Exoplanet Kepler-7b Unexpectedly Reflective



Early on in the hunt for extra solar planets, the main method for discovering planets was the radial velocity method in which astronomers would search for the tug of planets on their parent stars. With the launch of NASA’s Kepler mission, the transit method is moving into the spotlight, the radial velocity technique provided an early bias in the detection of planets since it worked most easily at finding massive planets in tight orbits. Such planets are referred to as hot Jupiters. Currently, more than 30 of this class of exoplanet have had the properties of their emission explored, allowing astronomers to build a picture of the atmospheres of such planets. However, one of the new hot Jupiters discovered by the Kepler mission doesn’t fit the picture.

The consensus on these planets is that they are expected to be rather dark. Infrared observations from Spitzer have shown that these planets emit far more heat than they absorb directly in the infrared forcing astronomers to conclude that visible light and other wavelengths are absorbed and reemitted in the infrared, producing the excess heat and giving rise to equilibrium temperatures over 1,000 K. Since the visible light is so readily absorbed, the planets would be rather dull when compared to their namesake, Jupiter.

The reflectivity of an object is known as its albedo. It is measured as a percentage where 0 would be no reflected light, and 1 would be perfect reflection. Charcoal has an albedo of 0.04 while fresh snow has an albedo of 0.9. The theoretical models of hot Jupiters place the albedo at or below 0.3, which is similar to Earth’s. Jupiter’s albedo is 0.5 due to clouds of ammonia and water ice in the upper atmosphere. So far, astronomers have placed upper limits on their albedo. Eight of them confirm this prediction, but three of them seem to be more reflective.

In 2002, it was reported that the albedo for υAnd b was as high as 0.42. This year, astronomers have placed constraints on two more systems. For HD189733 b, astronomers found that this planet actually reflected more light than it absorbed. For Kepler-7b, an albedo of 0.38 has been reported.

Revisiting this for the latter case, a new paper, slated for publication in an upcoming issue of the Astrophysical Journal, a team of astronomers led by Brice-Olivier Demory of the Massachusetts Institute of Technology confirms that Kepler-7b has an albedo that breaks the expected limit of 0.3 set by theoretical models. However, the new research does not find it to be as high as the earlier study. Instead, they revise the albedo from 0.38 to 0.32.

To explain this additional flux, the team proposes two models. They suggest that Kepler-7b may be similar to Jupiter in that it may contain high altitude clouds of some sort. Due to the proximity to its parent star, it would not be ice crystals and thus, would not reach as high of an albedo as Jupiter, but preventing the incoming light from reaching lower layers where it could be more effectively trapped would help to increase the overall albedo.

Another solution is that the planet may be lacking the molecules most responsible for absorption such as sodium, potassium, titanium monoxide and vanadium monoxide. Given the temperature of the planet, it is unlikely that the molecular components would be present in the first place since they would be broken apart from the heat. This would mean that the planet would have to have 10 to 100 times less sodium and potassium than the Sun, whose chemical composition is the basis for models since our star’s composition is generally representative of stars around which planets have been discovered and presumably, the cloud from which it formed and would also form into planets.

Presently there is no way for astronomers to determine which possibility is correct. Since astronomers are slowly becoming able to retrieve spectra of extrasolar planets, it may be possible in the future for them to test chemical compositions. Failing that, astronomers will need to examine the albedo of more exoplanets and determine just how common such reflective hot Jupiters are. If the number remains low, the plausibility of metal deficient planets remains high. However, if the numbers start creeping up, it will prompt a revision to models of such planets and their atmospheres with greater emphasis on clouds and atmospheric haze.

Amazing Image: Kepler’s Transiting Exoplanets


Wow. This remarkable visualization shows every Kepler planetary candidate host star with its transiting companion in silhouette. Jason Rowe from the Kepler science team created the image, and the sizes of the stars and transiting companions are properly scaled. For reference, Rowe has included the Sun with a transiting Earth and Jupiter (below the top row on the right by itself.) The largest star is 6.1 times larger that the Sun and the smallest stars are estimated to be only 0.3 times the radius of the Sun. On his Flickr page, Rowe says the colors of the stars represent how the eye would see the star outside of the Earths atmosphere. “Stars have been properly limb darkened and the companions have been offset relative to one another to match the modeled impact parameter. Some stars will even show more than one planet!” he writes.

