Our Galactic Neighbors Shine In New Ultraviolet Pictures

An ultraviolet view of the Large Magellanic Cloud from Swift's Ultraviolet/Optical Telescope. Almost 1 million ultraviolet sources are visible in the image, which took 5.4 days of cumulative exposure to do. The wavelengths of UV shown in this picture are mostly blocked on Earth's surface. Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State)

Earth’s galactic next-door neighbors shine brighter than ever in new pictures taken by an orbiting telescope, focusing on ultraviolet light that is tricky to image from the surface.

The Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) — the two largest major galaxies near our own, the Milky Way — were imaged in 5.4 days and 1.8 days of cumulative exposure time, respectively. These produced two gorgeous, high-resolution photos in a spot of the light spectrum normally invisible to humans.

“Prior to these images, there were relatively few UV observations of these galaxies, and none at high resolution across such wide areas, so this project fills in a major missing piece of the scientific puzzle,” stated Michael Siegel, lead scientist for Swift’s Ultraviolet/Optical Telescope at the Swift Mission Operations Center at Pennsylvania State University.

Science isn’t interested in these pictures — taken in wavelengths ranging from 1,600 to 3,300 angstroms, mostly blocked in Earth’s atmosphere — because of their pretty face, however. Ultraviolet light pictures let the hottest stars and star-forming areas shine out, while in visible light those hotspots are suppressed.

“With these mosaics, we can study how stars are born and evolve across each galaxy in a single view, something that’s very difficult to accomplish for our own galaxy because of our location inside it,” stated Stefan Immler, an associate research scientist at NASA Goddard Space Flight Center and the lead of the SWIFT guest investigator program.

The Small Magellanic Cloud as seen by Swift's Ultraviolet/Optical Telescope. This composite of 656 separate pictures has a cumulative exposure time of 1.8 days. Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State)
The Small Magellanic Cloud as seen by Swift’s Ultraviolet/Optical Telescope. This composite of 656 separate pictures has a cumulative exposure time of 1.8 days. Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State)

Although the galaxies are relatively small, they easily shine in our night sky because they’re so close to Earth — 163,000 light-years for the LMC, and 200,000 light years for the SMC.

The LMC is only about 1/10 of the Milky Way’s size, with 1% of the Milky Way’s mass. The punier SMC is half of LMC’s size with only two-thirds of that galaxy’s mass.

Immler revealed the large images — 160 megapixels for the LMC, and 57 megapixels for the SMC — at the American Astronomical Society meeting in Indianapolis on Monday (June 3.)

Source: NASA

Rare Eclipsing Binary Stars Provide Refined Measurements in the Universe

The Large Magellanic Cloud, a neighboring galaxy to the Milky Way. The positions of eight faint and rare cool eclipsing binary stars are marked with crosses. Credit: ESO/R. Gendler

Precise observations of a rare class of binary stars have now allowed a team of astronomers to improve the measurement of the distance to one of our neighboring galaxies, the Large Magellanic Cloud, and in the process, refine the Hubble Constant, an astronomical calculation that helps measure the expansion of the Universe. The astronomers say this is a crucial step towards understanding the nature of the mysterious dark energy that is causing the expansion to accelerate.

The team used telescopes at ESO’s La Silla Observatory in Chile, the Las Campanas Observatory also in Chile and two from the University of Hawaii at Manoa, and the Las Campanas Observatoryas well as others around the globe. These results appear in the 7 March 2013 issue of the journal Nature.

The new distance to the LMC is 163,000 light-years. The LMC is not the closest galaxy to the Milky Way; Canis Major Dwarf Galaxy, discovered in 2003 is considered the actual nearest neighbor at 42,000 light-years from the Galactic Center, and the Sagittarius Dwarf Elliptical Galaxy is about 50,000 light-years from the core of the Milky Way.

Astronomers ascertain the scale of the universe by first measuring the distances to close-by objects and then using them as standard candles — objects of known brightness — to pin down distances farther and farther out in the universe.

Up to now, finding an accurate distance to the LMC has proved elusive. Stars in that galaxy are used to fix the distance scale for more remote galaxies, so it is crucially important.

“This is a true milestone in modern astronomy. Because we know the distance to our nearest neighbor galaxy so precisely, we can now determine the rate at which the universe is expanding — the Hubble constant — with much better accuracy. This will allow us to investigate the physical nature of the enigmatic dark energy, the cause of the accelerated expansion of the universe,” says Dr. Rolf-Peter Kudritzki, an astronomer at the University of Hawaii’s Institute for Astronomy.

