satellite on ULA Atlas V on Nov. 19, 2016 – as seen from remote camera at Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer/kenkremer.com

The science suite includes the Advanced Baseline Imager (ABI) built by Harris Corporation, the Geostationary Lightning Mapper (GLM) built by Lockheed Martin, Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS), and the Magnetometer (MAG).

ABI is the primary instrument and will collect 3 times more spectral data with 4 times greater resolution and scans 5 times faster than ever before – via the primary Advanced Baseline Imager (ABI) instrument – compared to the current GOES satellites.

Atlas V and GOES-R aloft after Nov. 19, 2016 liftoff of the powerful NASA/NOAA weather observatory on ULA Atlas V from pad 41 on Cape Canaveral Air Force Station, Florida - as seen from the VAB roof.  Credit: Ken Kremer/kenkremer.com
Atlas V and GOES-R aloft after Nov. 19, 2016 liftoff of the powerful NASA/NOAA weather observatory on ULA Atlas V from pad 41 on Cape Canaveral Air Force Station, Florida – as seen from the VAB roof. Credit: Ken Kremer/kenkremer.com

GOES-R launched on the massively powerful Atlas V 541 configuration vehicle, augmented by four solid rocket boosters on the first stage.

The payload fairing is 5 meters (16.4 feet) in diameter. The first stage is powered by the Russian built duel nozzle RD AMROSS RD-180 engine. And the Centaur upper stage is powered by a single-engine Aerojet Rocketdyne RL10C engine.

This was only the fourth Atlas V launch employing the 541 configuration.

ULA Atlas V rocket and GOES-R weather observatory at launch pad 41 at Cape Canaveral, Florida. Credit:  Dawn Leek Taylor
ULA Atlas V rocket and GOES-R weather observatory at launch pad 41 at Cape Canaveral, Florida. Credit: Dawn Leek Taylor

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Track mobile used to push ULS Atlas V and NASA/NOAA GOES-R to pad 41 from VIF processing facility. Credit: Lane Hermann
Track mobile used to push ULS Atlas V and NASA/NOAA GOES-R to pad 41 from VIF processing facility. Credit: Lane Hermann
Launch of NASA/NOAA GOES-R weather observatory on ULA Atlas V on Nov. 19, 2016 from pad 41 on Cape Canaveral Air Force Station, Florida, as seen from Playalinda beach. Credit: Jillian Laudick
Launch of NASA/NOAA GOES-R weather observatory on ULA Atlas V on Nov. 19, 2016 from pad 41 on Cape Canaveral Air Force Station, Florida, as seen from Playalinda beach. Credit: Jillian Laudick
Atlas V/GOES-R launch as seen rising over neighbor houses in Titusville, Florida  on Nov. 19, 2016. Credit: Melissa Bayles
Atlas V/GOES-R launch as seen rising over neighbor houses in Titusville, Florida on Nov. 19, 2016. Credit: Melissa Bayles
Atlas V rocket and GOES-R nighttime launch soars over the swimming pool at the Quality Inn Kennedy Space Center in Titusville, Florida  on Nov. 19, 2016. Credit: Wesley Baskin
Atlas V rocket and GOES-R nighttime launch soars over the swimming pool at the Quality Inn Kennedy Space Center in Titusville, Florida on Nov. 19, 2016. Credit: Wesley Baskin
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of launch on a ULA Atlas V on Nov. 19, 2016.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of launch on a ULA Atlas V on Nov. 19, 2016. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

In the Cleanroom with Game Changing GOES-R Next Gen Weather Satellite – Launching Nov. 19

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of launch on a ULA Atlas V on Nov. 19, 2016. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of planned launch on a ULA Atlas V slated for Nov. 19, 2016.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of planned launch on a ULA Atlas V slated for Nov. 19, 2016. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After an ironic detour due to Hurricane Matthew, liftoff of the game changing NASA/NOAA next generation GOES-R geostationary weather observation satellite offering a “dramatic leap in capability” is finally on track for this weekend on Nov. 19 from the Florida Space Coast.