For more information and high resolution versions of the image, see Jason Rowe’s Flickr page. This image is featured on today’s (March 29, 2011) Astronomy Picture of the Day.

Orrery of Kepler’s Exoplanets

Here’s a terrific visualization of all the multiple-planet systems discovered by the Kepler spacecraft as of February 2, 2011. The planets’ orbits go through the entire 3.5 year mission. The different colors represent different sized planets — “hot” colors are the big planets, cooler colors are the smaller ones, relative to the other planets in the system.

And the creator (dfabrycky ) also put together another visualization of just the small systems, too:
Continue reading “Orrery of Kepler’s Exoplanets”

Spectacular ATV Kepler Launch Photo Captured from Orbiting ISS


Have you ever seen a space launch from orbit ?

Check out the spectacular launch photo (above) of the Johannes Kepler ATV streaking skyward atop an Ariane 5 rocket as captured by astronaut Paolo Nespoli from his unparalleled vantage point looking out the windows aboard the International Space Station (ISS), in orbit some 350 km above Earth.

The launch photo shows the rising exhaust trail from the rocket just minutes after blast off of the Ariane booster on Feb. 16 from the ESA rocket base in Kourou, French Guiana, South America. The rocket was still on a vertical ascent trajectory to orbit. Additional launch photos below from space and Earth.

Photo captured on 16 February 2011 from the real-time video from the Ariane 5 launcher during the flight V200 during the time of jettisoning the boosters.

The photo vividly illustrates the maturity of the European space effort since the launch base, Ariane booster rocket, Kepler payload and astronaut Nespoli all stem from Europe and are crucial to the future life of the ISS.

Ariane 5 rocket at the Launch pad at Europe's Spaceport in Kourou, French Guiana with Johannes Kepler ATV bolted on top prior to Feb. 16 blast off.

Kepler is set to dock at the ISS on Feb. 24 and an on time arrival is essential because of an impending orbital traffic jam.

Space Shuttle Discovery is due to link up with the ISS just six hous after Kepler if the orbiter launches according to schedule on Feb. 22.

Everything is nominal with Kepler’s spacecraft systems and orbital performance at this time say European Space Agency (ESA) officials, including the deployment of ATV’s four large solar wings.

Ariane 5 liftoff with Johannes Kepler ATV

The ATV, or Automated Transfer Vehicle, is a European built resupply vessel designed to transport essential cargo and provisions to the ISS. It is Europe’s contribution to stocking up the ISS.

Kepler is carrying carries more than seven metric tons of supplies and cargo for the ISS and will be used to reboost the outpost to a higher orbit during its planned four month mission.

“ATV is a truly European spacecraft. Flying it requires experts from ESA, partner agencies and industry across half a dozen countries,” said ESA’s Bob Chesson, Head of the Human Spaceflight Operations Department.

“Getting it built, into orbit and operating it in flight to docking requires a lot of hard work and dedication from hundreds of people.”

The ATV is named after Johannes Kepler (1571-1630), the German astronomer and mathematician who is best known for discovering the laws of planetary motion. NASA also named its powerful new planet hunting space telescope after Kepler, which recently discovered the first earth sized planets orbiting inside the habitable zone.

After the shuttle is forcibly retired later this year in 2011, the very survival and continued use of the ISS will be completely dependent on a steady train of cargo and payloads lofted by unmanned resupply vessels including the ATV from Europe, HTV from Japan, Progress from Russia and commercial carriers such as SpaceX and Orbital Sciences.

Photos of Ariane rockets rising exhaust trail from Feb. 16 ATV launch photographed from the ISS. Credits: ESA/ NASA

European Space Agency (ESA) astronaut Paolo Nespoli, Expedition 26 flight engineer, conducts a test run with the French/CNES neuroscientific research experiment 3D-Space (SAP) in the Columbus laboratory of the International Space Station.

More Help on the Way for Verifying ExoPlanets in Kepler’s Dataset


With the Kepler spacecraft finding over 1,200 planetary candidates, the next step is verifying their actual status. That will be a big job, but help is on the way. In April 2012, a new spectrograph called HARPS-North will come online to help confirm and characterize Kepler’s planetary candidates. It will be mounted on the 3.6-meter Telescopio Nazionale Galileo (TNG) in the Canary Islands.