“For extragalactic astronomers,” said Dr. Fabio Bresolin, also from UH, “the distance to the Large Magellanic Cloud represents a fundamental yardstick with which the whole universe can be measured. Obtaining an accurate value for it has been a major challenge for generations of scientists. Our team has overcome the difficulties using an exquisitely accurate method, and is already working to cut the small remaining uncertainty by half in the next few years.”

The team worked out the distance to the LMC by observing rare close pairs of stars known as eclipsing binaries. As these stars orbit each other, they pass in front of each other. When this happens, as seen from Earth, the total brightness drops, both when one star passes in front of the other and, by a different amount, when it passes behind.

Read another recent article about studies that used eclipsing binaries to study the Light-travel-time Effect

By tracking these changes in brightness very carefully, and also measuring the stars’ orbital speeds, it is possible to work out how big the stars are, what their masses are, and other information about their orbits. When this is combined with careful measurements of the total brightness and colors of the stars, remarkably accurate distances can be found.

“Now we have solved this problem by demonstrably having a result accurate to 2%,” states Wolfgang Gieren (Universidad de Concepción, Chile) and one of the leaders of the team.

Sources: University of Hawaii, ESO

Region in LMC Ablaze with Light and Color

Nearly 200 000 light-years from Earth, the Large Magellanic Cloud, a satellite galaxy of the Milky Way, floats in space, in a long and slow dance around our galaxy. As the Milky Way’s gravity gently tugs on its neighbour’s gas clouds, they collapse to form new stars. In turn, these light up the gas clouds in a kaleidoscope of colours, visible in this image from the NASA/ESA Hubble Space Telescope.

Hubble view of star formation region N11 from the NASA/ESA Hubble Space Telescope. Image credit: NASA/ESA Hubble. Zoom by John Williams/TerraZoom using Zoomify.

New computer wallpaper alert. Light from the Large Magellanic Cloud takes nearly 200,000 years to travel to Earth. And it’s worth the wait.

Behold LHA 120-N 11, or just simply N11, in this image from the NASA/ESA Hubble Space Telescope.

Continue reading “Region in LMC Ablaze with Light and Color”

Astronomers Uncover a Crime of Galactic Proportions

As the Milky Way rises over the horizon at the European Southern Observatory, its companion galaxies also come into view. Credit: ESO/Y. Beletsky

A previously undetected heist of stars was uncovered by astronomers who were actually looking for why an unexpected amount of microlensing events were being seen around the outskirts of the Milky Way. Instead, they found the Large Magellanic Cloud (LMC) had been stealing stars from its neighbor, the Small Magellanic Cloud (SMC), leaving behind a trail of stars. Although the crime was likely committed hundreds of milllions of years ago during a collision between the two galaxies, the new information is helping astronomers to understand the history of these two galaxies that are in our neighborhood.

“You could say we discovered a crime of galactic proportions,” said Avi Loeb of the Harvard-Smithsonian Center for Astrophysics.

The Large Magellanic Cloud almost got away with it, if it wasn’t for those meddling astronomers….

Astronomers were originally monitoring the LMC to hunt for the reason for the unexpected microlensing events. Their initial hypothesis was that massive compact halo objects, or MACHOs were causing the effect, where a nearby object passes in front of a more distant star. The gravity of the closer object bends light from the star like a lens, magnifying it and causing it to brighten. The MACHOs were thought to be faint objects, roughly the mass of a star, but not much is known about them. Several surveys looked for MACHOs in order to find out if they could be a major component of dark matter – the unseen stuff that holds galaxies together.

In order for MACHOs to make up dark matter, they must be so faint that they can’t be directly detected. So, the team of astronomers hoped to see MACHOs within the Milky Way by lensing distant LMC stars.

“We originally set out to understand the evolution of the interacting LMC and SMC galaxies,” said lead author of a new paper on the results, Gurtina Besla of Columbia University. “We were surprised that, in addition, we could rule out the idea that dark matter is contained in MACHOs.”

“Instead of MACHOs, a trail of stars removed from the SMC is responsible for the microlensing events,” said Loeb.

Only a fast-moving population of stars could yield the observed rate and durations of the microlensing events. The best way to get such a stellar population is a galactic collision, which appears to have occurred in the LMC-SMC system.

“By reconstructing the scene, we found that the LMC and SMC collided violently hundreds of millions of years ago. That’s when the LMC stripped out the lensed stars,” said Loeb.

Their research also supports recent findings suggesting that both Magellanic Clouds are on their first pass by the Milky Way.