And Universe Today recently got an up close look and briefing about the massive probe inside the cleanroom processing facility at Astrotech Space Operations in Titusville, Fl.

“We are bringing the nation a new capability .. that’s a dramatic leap .. to scan the entire hemisphere in about 5 minutes,” said Greg Mandt, NOAA GOES-R program manager during a briefing in the Astrotech cleanroom.

“GOES-R has both weather and space weather detection capabilities!” Tim Gasparrini, GOES-R program manager for Lockheed Martin, told Universe Today during a cleanroom interview.

Astrotech is located just a few miles down the road from NASA’s Kennedy Space Center and the KSC Visitor Complex housing the finest exhibits of numerous spaceships, hardware items and space artifacts.

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of planned launch on a ULA Atlas V slated for Nov. 19, 2016.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of planned launch on a ULA Atlas V slated for Nov. 19, 2016. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

GOES-R, which stands for Geostationary Operational Environmental Satellite – R Series – is a new and advanced transformational weather satellite that will vastly enhance the quality, speed and accuracy of weather forecasting available to forecasters for Earth’s Western Hemisphere.

The impact of deadly Cat 4 Hurricane Matthew on the Florida Space Coast on October 7, forced the closure of the vital Cape Canaveral Air Force Station (CCAFS) and the Kennedy Space Center (KSC) launch and processing vital facilities that ultimately resulted in a two week launch delay due to storm related effects and facilities damage.

Liftoff of the NASA/NOAA GOES-R weather satellite atop a United Launch Alliance (ULA) Atlas V rocket is now scheduled for Saturday, Nov. 19 at 5:42 p.m. from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, shortly after sunset.

The launch window extends for an hour from 5:42-6:42 p.m. EST.

GOES-R is the first in a new series of American’s most powerful and most advanced next generation weather observation satellites. It is designed to last for a 15 year orbital lifetime.

Once in orbit it will be known as GOES-16. TV viewers are presently accustomed to seeing daily streams of imagery from the GOES-East and GOES-West weather observation satellites currently in orbit.

What’s the big deal about GOES-R?

Audiences will notice big changes from GOES-R once it becomes operational because it will provide images of weather patterns and severe storms as regularly as every five minutes or as frequently as every 30 seconds.

“These images can be used to aid in weather forecasts, severe weather outlooks, watches and warnings, lightning conditions, maritime forecasts and aviation forecasts.

“It also will assist in longer term forecasting, such as in seasonal predictions and drought outlooks. In addition, space weather conditions will be monitored constantly, including the effects of solar flares to provide advance notice of potential communication and navigation disruptions. It also will assist researchers in understanding the interactions between land, oceans, the atmosphere and climate.”

GOES-R was built by prime contractor Lockheed Martin and is the first of a four satellite series – comprising GOES-R, S, T, and U that will be keep the GOES satellite system operational through 2036.

All four of the revolutionary 11,000 pound satellites are identical. The overall cost is about $11 Billion.

“This is a very exciting time,” explained Greg Mandt, the NOAA GOES-R program manager during the Astrotech cleanroom briefing.

“This is the culmination of about 15 years of intense work for the great team of NOAA and NASA and our contractors Lockheed Martin and Harris.”

“We are bringing the nation a new capability. The GOES program has been around for about 40 years and most every American sees it every night on the weather broadcasts when they see go to the satellite imagery. And what’s really exciting is that for the first time in that 40 years we are really end to end replacing the entire GOES system. The weather community is really excited about what we are bringing.”

“It’s a dramatic leap in capability – like moving from black and white TV to HDTV.”

“We will be able to scan the entire hemisphere in about 5 minutes and do things so much faster with double the resolution.”