“The Kepler mission gives us the size of a planet, based on the amount of light it blocks when it passes in front of its star. Now we need to measure planetary masses, so that we can calculate the densities. That will allow us to distinguish rocky planets and water worlds from ones dominated by atmospheres of hydrogen and helium,” explained astronomer David Latham from the Harvard-Smithsonian Center for Astrophysics (CfA).

If the name HARPS (High-Accuracy Radial velocity Planet Searcher) is familiar, it is because this new instrument is a duplicate the successful design of an existing instrument in the Southern Hemisphere, the original HARPS spectrograph whichoperates on the 3.6-meter European Southern Observatory telescope at La Silla, Chile. At the TNG telescope, the new HARPS-North will be able to study the same region of the sky viewed by the Kepler spacecraft, within the northern constellations of Cygnus and Lyra.

The Harvard-Smithsonian CfA is part of an international collaboration building the new instrument.

Kepler main field of view. Credit: NASA/JPL - Caltech

Verifying a exoplanet can be tricky. In some circumstances, an eclipsing binary star can mimic the shallow dimming due to a planet crossing in front of its star. Ground-based measurements are needed to verify an orbiting world by spotting the gravitational wobbles it induces in its host star, in a method known as radial velocity.

A spectrograph operates by splitting the light from a star into its component wavelengths or colors, much like a prism. Chemical elements absorb light of specific colors, leaving dark lines in the star’s spectrum. Those lines shift position slightly due to the Doppler shift created by the gravitational tug of an orbiting planet on its star.

The new HARPS-North will be augmented by technology now under development, such as a laser comb for wavelength calibration, which will allow it to detect subtle radial-velocity signals.

“We have set up an enthusiastic collaboration among various institutions to build a northern copy of HARPS. We all expect HARPS-N to be as successful as its southern ‘brother,'” said HARPS-N principal investigator Francesco Pepe of the Astronomical Observatory of Geneva.

“HARPS-N will pursue the most interesting targets found by Kepler, at a level that no one else in the world can do,” said Dimitar Sasselov, Director of the Harvard Origins of Life Initiative. “HARPS-N will partner with Kepler to characterize worlds enough like Earth that they might be able to support life as we know it.”

Source: Harvard Smithsonian CfA

Kepler Discovers First Earth Sized Planets inside Habitable Zone

Keplers 1200 Planet candidates by size. Finding exoplanets is getting easier, LUVOIR will helps us find signs of life, if any, on them. Credit: NASA/Wendy Stenzel


With the startling new finding of dozens of Earth-sized extrasolar planets, NASA’s Kepler planet hunting space telescope has just revolutionized our understanding of Earths place in the Universe and the search for Extraterrestrial Life. And the historic science discovery is based on data collected in just the first few months of operation of the powerful telescope as it scans only a tiny portion of the sky.

The discovery of 1235 new extrasolar planet candidates was announced today (Feb.2) by NASA and Kepler scientists at a media briefing. 68 of these planet candidates are Earth-sized. Another 288 are Super-Earth-size, 662 are Neptune-size and 165 are Jupiter-size. Most of these candidates orbit stars like our sun.

Even more significant is that 54 of the planet candidates are located within the ‘habitable zone’ of their host stars and 5 of those are Earth-sized. Before today we knew of exactly ZERO Earth-sized planets within the habitable zone. Now there are 5.

Finding a ‘Pale Blue Dot’ or ‘Second Earth’ inside a habitable zone that harbors water and environmental conditions that can support life is the ‘Holy Grail’ of science.

Are We Alone ?

“We went from zero to 68 Earth-sized planet candidates and zero to 54 candidates in the habitable zone – a region where liquid water could exist on a planet’s surface. Some candidates could even have moons with liquid water,” said William Borucki of NASA’s Ames Research Center, Moffett Field, Calif.. Borucki is the science principal investigator for NASA’s Kepler mission.

“Five of the planetary candidates are both near Earth-size and orbit in the habitable zone of their parent stars.”

Earth-sized water worlds are the most conducive to the formation and evolution of alien life forms. Water is an essential prerequisite for life as we know it.