However, this isn’t a closed case. The evidence for the trail of lensed stars is persuasive, but they haven’t been directly observed yet. A number of teams are searching for the signatures of these stars within a bridge of gas that connects the Magellanic Clouds.

The simulation results will be published in the Monthly Notices of the Royal Astronomical Society.

Read the team’s paper: The Origin of the Microlensing Events Observed Towards the LMC and the Stellar Counterpart of the Magellanic Stream

Source: CfA

Blowing a Super-duper Celestial Bubble

Image credit: X-ray: NASA/CXC/U.Mich./S.Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m. Zoom by John Williams/TerraZoom using Zoomify

When NASA combines images from different telescopes, they create dazzling scenes of celestial wonder and in the process we learn a few more things. Behold this wonder of combined light, known as LHA 120-N 44, or N 44 for short. Zoom into the scene using the toolbar at the bottom of the image. Click the farthest button on the right of the toolbar to see this wonder in full-screen. (Hint: press the “Esc” key to get back to work)

Continue reading “Blowing a Super-duper Celestial Bubble”

Special New Panorama Celebrates Hubble’s 22nd Anniversary

A mosaic view of 30 Doradus, assembled from Hubble Space Telescope photos, Credit: NASA, ESA, ESO,

[/caption]

Happy birthday to the Hubble Space Telescope! On April 24, 1990, HST was launched into low Earth orbit. Now, nearly 22 years later, Hubble is still producing incredible, stunning images of the farthest reaches of the Universe. For this year’s anniversary, the Hubble team took a special panoramic view of 30 Doradus, a raucous stellar breeding ground, located in the heart of the Tarantula nebula. The image comprises one of the largest mosaics ever assembled from Hubble photos and consists of observations taken by Hubble’s Wide Field Camera 3 and Advanced Camera for Surveys, combined with observations from the European Southern Observatory’s MPG/ESO 2.2-metre telescope that trace the location of glowing hydrogen and oxygen.

The Tarantula nebula is 170,000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way. No known star-forming region in our galaxy is as large or as prolific as 30 Doradus.

The stars in this image add up to a total mass millions of times bigger than that of our Sun. The image is roughly 650 light-years across and contains some rambunctious stars, from one of the fastest rotating stars to the speediest and most massive runaway star.

The nebula is close enough to Earth that Hubble can resolve individual stars, giving astronomers important information about the stars’ birth and evolution. Many small galaxies have more spectacular starbursts, but the Large Magellanic Cloud’s 30 Doradus is one of the only star-forming regions that astronomers can study in detail. The star-birthing frenzy in 30 Doradus may be partly fueled by its close proximity to its companion galaxy, the Small Magellanic Cloud.

The image reveals the stages of star birth, from embryonic stars a few thousand years old still wrapped in dark cocoons of dust and gas to behemoths that die young in supernova explosions. 30 Doradus is a star-forming factory, churning out stars at a furious pace over millions of years. The Hubble image shows star clusters of various ages, from about 2 million to about 25 million years old.

The image was made from 30 separate fields, 15 from each camera. Hubble made the observations in October 2011. Both cameras were making observations at the same time.

Take an interactive tour of the Tarantula Nebula at the HubbleSite

Source: ESA’s Hubble website

We Are Stardust… We Are Cold Then

This new image shows the Large Magellanic Cloud galaxy in infrared light as seen by the Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, and NASA's Spitzer Space Telescope. Image credit: ESA/NASA/JPL-Caltech/STScI

[/caption]

When we think of stars, we might think of their building blocks as white hot… But that’s not particularly the case.The very “stuff” that creates a sun is cold dust and in this combined image produced by the Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions; and NASA’s Spitzer Space Telescope, we’re taking an even more incredible look into the environment which forms stars. This new image peers into the dusty arena of both the Large and Small Magellanic Clouds – just two of our galactic neighbors.

Through the infra-red eyes of the Herschel-Spitzer observation, the Large Magellanic Cloud would almost appear to look like a gigantic fireball. Here light-years long bands of dust permeate the galaxy with blazing fields of star formation seen in the center, center-left and top right (the brightest center-left region is called 30 Doradus, or the Tarantula Nebula. The Small Magellanic Cloud is much more disturbed looking. Here we see a huge filament of dust to the left – known as the galaxy’s “wing” – and, to the right, a deep bar of star formation.