The NASA/NOAA/Lockheed Martin/Harris GOES-R team gives a big thumbs up for the dramatic leap in capability this next gen weather observation satellite will provide - during media briefing at Astrotech Space Operations, in Titusville, FL. Launch is set for Nov. 19, 2016.  Credit: Ken Kremer/kenkremer.com
The NASA/NOAA/Lockheed Martin/Harris GOES-R team gives a big thumbs up for the dramatic leap in capability this next gen weather observation satellite will provide – during media briefing at Astrotech Space Operations, in Titusville, FL. Launch is set for Nov. 19, 2016. Credit: Ken Kremer/kenkremer.com

It was built in facilities in Bucks County, Pennsylvania and Denver, Colorado. It arrived at Astrotech in August for final processing and checkouts of the spacecraft and instruments.

The gigantic school bus sized satellite is equipped with a suite of six instruments or sensors that are the most advanced of their kind. They will be used for three types of observations: Earth sensing, solar imaging, and space environment measuring. They will point to the Earth, the Sun and the in-situ environment of the spacecraft.

The suite includes the Advanced Baseline Imager (ABI), Geostationary Lightning Mapper (GLM), Solar Ultraviolet Imager (SUVI), Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS), Space Environment In-Situ Suite (SEISS), and the Magnetometer (MAG).

The two Earth-pointing instruments are on the top of the spacecraft – namely ABI and GLM.

“ABI is the premier instrument on the spacecraft. When you turn on the news and see a severe storm picture, that’s the one it comes from. It takes pictures in the visible as well as the infrared (IR), near infrared (IR),” Tim Gasparrini, GOES-R program manager for Lockheed Martin, told Universe Today during a cleanroom interview.

“It is looking for things like moisture, vegetation, aerosols and fire. So it looks across a broad spectrum to determine the environmental conditions on Earth.”

ABI offers 3 times more spectral channels with 4 times greater resolution and scans 5 times faster than ever before, compared to the current GOES satellites.

The GOES-R ABI will view the Earth with 16 different spectral bands (compared to five on current GOES), including two visible channels, four near-infrared channels, and ten infrared channels, according to the mission fact sheet.

It will also carry the first operational lightning mapper ever flown in space – GLM – built by Lockheed Martin. It has a single-channel, near-infrared optical transient detector.

“This is the first lightning mapper in space and at geostationary orbit.”

“GLM takes a picture of a scene on the Earth 500 times per second. And it compares those images for a change in the scene that can detect lightning, using an algorithm,” Gasparrini told me.

“The importance of that is lightning is a precursor to severe weather. So they are hoping that GLM will up to double the tornado warning time. So instead of 10 minutes warning you get 20 minutes warning, for example.”

GLM will measure total lightning (in-cloud, cloud-to-cloud and cloud-to-ground) activity continuously over the Americas and adjacent ocean regions with near-uniform spatial resolution of approximately 10 km.

Side view of NASA/NOAA GOES-R next gen weather observation satellite shoewing asolar [anels and instruments inside Astrotech Space Operations cleanroom, in Titusville, FL. Launch is set for Nov. 19, 2016.  Credit: Ken Kremer/kenkremer.com
Side view of NASA/NOAA GOES-R next gen weather observation satellite showing solar panels and instruments inside Astrotech Space Operations cleanroom, in Titusville, FL. Launch is set for Nov. 19, 2016. Credit: Ken Kremer/kenkremer.com

“The two solar pointing instruments are located on a platform that constantly points them at the sun – SUVI (built by Lockheed Martin and EXIS. SUVI looks at the sun in the ultraviolet and EXIS looks at the x-ray wavelengths.”

The instruments work in concert.

“SUVI detects a solar flare on he sun and EXIS measures the intensity of the flare. As it comes towards the Earth, NOAA then uses the DSCOVR satellite [launched last year] as sort of a warning buoy about 30 minutes before the Earth. This gives a warning that a geomagnetic storm is heading toward the Earth.”

“When the storm reaches the Earth, the magnetometer instrument (MAG) on GOES-R then measures the influence of the magnetic storm on the magnetic field of the Earth.”