“Kepler’s blown the lid off everything we know about extrasolar planets,” said Debra Fischer, professor of Astronomy at Yale University, New Haven, Conn

Kepler's over 1200 planet candidates as of Feb. 1, 2011. Credit: NASA/Wendy Stenzel

Kepler is the first NASA mission capable of finding Earth-size planets in or near the habitable zones around their parent stars. The mission uses the transit method to detect the tell tale signatures of planets. The goal is to determine how common are planets the size of Earth orbiting inside the habitable zone of stars like our sun.

Kepler measures the miniscule decreases in the brightness of stars caused by planets crossing in front of them and blocking the starlight. Imagine calculating the difference in light transmission caused by a flea sitting on a cars headlight.

Follow up observations over a period of several years will be required to confirm these results, the scientists explained. Astronomers expect that over 80% of the candidate planets will be positively confirmed as real planets by utilizing ground based observatories and the Spitzer Space Telescope.

For an Earth-sized planet orbiting a sun-like star inside the habitable zone, transits occur about once per year. Since three transits are required to verify a planets status, it will therefore take about three years to reach a definitive conclusion.

These remarkable new planet discoveries are based on observations from only the first four months of Kepler’s telescopic operations – May 12, 2009 to Sept. 17, 2009. The space based observatory continuously monitors more than 156,000 stars using 42 CCD detectors with a field of view that covers only 1/400 of the sky.

“Kepler is making good progress towards its goals,” said Borucki

“We have found over twelve hundred candidate planets – that’s more than all the people have found so far in history.”

“Imagine if we could look wider. Kepler looks at one 400th of the sky. If we had 400 of these fields of view, we’d see 400 times that number of candidates. We would see 400,000 candidate planets.”

Keplers over 1200 Planet candidates sorted by size

“The fact that we’ve found so many planet candidates in such a tiny fraction of the sky suggests there are countless planets orbiting stars like our sun in our galaxy,” Borucki amplified. “Our results indicate there must be millions of planets orbiting the stars that surround our sun.”

“If we find that Earth’s are common in the habitable zones of stars, very likely that means life is common around these stars.”

“Kepler has shown that planetary systems like our own are common,” said Debra Fischer.

Planets in Keplers Field of View.
Before and after the discovery of over 1200 planet candidates by NASA’s Kepler Space Telescope.

“The search for planets is motivated by the search for life,” Fischer added.

“We have allowed the public to participate though the website Planethunters.org,” she added. “And now we have over 16,000 dedicated users. The public is excited to be a part of research and history.”

“Thanks to Kepler for this treasure chest of data!” Fisher concluded.

Kepler is just the first step in finding Earth sized and Earth like planets. “We are building the foundation for future generations of explorers,” said Borucki.

“Future missions will be developed to study the composition of planetary atmospheres to determine if they are compatible with the presence of life. The design for these missions depends on Kepler finding whether Earth-size planets in the habitable zone are common or rare.”

The first planets beyond our solar system were discovered in 1995. Up to today there were just over 500 known extrasolar planets.

Kepler now has 15 confirmed extrasolar planet discoveries and over 1200 possible candidates.

In January 2011, Kepler confirmed the discovery of its first rocky planet, named Kepler-10b. The molten world measures just 1.4 times the size of Earth and is the smallest planet ever discovered outside our solar system.

NASA’s Kepler spacecraft was launched on March 6, 2009 from Launch Complex 17-B atop a Delta II rocket at Cape Canaveral Air Force Station in Florida. See spacecraft and launch photos below

Kepler’s science operations are currently funded for three and one half years of operations until November 2012. The mission’s lifetime – and its goal of discovering multitudes of new planets as small as Earth – can be extended if NASA funding is approved by Congress and the President.

William Borucki – Explains Keplers Discovery of Earth Sized Planets
Science principal investigator for NASA’s Kepler mission, NASA’s Ames Research Center

Video Caption: NASA’s Kepler mission has discovered its first Earth-size planet candidates and its first candidates in the habitable zone, a region where liquid water could exist on a planet’s surface. Five of the potential planets are near Earth-size and orbit in the habitable zone of smaller, cooler stars than our sun.

Kepler also found six confirmed planets orbiting a sun-like star, Kepler-11. This is the largest group of transiting planets orbiting a single star yet discovered outside our solar system. Located approximately 2,000 light years from Earth, Kepler-11 is the most tightly packed planetary system yet discovered. All six of its confirmed planets have orbits smaller than Venus, and five of the six have orbits smaller than Mercury’s.