This new image shows the Small Magellanic Cloud galaxy in infrared light from the Herschel Space Observatory a European Space Agency-led mission with important NASA contributions, and NASA's Spitzer Space Telescope. Image credit: ESA/NASA/JPL-Caltech/STScI

What makes these images very unique is that they are indicators of temperature within the Magellanic Clouds. The cool, red areas are where star formation has ceased or is at its earliest stages. Warm areas are indicative of new stars blooming to life and heating the dust around them. “Coolest areas and objects appear in red, corresponding to infrared light taken up by Herschel’s Spectral and Photometric Imaging Receiver at 250 microns, or millionths of a meter. Herschel’s Photodetector Array Camera and Spectrometer fills out the mid-temperature bands, shown in green, at 100 and 160 microns.” says the research team. “The warmest spots appear in blue, courtesy of 24- and 70-micron data from Spitzer.”

Both the LMC and SMC are the two largest satellite galaxies of the Milky Way and are cataloged as dwarf galaxies. While they are large in their own right, this pair contains fewer essential star-forming elements such as hydrogen and helium – slowing the rate of star growth. Although star formation is generally considered to have reached its apex some 10 billion years ago, some galaxies were left with less basic materials than others.

“Studying these galaxies offers us the best opportunity to study star formation outside of the Milky Way,” said Margaret Meixner, an astronomer at the Space Telescope Science Institute, Baltimore, Md., and principal investigator for the mapping project. “Star formation affects the evolution of galaxies, so we hope understanding the story of these stars will answer questions about galactic life cycles.”

Original Story Source: NASA/Herschel News.

Incredible Spinning Star Rotates At A Million Miles Per Hour!

This is an artist's concept of the fastest rotating star found to date. The massive, bright young star, called VFTS 102, rotates at a million miles per hour, or 100 times faster than our Sun does. Centrifugal forces from this dizzying spin rate have flattened the star into an oblate shape and spun off a disk of hot plasma, seen edge on in this view from a hypothetical planet. The star may have "spun up" by accreting material from a binary companion star. The rapidly evolving companion later exploded as a supernova. The whirling star lies 160,000 light-years away in the Large Magellanic Cloud, a satellite galaxy of our Milky Way. Credit: NASA, ESA, and G. Bacon (STScI)

[/caption]

Located in the Large Magellanic Cloud, a star named VFTS 102 is spinning its heart out… Literally. Rotating at a mind-numbing speed of a million miles per hour (1.6 million kph), this hot blue giant has reached the edge where centrifugal forces could tear it apart. It’s the fastest ever recorded – 300 times faster than our Sun – and may have been split off from a double star system during a violent explosion.

Thanks to ESO’s Very Large Telescope at the Paranal Observatory in Chile, an international team of astronomers studying the heaviest and brightest stars in the Tarantula Nebula made quite a discovery – a huge blue star 25 times the mass of the Sun and about one hundred thousand times brighter was cruising through space at a speed which drew their attention.

“The remarkable rotation speed and the unusual motion compared to the surrounding stars led us to wonder if this star had an unusual early life. We were suspicious.” explains Philip Dufton (Queen’s University Belfast, Northern Ireland, UK), lead author of the paper presenting the results.

ESO's Very Large Telescope has picked up the fastest rotating star found so far. This massive bright young star lies in our neighbouring galaxy, the Large Magellanic Cloud, about 160 000 light-years from Earth. Astronomers think that it may have had a violent past and has been ejected from a double star system by its exploding companion. Credit: ESO

What they’ve discovered could possibly be a “runaway star” – one that began life as a binary, but may have been ejected during a supernova event. Further evidence which supports their theory also exists: the presence of a pulsar and a supernova remnant nearby. But what made this crazy star spin so fast? It’s possible that if the two stars were very close that streaming gases could have started the incredible rotation. Then the more massive of the pair blew its stack – expelling the star into space. So what would be left? It’s elementary, Watson… A supernova remnant, a pulsar and a runaway!

Even though this is a rather tidy conclusion, there’s always room for doubt. As Dufton concludes, “This is a compelling story because it explains each of the unusual features that we’ve seen. This star is certainly showing us unexpected sides of the short but dramatic lives of the heaviest stars.”

Original Story Source: HubbleSite News Release and ESO News Release. For Further Reading: he VLT-FLAMES Tarantula Survey I. Introduction and observational overview.