“Then the SEISS instrument, a charged particle detector, measures the charged particle effect of the storm on the Earth at geostationary orbit.”

“So GOES-R has both weather and space weather detection capabilities!” Gasparini elaborated.

The huge bus sized satellite measures 6.1 m x 5.6 m x 3.9 m (20.0 ft x 18.4 ft x 12.8 ft) with a three-axis stabilized spacecraft bus.

It has a dry mass of 2,857 kg (6,299 lbs) and a fueled mass of 5,192 kg (11,446 lbs) at launch.

The instruments are very sensitive to contamination and the team is taking great care to limit particulate and molecular contaminants in the cleanroom. Some of the instruments have contamination budget limits of less than 10 angstroms – smaller than the diameter of a typical molecule. So there can’t even be a single layer of molecules on the instruments surface after 15 years on orbit.

GOES-R weather observation satellite instrument suite. Credit: NASA/NOAA
GOES-R weather observation satellite instrument suite. Credit: NASA/NOAA

GOES-R can also multitask according to a NASA/NOAA factsheet.

“It can scan the Western Hemisphere every 15 minutes, the Continental U.S. every 5 minutes and areas of severe weather every 30-60 seconds. All at the same time!”

GOES-R will blastoff on a ULA Atlas V in the very powerful 541 configuration, augmented by four solid rocket boosters on the first stage. The payload fairing is 5 meters (16.4 feet) in diameter and the upper stage is powered by a single-engine Centaur.

It will be launched to a Geostationary orbit some 22,300 miles above Earth.

The Atlas V booster has been assembled inside the Vertical Integration Facility (VIF) at SLC-41 and will be rolled out to the launch pad Friday morning, Nov. 18 with the GOES-R weather satellite encapsulated inside the nose cone.

The weather forecast shows a 80 percent chance of favorable weather conditions for Saturday’s sunset blastoff.

GOES-R logo
GOES-R logo. Credit: NASA/NOAA

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about GOES-R weather satellite, Heroes and Legends at KSCVC, OSIRIS-REx, InSight Mars lander, ULA, SpaceX and Orbital ATK missions, Juno at Jupiter, SpaceX AMOS-6 & CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Nov 17-20: “GOES-R weather satellite launch, OSIRIS-Rex, SpaceX and Orbital ATK missions to the ISS, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

GOES-R infographic
GOES-R infographic
Tim Gasparinni, GOES-R program manager for Lockheed Martin, and Ken Kremer/University Today pose with GOES-R revolutionary weather satellite inside Astrotech Space Operations cleanroom, in Titusville, FL, and built by NASA/NOAA/Lockheed Martin/Harris. Credit: Ken Kremer/kenkremer.com
Tim Gasparinni, GOES-R program manager for Lockheed Martin, and Ken Kremer/University Today pose with GOES-R revolutionary weather satellite inside Astrotech Space Operations cleanroom, in Titusville, FL, and built by NASA/NOAA/Lockheed Martin/Harris. Credit: Ken Kremer/kenkremer.com

Launch of GOES-R Transformational Weather Satellite Likely Delayed by Hurricane Matthew

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of launch on a ULA Atlas V on Nov. 19, 2016. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULS Atlas V on Nov 4, 2016.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULA Atlas V likely delayed from Nov 4, 2016 by Hurricane Matthew. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

Next month’s launch of GOES-R – a new and advanced transformational weather satellite that will vastly enhance the quality, speed and accuracy of weather forecasting – will likely be delayed a few days due to lingering storm related effects of deadly Hurricane Matthew on launch preparations at Cape Canaveral Air Force Station and the Kennedy Space Center (KSC), Universe Today confirmed with launch provider United Launch Alliance (ULA).

“The GOES-R launch will likely be delayed due to Hurricane Matthew,” ULA spokeswoman Lyn Chassagne told Universe Today.