What is an Earth like planet ? Explantion here

David Charbonneau, an exoplanet researcher at Harvard University, explains what scientists mean when they say “earthlike planet” and “super Earth.” This interview was recorded at NASA’s Goddard Space Flight Center on December 10, 2010, by NASA science writer Daniel Pendick.

Kepler Mission Star Field
An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer will be pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square.
Credit: Carter Roberts / Eastbay Astronomical Society.
Kepler's target region in the Milky Way. Credit: Jon Lomberg
Kepler being prepared in the clean room at Astrotech
prior to launch on March 6, 2009. Credit: nasatech.net

More Kepler photos courtesy of nasatech.net here

Delta 2 rocket streaks to the heavens.
Launch of NASA’s Kepler planet hunting space telescope from Cape Canaveral Air Force Station, FL, Complex 17, on March 6, 2009 at 10:49 p.m. Credit: Ben Cooper
Ben Cooper Featured on Astronomy Picture of the Day (APOD); March 9, 2009

Launch Pad 17 B and a Delta II rocket
from my perch on the 8th floor of Launch Pad 17 A as rocket is encased in launch tower. Credit: Ken Kremer
View of Launch Complex 17 B and cryogenic storage tanks by Ken Kremer

NASA’s Kepler Media Briefing on Feb. 2, 2011

Kepler Discovers Its Smallest and First Rocky Planet


NASA’s Kepler planet hunting space telescope has made an historic discovery by finding its first rocky planet – and it’s simultaneously the smallest planet ever found beyond our solar system. The exoplanet, dubbed Kepler-10b, measures barely 1.4 times the diameter of Earth and orbits its star in less than one earth day. Therefore the planet is located well outside the habitable zone and is far too close to the star for liquid water to exist. It is Earth-sized but not Earth-like with respect to the search for life. The finding of such a small and rocky world marks a major milestone for Keplers scientific capabilities in finding another world like our own.

Indeed the scorching hot planet orbits so close to its parent star – once every 0.84 days – that the surface is molten and temperatures exceed 2,500 degrees Fahrenheit, hotter than lava flows here on Earth. Kepler-10b is 20 times closer to its star than Mercury is to our sun. Its density is similar to that of an iron dumbbell.

Check out the amazing video below narrated by Natalie Batalha, Kepler’s deputy science team lead from NASA’s Ames Research Center which describes Kepler’s exciting discovery of the smallest exoplanet known to date – some 560 light years from Erath.

The discovery is based on data that was collected from May 2009 to early January 2010 and was independently confirmed with the W.M. Keck Observatory in Hawaii. A peer reviewed paper has been accepted for publication in the Astrophysical Journal. The spacecraft was launched in March 2009 by a Delta II rocket.

Over 500 exoplanets have been discovered up to now. Kepler uses the transit method to detect exoplanets and monitors 150,000 stars by aiming 42 detectors between the constellations of Cygnus and Lyra.

Kepler Mission Star Field.
An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer will be pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square. Credit: Carter Roberts / Eastbay Astronomical Society.

Read more at this NASA Press release

NASA’s Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system.

The discovery of this so-called exoplanet is based on more than eight months of data collected by the spacecraft from May 2009 to early January 2010.

“All of Kepler’s best capabilities have converged to yield the first solid evidence of a rocky planet orbiting a star other than our sun,” said Natalie Batalha, Kepler’s deputy science team lead at NASA’s Ames Research Center in Moffett Field, Calif., and primary author of a paper on the discovery accepted by the Astrophysical Journal. “The Kepler team made a commitment in 2010 about finding the telltale signatures of small planets in the data, and it’s beginning to pay off.”

Kepler’s ultra-precise photometer measures the tiny decrease in a star’s brightness that occurs when a planet crosses in front of it. The size of the planet can be derived from these periodic dips in brightness. The distance between the planet and the star is calculated by measuring the time between successive dips as the planet orbits the star.

Kepler is the first NASA mission capable of finding Earth-size planets in or near the habitable zone, the region in a planetary system where liquid water can exist on the planet’s surface. However, since it orbits once every 0.84 days, Kepler-10b is more than 20 times closer to its star than Mercury is to our sun and not in the habitable zone.

Kepler-10b orbits one of the 150,000 stars that the spacecraft is monitoring between the constellations of Cygnus and Lyra.
We aim our mosaic of 42 detectors there, under the swan’s wing, just above the plane of the Milky Way galaxy. The star itself is very similar to our own sun in temperature, mass and size, but older with an age of over 8 billion years, compared to the 4-and-1/2 billion years of our own sun. It’s a quiet star, slowly spinning with a weak magnetic field and few of the sun spots that characterize our own sun. The star’s about 560 light years from our solar system and one of the brighter stars that Kepler is monitoring. It was the first we identified as potentially harboring a very small transiting planet. The transits of the planet were first seen in July of 2009.

The diameter of Kepler-10b is only about 1.4 times the diameter of Earth and it's mass is about 4.5 times that of Earth. It is the best example of a rocky planet to date.

Kepler-10 was the first star identified that could potentially harbor a small transiting planet, placing it at the top of the list for ground-based observations with the W.M. Keck Observatory 10-meter telescope in Hawaii.

Scientists waiting for a signal to confirm Kepler-10b as a planet were not disappointed. Keck was able to measure tiny changes in the star’s spectrum, called Doppler shifts, caused by the telltale tug exerted by the orbiting planet on the star.

“The discovery of Kepler-10b, a bone-fide rocky world, is a significant milestone in the search for planets similar to our own,” said Douglas Hudgins, Kepler program scientist at NASA Headquarters in Washington. “Although this planet is not in the habitable zone, the exciting find showcases the kinds of discoveries made possible by the mission and the promise of many more to come,” he said.

“Our knowledge of the planet is only as good as the knowledge of the star it orbits,” said Batalha. Because Kepler-10 is one of the brighter stars being targeted by Kepler, scientists were able to detect high frequency variations in the star’s brightness generated by stellar oscillations, or starquakes. “This is the analysis that really allowed us to pin down Kepler-10b’s properties.,” she added.

“We have a clear signal in the data arising from light waves that travel within the interior of the star,” said Hans Keldsen, an astronomer at the Kepler Asteroseismic Science Consortium at Aarhus University in Denmark. Kepler Asteroseismic Science Consortium scientists use the information to better understand the star, just as earthquakes are used to learn about Earth’s interior structure. “As a result of this analysis, Kepler-10 is one of the most well characterized planet-hosting stars in the universe next to our sun,” Kjeldsen said.

Kepler from the high-gain antenna side in the clean room at Astrotech. Credit: nasatech.net

That’s good news for the team studying Kepler-10b. Accurate stellar properties yield accurate planet properties. In the case of Kepler-10b, the picture that emerges is of a rocky planet with a mass 4.6 times that of Earth and with an average density of 8.8 grams per cubic centimeter — similar to that of an iron dumbbell.

“This planet is unequivocally rocky, with a surface you could stand on,” commented team member Dimitar Sasselov, of the Harvard-Smithsonian Center for Astrophysics in Cambridge and a Kepler co-investigator.

“All of Kepler’s best capabilities have converged for this discovery,” Batalha said, “yielding the first solid evidence of a rocky planet orbiting a star other than our sun.”

Ames manages Kepler’s ground system development, mission operations and science data analysis. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.

Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.

Click here to view a hi res 360 degree panorama of Kepler inside the cleanroom. Credit: nasatech.net

Does Tidal Evolution Cause Stars to Eat Planets?


With the success of the Kepler mission, the viability of looking for planets via transits has reached maturity. However, Kepler is not the first intensive study. Previously, other observatories have employed transit searches. To increase the chances of discovery, studies often concentrated on large clusters in which thousands of stars could be observed simultaneously. Based on the percentage of stars with super Jovian planets in the Sun’s vicinity, a Hubble observation run on the globular cluster 47 Tuc expected to find roughly 17 “hot Jupiters”. Yet not a single one was found. Follow-up studies on other regions of 47 Tuc, published in 2005, also reported a similar lack of signals.

Could the subtle effect of tidal forces have caused the planets to be consumed by their parent stars?

Within our solar system, the effects of tidal influences are more subtle than planetary destruction. But on stars with massive planets in tight orbits, the effects can be very different. As a planet would orbit its parent star, its gravitational pull would pull the star’s photosphere towards it. In a frictionless environment, the raised bulge would remain directly under the planet. Since the real world has real friction, the bulge will be displaced.