NGC 1846 – Hubble Reveals Peculiar Life And Death Of A Stellar Population

NASA's Hubble Finds Stellar Life and Death in a Globular Cluster - Credit: HST/NASA

[/caption]

About 160,000 light years away in the direction of southern constellation Doradus, sits a globular cluster. It’s not a new target for the Hubble Space Telescope, but it has had a lot to say for itself over the last twelve years. It’s actually part of the Large Magellanic Cloud, but it’s no ordinary ball of stars. When it comes to age, this particular region is mighty complex…

In a 34 minute exposure taken almost a half dozen years ago, the Hubble snapped both life and death combined in an area where all stars were once assumed to be the same age. Globular clusters, as we know, are spherical collections of stars bound by gravity which orbit the halo of many galaxies. At one time, astronomers assumed their member stars were all the same age – forming into their own groups at around the same time the parent galaxy formed. But now, evidence points toward these balls of stars as having their own agenda – and may have evolved independently over the course of several hundreds of million years. What’s more, we’re beginning to learn that globular cluster formation may differ from galaxy to galaxy, too. Why? Chances are they may have encountered additional molecular clouds during their travels which may have triggered another round of star formation.

“An increasing number of photometric observations of multiple stellar populations in Galactic globular clusters is seriously challenging the paradigm of GCs hosting single, simple stellar populations.” says Giampaolo Piotto of the University of Padova, Italy. “These multiple populations manifest themselves in a split of different evolutionary sequences as observed in the cluster color-magnitude diagrams. Multiple stellar populations have been identified in Galactic and Magellanic Cloud clusters.”

However, it’s not the individual stars which make this Hubble image such a curiosity, it’s the revelation of a planetary nebula. This means a huge disparity in the member star’s ages…. one of up to 300 million years. Is it possible that the shell and remains of this dead star is a line-of-sight phenomenon, or is it truly a cluster member?

“We report on Hubble Space Telescope/ACS photometry of the rich intermediate-age star cluster NGC 1846 in the Large Magellanic Cloud, which clearly reveals the presence of a double main-sequence turn-off in this object. Despite this, the main-sequence, subgiant branch and red giant branch are all narrow and well defined, and the red clump is compact.” says A. D. Mackey and P. Broby Nielsen. ” We examine the spatial distribution of turn-off stars and demonstrate that all belong to NGC 1846 rather than to any field star population. In addition, the spatial distributions of the two sets of turn-off stars may exhibit different central concentrations and some asymmetries. By fitting isochrones, we show that the properties of the colour–magnitude diagram can be explained if there are two stellar populations of equivalent metal abundance in NGC 1846, differing in age by around 300 million years.”

So what’s wrong with the picture? Apparently nothing. The findings have been studied and studied again for errors and even “contamination” by field stars in relation to NGC1846’s main sequence turn off. It’s simply a bit of a cosmic riddle just waiting for an explanation.

“We propose that the observed properties of NGC 1846 can be explained if this object originated via the tidal capture of two star clusters formed separately in a star cluster group in a single giant molecular cloud.” concludes Mackey and Nielson. “This scenario accounts naturally for the age difference and uniform metallicity of the two member populations, as well as the differences in their spatial distributions.”

Original Story Source: NASA’s Hubble Finds Stellar Life and Death in a Globular Cluster. For Further Reading: A double main-sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud, Population Parameters of Intermediate-Age Star Clusters in the Large Magellanic Cloud. I. NGC 1846 and its Wide Main-Sequence Turnoff and Multiple stellar populations in three rich Large Magellanic Cloud star clusters.

Colorful Cluster of Stars Competes with the Tarantula Nebula

The star cluster NGC 2100 in the Large Magellanic Cloud. Credit: ESO

[/caption]

Who can shine the brightest in the Large Magellanic Cloud? A brilliant cluster of stars, open cluster NGC 2100 shines brightly, competing with the nearby Tarantula Nebula for bragging rights in this image from ESO’s New Technology Telescope (NTT).

Observers perhaps often overlook NGC 2100 because of its close proximity to the impressive Tarantula. The glowing gas of the Tarantula Nebula even tries to steal the limelight in this image — the bright colors here are from the nebula’s outer regions, and is lit up by the hot young stars that lie within the nebula itself.

But back to the star cluster — this brilliant star cluster is around 15 million years old, and located in the Large Magellanic Cloud, a nearby satellite galaxy of the Milky Way. An open cluster has stars that are relatively loosely bound by gravity. These clusters have a lifespan measured in tens or hundreds of millions of years, as they eventually disperse through gravitational interaction with other bodies.

This new picture was created from exposures through several different color filters.The stars are shown in their natural colors, while light from glowing ionized hydrogen (shown here in red) and oxygen (shown in blue) is overlaid.

See more info at the ESO website.