Liftoff of the NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) weather satellite atop a United Launch Alliance (ULA) Atlas V rocket had been scheduled for Nov. 4 at 5:40 p.m. from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station.

GOES-R is the first in a new series of American’s most powerful and most advanced next generation weather observation satellites.

It’s ironic that awful weather is impacting the launch of this critical weather satellite.

It’s not known how long any postponement would be – perhaps only a few days since preliminary indications are that the base suffered only minor damage and there are no reports of major damage.

“Our teams are still doing a damage assessment. So we don’t have a status about all of our infrastructure yet,” Chassagne told me.

“A preliminary assessment shows that we have some minor damage to a few of our facilities. We had no rockets on the pads. So there is no damage to hardware.”

Damage assessment teams are evaluating the launch pad and launch facilities in detail right now.

“Since we still have emergency response teams in assessing, we don’t know how long the delay will be until we get those assessments.”

The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULA Atlas V likely delayed from Nov 4, 2016 by Hurricane Matthew.  GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com
The NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) being processed at Astrotech Space Operations, in Titusville, FL, in advance of the planned launch on a ULA Atlas V likely delayed from Nov 4, 2016 by Hurricane Matthew. GOES-R will be America’s most advanced weather satellite. Credit: Ken Kremer/kenkremer.com

The looming threat of a direct hit on Cape Canaveral and KSC from the Category 4 storm Hurricane Matthew on Friday, Oct. 7, forced the closure of both facilities before the storm hit. They remained closed this weekend except to emergency personal.

“Got in today to assess. Light to moderate damage to our facilities. No damage to any flight assets,” tweeted ULA CEO Tory Bruno.

The base closures therefore also forced a halt to launch preparations at the Cape and pad 41.

The storm grazed by the Kennedy Space Center (KSC), Cape Canaveral Air Force Station (CCAFS) and the major population centers along the Florida Space Coast with wind gusts up to 107 mph – rather than making a direct impact as feared.

“Hurricane Matthew passed Cape Canaveral and Kennedy Space Center …. with sustained winds of 90 mph with gusts to 107 mph,” on Friday, NASA officials reported.

The storm passed “the space center about 26 miles off the tip of Cape Canaveral.”

Cat 4 Hurricane Matthew track during the late evening of 6 Oct 2016.  Credit: NASA/NOAA
Cat 4 Hurricane Matthew track during the late evening of 6 Oct 2016. Credit: NASA/NOAA

The launch ULA facilities are now being thoroughly inspected before any launch preparation can proceed.

The satellite is in the final stages of preparation at the Astrotech Space Operations Facility in Titusville, FL as I recently observed during an up close visit in the High Bay cleanroom.

Check out this amazing rooftop video showing the high winds pummeling Titusville during Hurricane Matthew just a few miles away from Astrotech and the GOES-R satellite – from my space colleague Jeff Seibert.

Video caption: Before we bailed out on Thursday afternoon, I clamped one of my launch pad remote cameras to the power service post on our roof. Wind is blocked a lot by trees but none fell on the house. The highest recorded wind speed was 51mph at 7:30AM on Oct. 7, 2016. The minimum barometric pressure was 28.79″ from 8:20 – 9 AM. We got 5.9″ of rain. The ridge line faces due east. We never lost power. Credit: Jeff Seibert

Lockheed Martin is the prime contractor for GOES-R.

United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter.  Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid on September 8, 2016. GOES-R launch on an Atlas V planned for Nov. 4 is likely delayed due to Hurricane Matthew. Credit: Ken Kremer/kenkremer.com

Whenever it does launch, GOES-R will blast off on a ULA Atlas V in the very powerful 541 configuration, augmented by four solid rocket booster on the first stage.

It will be launched to a Geostationary orbit some 22,300 miles above Earth.

But ULA has not yet begun assembling the Atlas V booster inside the Vertical Integration Facility (VIF) at SLC-41 due to the storm.

Because of Hurricane Matthew, the first stage arrival had to be postponed. The second stage is already in port at the Delta operations center and being integrated.