If the star rotates slower than the planet orbits (a likely scenario for close in planets since stars slow themselves via magnetic breaking during formation), the bulge will trail behind the planet since the pull has to compete against the photospheric material through which its pulling. This is the same effect that happens between the Earth-Moon system and is why we don’t have tides whenever the moon is overhead, but rather, the tides occur some time later. This lagging bulge creates a component of the gravitational force opposed to the direction of motion of the planet, slowing it down. As time goes on, the planet gets dragged closer to the star by this torque which increases the gravitational force and accelerating the process until the planet eventually enters the star’s photosphere.

Since transit discoveries rely on the planets orbital plane being exactly in line with its parent star and our planet, this favors planets in a very tight orbit since planets further out are more likely to pass above or below their parent star when viewed from Earth. The result of this is that planets that could potentially be discovered by this method are especially prone to this tidal slowing and destruction. This effect with the combination of the old age of 47 Tuc, may explain the dearth of discoveries.

Using a Monte-Carlo simulation, a recent paper explores this possibility and finds that, with the tidal effects, the non-detection in 47 Tuc is completely accounted for without the need to include additional reasons (such as metal deficiency in the cluster). However, to go beyond simply explaining a null result, the team made several predictions that would serve to confirm the destruction of such planets. If a planet were wholly consumed, the heavier elements should be present in the atmospheres of their parent star and thus be detectable via their spectra in contrast with the overall chemical composition of the cluster. Planets that were tidally stripped of atmospheres by filling their Roche Lobes could still be detected as an excess of rocky, super Earths.

Another test could inolve comparison between several of the open clusters visible in the Kepler study. Should astronomers find a decrease in the probability of finding hot Jupiters corresponding with a decrease with cluster age, this would also confirm the hypothesis. Since several such clusters exist within the area planned for the Kepler survey, this option is the most readily accessible. Ultimately, this result make sit clear that, should astronomers rely on methods that are best suited for short period planets, they may need to expand their observation window sufficiently since planets with a sufficiently short period may be prone to being consumed.

Kepler Discovers Multi-Planet System


The Kepler mission has discovered a system of two Saturn size planets with perhaps a third planet that is only 1.5 times the radius of Earth. While the news of this discovery is tempered somewhat with the announcement by a team from the European Southern Observatory of a system with five confirmed Neptune-sized planets and perhaps two additional smaller planets, both discoveries highlight that the spacecraft and techniques astronomers are using to find exoplanets are getting the desired results, and excitingly exoplanet reseach now includes the study of multiplanet systems. This discovery is the first time multiple planets were found by looking at transit time variations, which can provide more information about planets, such as their masses.

“What is particularly special about this system, is that the variations in transit times are large enough, that we can use these transit timing to detect the masses of these bodies” said Matthew Holman, Kepler team lead for the study of star Kepler-9, speaking on the AAAS Science podcast. Additionally, these findings should provide the tools astronomers need to determine even more physical conditions of these planets — and others — in the future.

The inner world weighs in at 0.25 Jupiter mass (80 Earths) while the outer world is a slimmer 0.17 Jupiter mass (54 Earths).

The team analyzed seven months of data from the orbiting Kepler telescope, and the two large confirmed planets—Kepler-9b and Kepler-9c— are transiting the parent star at unstable rates. The planets’ 19.2- and 38.9-day transition periods are increasing and decreasing at average, respective rates of four and 39 minutes per orbit.

“One thing that caught our attention right off, is when we do preliminary estimates at the time of the transit, we saw large variations in this particular system. Not only did we see more than one planet transiting, but one planet seemed to be speeding up and one slowing down,” Holman said.

Because period one is roughly twice the other, they have a signature of what is called a 2:1 orbital resonance, where astronomers expect to see large timing variation, due to the orbital gravitational push and pull the systems has on all the objects.

“The variation in transit times depend upon the masses of the planets,” Holman told reporters in a news conference announcing the findings. “The larger the mass the larger the variations. These variations allows us to determine the mass of the objects and we can confirm that they are planets.”

The team also confirmed the objects were planets with radial velocity observations with the Keck I telescope.

The third planet, with a mass several times that of the Earth, is transiting the star in a more interior orbit, but further analysis will be necessary to confirm that this signature is actually a planet.

“We are being very careful at this point to only call it a planet candidate, rather than a confirmed planet,” Holman said. “If it is confirmed it would only have a radius of about 1.5 that of Earth’s. It has a much shorter orbital period of 1.6 days, so it is very close to its host star, so we should be able to see evidence of many transits.”

Holman added that this discovery — regardless of whether they are able to confirm that this is a planet or not — highlights the sensitivity of Kepler to very small signatures.

Holman said the planets have probably migrated to be closer to the star from where they started out when they formed. “Likely they formed with the star, but likely they formed farther out at the “snow line” several times farther away from the star than the Earth is, and by a dynamical process move in closer,” he said in the Science podcast.

The resonance is a signature that some kind of migration had occurred, called convergent migration, where planets are moving towards the star and also coming closer to each other.

From all the transit timing information that has been gathered so far, astronomers are piecing together the migration history of this planetary system. “The whole history of that system may be encoded in the information we have,” said Alycia Weinberger, from the Department of Terrestrial Magnetism at the Carnegie Institution. “Isn’t it cool that what the planetary system looks like today has much to tell us about its history?”.

Kepler looks for the signatures of planets by measuring tiny decreases in the brightness of stars when planets cross in front of, or transit them. The size of the planet can be derived from the change in the star’s brightness. In June, mission scientists announced the mission has identified more than 700 planet candidates, including five systems with more than one planet candidate. This is the first of those systems to be confirmed.

Kepler principal investigator William Borucki said the team is working hard to get these candidates “turned into confirmed planets.”

Asked about why the public seems to be so interested in the Kepler mission, Borucki said, “We addressing a very important question, which is, are there other earths out there and are they frequent? Any answer is important. If we get zero that might mean there is very little life out there in the universe.”

Sources: Science, AAAS Science podcast, NASA,

The Milky Way Could have Billions of Earths

With the upcoming launch in March of the Kepler mission to find extrasolar planets, there is quite a lot of buzz about the possibility of finding habitable planets outside of our Solar System. Kepler will be the first satellite telescope with the capability to find Earth-size and smaller planets. At the most recent meeting of the American Association for the Advancement of Science (AAAS) in Chicago, Dr. Alan Boss is quoted by numerous media outlets as saying that there could be billions of Earth-like planets in the Milky Way alone, and that we may find an Earth-like planet orbiting a large proportion of the stars in the Universe.

“There are something like a few dozen solar-type stars within something like 30 light years of the sun, and I would think that a good number of those — perhaps half of them would have Earth-like planets. So, I think there’s a very good chance that we’ll find some Earth-like planets within 10, 20, or 30 light years of the Sun,” Dr. Boss said in an AAAS podcast interview.

Dr. Boss is an astronomer at the Carnegie Institution of Washington Department of Terrestrial Magnetism, and is the author of The Crowded Universe, a book on the likelihood of finding life and habitable planets outside of our Solar System.

“Not only are they probably habitable but they probably are also going to be inhabited. But I think that most likely the nearby ‘Earths’ are going to be inhabited with things which are perhaps more common to what Earth was like three or four billion years ago,” Dr. Boss told the BBC. In other words, it’s more likely that bacteria-like lifeforms abound, rather than more advanced alien life.

This sort of postulation about the existence of extraterrestrial life (and intelligence) falls under the paradigm of the Drake Equation, named after the astronomer Frank Drake. The Drake Equation incorporates all of the variables one should take into account when trying to calculate the number of technologically advanced civilizations elsewhere in the Universe. Depending on what numbers you put into the equation, the answer ranges from zero to trillions. There is wide speculation about the existence of life elsewhere in the Universe.

To date, the closest thing to an Earth-sized planet discovered outside of our Solar System is CoRoT-Exo-7b, with a diameter of less than twice that of the Earth.

The speculation by Dr. Boss and others will be put to the test later this year when the Kepler satellite gets up and running. Set to launch on March 9th, 2009, the Kepler mission will utilize a 0.95 meter telescope to view one section of the sky containing over 100,000 stars for the entirety of the mission, which will last at least 3.5 years.

The prospect of life existing elsewhere is exciting, to be sure, and we’ll be keeping you posted here on Universe Today when any of the potentially billions of Earth-like planets are discovered!

Source: BBC, EurekAlert