“The first stage booster is not yet at the Cape,” Chassagne confirmed.

However, conditions at the Cape have improved sufficiently for the US Air Force to clear its shipment into port, as of this evening.

“We just cleared CCAFS to be able to accept a booster for the GOES-R launch–how appropriate that GOES is a weather satellite!” wrote Brig. Gen. Wayne Monteith, commander of the Air Force’s 45th Space Wing at Patrick Air Force Base, in a Facebook update late today, Oct. 9.

“We are returning to full mission capability and our status as the World’s Premier Gateway to Space.”

Artists concept for  NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite - R Series) advanced weather satellite in Earth orbit. Credit: NASA/NOAA
Artists concept for NASA/NOAA GOES-R (Geostationary Operational Environmental Satellite – R Series) advanced weather satellite in Earth orbit. Credit: NASA/NOAA

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

GOES-R logo.  Credit: NASA/NOAA
GOES-R logo. Credit: NASA/NOAA

NASA’s InSight Lander Approved for 2018 Mars Launch

This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018. Credits: NASA/JPL-Caltech
This artist's concept depicts the InSight lander on Mars after the lander's robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018.  Credits: NASA/JPL-Caltech
This artist’s concept depicts the InSight lander on Mars after the lander’s robotic arm has deployed a seismometer and a heat probe directly onto the ground. InSight is the first mission dedicated to investigating the deep interior of Mars. The findings will advance understanding of how all rocky planets, including Earth, formed and evolved. NASA approved a new launch date in May 2018. Credits: NASA/JPL-Caltech

Top NASA managers have formally approved the launch of the agency’s InSight Lander to the Red Planet in the spring of 2018 following a postponement from this spring due to the discovery of a vacuum leak in a prime science instrument supplied by France.

The InSight missions goal is to accomplish an unprecedented study of the deep interior of the most Earth-like planet in our solar system.

NASA is now targeting a new launch window that begins May 5, 2018, for the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight). mission aimed at studying the deep interior of Mars. The Mars landing is now scheduled for Nov. 26, 2018.

InSight had originally been slated for blastoff on March 4, 2016 atop a United Launch Alliance (ULA) Atlas V rocket from Vandenberg Air Force Base, California.

But the finding of a vacuum leak in its prime science instrument, the French-built Seismic Experiment for Interior Structure (SEIS), in December 2015 forced an unavoidable two year launch postponement. Because of the immutable laws of orbital mechanics, launch opportunities to the Red Planet only occur approximately every 26 months.

InSight’s purpose is to help us understand how rocky planets – including Earth – formed and evolved. The science goal is totally unique – to “listen to the heart of Mars to find the beat of rocky planet formation.”

The revised launch date was approved by the agency’s Science Mission Directorate.

“Our robotic scientific explorers such as InSight are paving the way toward an ambitious journey to send humans to the Red Planet,” said Geoff Yoder, acting associate administrator for NASA’s Science Mission Directorate, in Washington, in a statement.

“It’s gratifying that we are moving forward with this important mission to help us better understand the origins of Mars and all the rocky planets, including Earth.”

NASA's InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.
NASA’s InSight Mars lander spacecraft in a Lockheed Martin clean room near Denver. As part of a series of deployment tests, the spacecraft was commanded to deploy its solar arrays in the clean room to test and verify the exact process that it will use on the surface of Mars.

Since InSight would not have been able to carry out and fulfill its intended research objectives because of the vacuum leak in its defective SEIS seismometer instrument, NASA managers had no choice but to scrub this year’s launch. For a time its outlook for a future revival seemed potentially uncertain in light of today’s constrained budget environment.

The leak, if left uncorrected, would have rendered the flawed probe useless to carry out the unprecedented scientific research foreseen to measure the planets seismic activity and sense for “Marsquakes” to determine the nature of the Red Planet’s deep interior.

“The SEIS instrument — designed to measure ground movements as small as half the radius of a hydrogen atom — requires a perfect vacuum seal around its three main sensors in order to withstand harsh conditions on the Red Planet,” according to NASA.

The SEIS seismometer instrument was provided by the Centre National d’Études Spatiales (CNES) – the French national space agency equivalent to NASA. SEIS is one of the two primary science instruments aboard InSight. The other instrument measuring heat flow from the Martian interior is provided by the German Aerospace Center (DLR) and is named Heat Flow and Physical Properties Package (HP3). The HP3 instrument checked out perfectly.

NASA Jet Propulsion Laboratory (JPL) was assigned lead responsibility for the “replanned” mission and insuring that the SEIS instrument operates properly with no leaks.

JPL is “redesigning, developing and qualifying the instrument’s evacuated container and the electrical feedthroughs that failed previously. France’s space agency, the Centre National d’Études Spatiales (CNES), will focus on developing and delivering the key sensors for SEIS, integration of the sensors into the container, and the final integration of the instrument onto the spacecraft.”

“We’ve concluded that a replanned InSight mission for launch in 2018 is the best approach to fulfill these long-sought, high-priority science objectives,” said Jim Green, director of NASA’s Planetary Science Division.

The cost of the two-year delay and instrument redesign amounts to $153.8 million, on top of the original budget for InSight of $675 million.

NASA says this cost will not force a delay or cancellation to any current missions. However, “there may be fewer opportunities for new missions in future years, from fiscal years 2017-2020.”

Back shell of NASA's InSight spacecraft is being lowered onto the mission's lander, which is folded into its stowed configuration.  The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars.  Launch now rescheduled to May 2018 to fix French-built seismometer.  Credit: NASA/JPL-Caltech/Lockheed Martin
Back shell of NASA’s InSight spacecraft is being lowered onto the mission’s lander, which is folded into its stowed configuration. The back shell and a heat shield form the aeroshell, which will protect the lander as the spacecraft plunges into the upper atmosphere of Mars. Launch now rescheduled to May 2018 to fix French-built seismometer. Credit: NASA/JPL-Caltech/Lockheed Martin

Lockheed Martin is the prime contractor for InSight and placed the spacecraft in storage while SEIS is fixed.

InSight is funded by NASA’s Discovery Program of low cost, focused science missions along with the science instrument funding contributions from France and Germany.

Mars has the same basic internal structure as the Earth and other terrestrial (rocky) planets. It is large enough to have pressures equivalent to those throughout the Earth's upper mantle, and it has a core with a similar fraction of it's mass. In contrast, the pressure even near the center of the Moon barely reach that just below the Earth's crust and it has a tiny, almost negligible core. The size of Mars indicates that it must have undergone many of the same separation and crystallization processes that formed the Earth's crust and core during early planetary formation.  Credit: JPL/NASA
Mars has the same basic internal structure as the Earth and other terrestrial (rocky) planets. It is large enough to have pressures equivalent to those throughout the Earth’s upper mantle, and it has a core with a similar fraction of it’s mass. In contrast, the pressure even near the center of the Moon barely reach that just below the Earth’s crust and it has a tiny, almost negligible core. The size of Mars indicates that it must have undergone many of the same separation and crystallization processes that formed the Earth’s crust and core during early planetary formation. Credit: JPL/NASA

Meanwhile, NASA is preparing to launch its big planetary mission of 2018 on Thursday of this week ! – the OSIRIS-REx asteroid sample return probe blasts off on an Atlas V on Sept 8.

Watch for Ken’s continuing OSIRIS-REx mission and launch reporting from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about OSIRIS-REx, InSight Mars lander, SpaceX missions, Juno at Jupiter, SpaceX CRS-9 rocket launch, ISS, ULA Atlas and Delta rockets, Orbital ATK Cygnus, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Sep 6-8: “OSIRIS-REx lainch, SpaceX missions/launches to ISS on CRS-9, Juno at Jupiter, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings