Behind the Scenes at the Keck Observatory

[/caption]

For about 300 nights out of the year, Mauna Kea on the Big Island of Hawaii is one of the best places in the world for ground-based astronomy. At an elevation of 4,205 meters (13,796 ft), the summit sits above a large portion of the Earth’s atmosphere, and usually, the sky is clear, calm and dry. Indeed, 13 giant telescopes sit Mauna Kea’s summit, and they have made some of the biggest discoveries in astronomy. But for the remaining nights of the year, a variety of weather-related issues can keep astronomers from observing, and visitors from climbing to the summit to see those pristine skies for themselves, as well as being able to watch some of our biggest eyes on the skies action. Sometimes clouds, high winds or humidity might keep the telescope domes closed, other times snow can close the roads. On a recent visit to Hawaii, heavy snow kept the roads closed for three days and my long-planned trip to the top of Mauna Kea was, disappointingly, scrubbed. But I did get a great behind the scenes tour of the W. M. Keck Observatory headquarters in Waimea.

The Keck Headquarters and visitor center in Waimea.

While the telescopes are up at at the top of the mountain, astronomers seldom actually work at the telescopes themselves. Instead they work out of remote operations offices at the headquarters in Waimea. There is an operations room for each of the twin 10-meter Keck telescopes: Remote Operations 1 works the Keck 1 telescope:

Remote Operations Room 1 for Keck 1. Image: Nancy Atkinson

And Remote Operations 2 works Keck 2:

Remote Operations Room 2 at the Keck Headquarters. Image: Nancy Atkinson

I arrived in the morning before any of the astronomers were there. “People who work for Keck help the visiting astronomers,” said Alexandra Starr, who works with the media and is a public information officer at the Keck headquarters. “Usually, the visiting astronomers start filtering in about 2 o’clock, and the people who work on the summit get things ready for what the astronomers want to observe. There is a camera for those down here to view how things are going for getting the telescope pointed exactly where they want it.”

But the domes on the telescope can’t be opened until the sun goes down.

“So, once they get everything set up, they go for an early dinner and then come back here and observe all night long,” said Starr. “We do have people working around the clock, however. For astronomers who have been here before, sometimes they don’t need a lot of assistance, but our support astronomers will help all the visiting astronomers get the best observing they can, and get the information they need while they are on the sky.”

About 125 people work full-time at Keck, of which two-thirds are local people from from Hawaii. With an annual operating budget of $11 million, the Observatory is one of the town’s largest employers.

At the headquarters, there are condos where the visiting astronomers can stay:

Facilities where visiting astronomers stay while at Keck. Image: Nancy Atkinson

Most astronomers have just two nights for observing, and Starr said it can be up to a year and a half from when astronomers submit a proposal to use the Keck telescopes to when they actually get to observe. But sometimes, depending on the astronomer and what they are observing, they’ll get to return again fairly quickly when the weather doesn’t allow for observing.

“The past 2 nights we haven’t been observing, and those people are in town ready to go,” Starr said.

Keck 4-wheel drive vehicles. Image: Nancy Atkinson

The backside of facilities includes the observatory’s own mechanics shop. “We have eight 4-wheel drive automobiles to get to the summit, and our own mechanic shop to keep them all in top shape,” Starr said.

The Keck Observatory’s headquarters in Waimea is open to visitors, and volunteer guides are available Tuesday through Friday from 10 a.m. to 2 p.m. to share information about Keck and the other Mauna Kea observatories. The visitor’s center also has a conference room for public lectures from visiting astronomers.

Inside are models and images of the twin 10-meter Keck telescopes:

Models of the twin Keck telescopes inside the Keck visitor center. Image: Nancy Atkinson

The twin Keck telescopes are the world’s largest optical and infrared telescopes. Each telescope stands eight stories tall, weighs 300 tons and operates with nanometer precision. The telescopes’ primary mirrors are 10 meters in diameter and are each composed of 36 hexagonal segments that work in concert as a single piece of reflective glass.

Outside in the visitor center courtyard is a grassy area that represents the size of just one of the hexagonal segments, which are 1.8 meters (6 ft) in diameter.

The grassy area in the courtyard of the Keck Observatory visitor center is the same size as one of the 36 hexagonal glass segments that make up the 10-meter mirrors on the two Keck telescopes. Image: Nancy Atkinson

Each segment weighs .5 metric tons (880 pounds), and are three inches thick. They are made of a glass and ceramic composite called Zerodur. Zerodur itself is not reflective, so they are covered with a thin reflective layer of aluminum.

“While the telescope is actually working it is constantly fine tuning the position of the individual mirrors to make sure they are all in alignment,” said our tour guide Rosalind Redfield.

On the telescope, each segment’s figure is kept stable by a system of extremely rigid support structures and adjustable warping harnesses. During observing, a computer-controlled system of sensors and actuators adjusts the position of each segment – relative to the neighboring segment – to an accuracy of four nanometers, about the size of a few molecules, or about 1/25,000 the diameter of a human hair. This twice-per-second adjustment effectively counters the tug of gravity.

The twin Kecks, Subaru and IRTF seen from the eastern ridge at sunset. Credit: Pablo McLoud/Keck

Up at the summit, (which I can only share pictures provided by the Keck Observatory) Redfield said it is like the other side of the Moon. “Absolutely nothing grows up there, the elevation is so high it is completely barren,” she said. “There is fine, sandy type dirt, and they don’t like people driving up there as it stirs up dust. The paved road only goes so far, and anyone driving at the summit creates enough dust that it can cause a problem, and people are only allowed to drive up if you have a four-wheel drive.”

The sun sets on Mauna Kea as the twin Kecks prepare for observing. Credit: Laurie Hatch/ W. M. Keck Observatory

Mauna Kea summit as seen from the northeast. Credit: University of Hawaii.

The two Keck telescopes and the 8.3 meter Subaru telescopes take the very top of the mountain. They are joined by the 8.1 Gemini North Telescope , the 0.6-m educational telescope, from the University of Hawaii at Hilo, a 2.2-m telescope University of Hawaii Institute for Astronomy, the 3 meter NASA Infrared Telescope Facility, the 3.6 meter Canada-France-Hawaii Telescope, the 3.8 meter UKIRT (United Kingdom Infrared Telescope), the 10.4 Caltech Submillimeter Observatory, the 15 meter James Clerk Maxwell Telescope, the 8X6 meter Submillimeter Array and the 25 meter Very Long Baseline Array.

A map of the telescopes on Mauna Kea. Credit: University of Hawaii.

But, no climb to the summit for me — not this time anyway! I hope to return one day to Mauna Kea to see first-hand where science and nature come together to allow for continued discovery of our universe.

Clouds and snow obscure the summit of Mauna Kea as I drive away, after a climb to visit the Keck telescopes was nixed. Image: Nancy Atkinson.

For more information about the Keck Observatory, see their website, and if you are in Hawaii or going to be visiting the Big Island, find information here on how you can visit the Observatory headquarters, or go to the summit.

First Four Exoplanet System Imaged

HR 8799 system

[/caption]

Among one of the first exoplanet systems imaged was HR 8799. In 2008, a team led by Christian Marois at the Herzberg Institute of Astrophysics in Canada, took a picture of the system directly imaging three giant planets. The team revisited the system in 2009 – 2010 with the Keck II telescope and discovered a fourth planet in the system.

The new planet, designated HR 8799e, orbits at a distance of 14.5 AU, making it the innermost planet in the system. The other planets all orbit at distances of >25 AU. The images were taken in the near infrared where they are most noticeable because the system is relatively young (<100 Myr) and the planets are still radiating large amounts of heat from their formation.

The youth of these planets is part of what makes them an interesting target for astronomers. There exists a controversy in the community of planetary astronomers on the formation method of large planets. One theory states that planets form from a single, monolithic collapse that creates the entire planet’s mass at one time. Another possibility is that the initial collapse forms small cores early on, but then there is substantial growth later, as the planetesimal sweeps up additional material.

The discovery of the new planet challenges both theories. Marois states, “none of [the theories] can explain the in situ formation of all four planets.” Thus, a combination of both methods may be in use in the system. Several belts of dust are also known in the system which may help astronomers determine what modes of formation were present.

In particular HR 8799e is challenging to an in situ formation because the gravitational perturbations from the parent star should disrupt the formation of large gas planets within 20-40 AU from a single formation. Instead, the new planet would likely have had to been a core collapse with subsequent accretion, or alternatively, moved to its present location via migration.

HR 8799 comparison to solar system
Schematic representation of the HR 8799 planetary system compared to our solar system (viewed pole on and at the same distance as HR 8799). HR 8799 planet orbits are plotted assuming a pole-on view and circular orbits. A Kuiper Belt-like ring and an asteroid-like belt of dust, suggested by excess infrared light seen by the IRAS and ISO satellites, have been added. The HR 8799 dust disk is one of the heaviest detected by ISO and IRAS. It is thought that HR 8799e and HR 8799b dynamically interact with those dust disks in a way very similar to Jupiter with the asteroid belt and Neptune with the Kuiper Belt. Credit: NRC-HIA & C. Marois

Studying systems such as this may help astronomers better understand the formation of our own solar system. The paper notes that the HR 8799 “does show interesting similarities with the Solar system with all
giant planets located past the system’s estimated snow line (~2.7 AU for the Solar system and ~6 AU for HR 8799)”. Additionally, both have debris disks beyond the outer orbits with similar temperatures.

Different methods of detecting planetary formation necessarily turn up different types of systems. Radial velocity studies detect massive, close-in planets whereas direct imaging most easily finds more distant planets. These two apparent populations represent different modes of planetary formation and for a full understanding, astronomers will need a continuous sampling that merges the two. Marois notes that we are still far from this goal as “[w]e just do not have enough exoplanets detected by direct imaging (~6 so far)” to make any conclusions besides constraints from the non-detections occurring thus far. To truly merge these two populations, astronomers will likely need to wait until more systems are discovered.

Previously, some work has been done to estimate the composition of the atmospheres of the three planets already discovered in the system. These systems have been suggested to have cloudy atmospheres for CH4 and CO. According to Marois, his team is, “planning more observations on e, but it will be hard. We might have to wait for new instruments, like the Gemini Planet Imager to do it properly.” This new instrument “will put a ‘thumb’ on the star (or what we call a coronagraph) to physically block the star light and allow ‘easy’ detection of nearby faint planets.”

While this discovery is a first, it will certainly be one of a long line of exoplanet images. Marois is obviously excited about the ability to directly image planets. I asked him what the single most important thing he wanted readers to get from this research. His response was simple, “That we now have the telescopes and instruments to SEE planets orbiting other stars – that’s really cool! The exoplanet field is still very young and we have so much to learn.”

New Earth-sized Exoplanet is in Star’s Habitable Zone

Goldilocks Zone

[/caption]

An enticing new extrasolar planet found using the Keck Observatory in Hawaii is just three times the mass of Earth and it orbits the parent star squarely in the middle of the star’s “Goldilocks zone,” a potential habitable region where liquid water could exist on the planet’s surface. If confirmed, this would be the most Earth-like exoplanet yet discovered and the first strong case for a potentially habitable one. The discoverers also say this finding could mean our galaxy may be teeming with prospective habitable planets.

“Our findings offer a very compelling case for a potentially habitable planet,” said Steven Vogt from UC Santa Cruz. “The fact that we were able to detect this planet so quickly and so nearby tells us that planets like this must be really common.”

Vogt and his team from the Lick-Carnegie Exoplanet Survey actually found two new planets around the heavily studied red dwarf star Gliese 581, where planets have been found previously. Now with six known planets, Gliese 581 hosts a planetary system most similar to our own. It is located 20 light years away from Earth in the constellation Libra.

The most interesting of the two new planets is Gliese 581g, with a mass three to four times that of the Earth and an orbital period of just under 37 days. Its mass indicates that it is probably a rocky planet with likely enough gravity to hold on to an atmosphere.

The planet is also tidally locked to the star, meaning that one side is always facing the star in sunlight, while the side facing away from the star is in perpetual darkness. One effect of this is to stabilize the planet’s surface climates, according to Vogt. The most habitable zone on the planet’s surface would be on the terminator, the line between shadow and light, with surface temperatures decreasing toward the dark side and increasing toward the light side.

“Any emerging life forms would have a wide range of stable climates to choose from and to evolve around, depending on their longitude,” Vogt said.

There has been debate about the other planets found previously around Gliese 581, whether they could be habitable or not. Two of them lie at the edges of the habitable zone, one on the hot side (planet c) and one on the cold side (planet d). While some astronomers still think planet d may be habitable if it has a thick atmosphere with a strong greenhouse effect to warm it up, others are skeptical. The newly discovered planet g, however, lies right in the middle of the habitable zone.

“We had planets on both sides of the habitable zone–one too hot and one too cold–and now we have one in the middle that’s just right,” Vogt said.

The researchers estimate that the average surface temperature of the planet is between -24 and 10 degrees Fahrenheit (-31 to -12 degrees Celsius). Actual temperatures would range from blazing hot on the side facing the star to freezing cold on the dark side.

If Gliese 581g has a rocky composition similar to the Earth’s, its diameter would be about 1.2 to 1.4 times that of the Earth. The surface gravity would be about the same or slightly higher than Earth’s, so that a person could easily walk upright on the planet, Vogt said.

The planet was found using the HIRES spectrometer (designed by Vogt) on the Keck I Telescope, measuring the star’s radial velocity. The gravitational tug of an orbiting planet causes periodic changes in the radial velocity of the host star. Multiple planets induce complex wobbles in the star’s motion, and astronomers use sophisticated analyses to detect planets and determine their orbits and masses.

“It’s really hard to detect a planet like this,” Vogt said. “Every time we measure the radial velocity, that’s an evening on the telescope, and it took more than 200 observations with a precision of about 1.6 meters per second to detect this planet.”

In addition to the radial velocity observations, coauthors Henry and Williamson made precise night-to-night brightness measurements of the star with one of Tennessee State University’s robotic telescopes. “Our brightness measurements verify that the radial velocity variations are caused by the new orbiting planet and not by any process within the star itself,” Henry said.

The researchers also explored the implications of this discovery with respect to the number of stars that are likely to have at least one potentially habitable planet. Given the relatively small number of stars that have been carefully monitored by planet hunters, this discovery has come surprisingly soon.

“If these are rare, we shouldn’t have found one so quickly and so nearby,” Vogt said. “The number of systems with potentially habitable planets is probably on the order of 10 or 20 percent, and when you multiply that by the hundreds of billions of stars in the Milky Way, that’s a large number. There could be tens of billions of these systems in our galaxy.”

Source: University of California – Santa Cruz

Here’s an article about abiogenesis, or the beginning of life on Earth.

Young Exoplanet is Cloudy With a Chance of Heat Waves

[/caption]

Back in 2008, the first multi-planet system of extrasolar planets was imaged, and further study of the planets in this very young system is yielding some puzzling results. Astronomers using the Keck Observatory have been able to obtain the spectrum of one planet, HR 8799 b, revealing the temperature, chemical composition, and atmospheric properties of the planet. The planet’s atmosphere is unlike that of any previously studied extrasolar planet, and it appears the planet is extremely cloudy, and also quite hot, even though it is very far from its host star.


“We are at a point where not only can we directly image planets around other stars, but we can begin to study the properties of their atmospheres in detail. Direct spectroscopy of exoplanets is the future of this field,” said Brendan Bowler, a graduate student at the University of Hawaii and the lead author of the study.

Although over 500 planets have been discovered around other stars, only six planets have been directly imaged.

Three exoplanets orbiting a young star 140 light years away are captured using Keck Observatory near-infrared adaptive optics. The planets are labeled and the two outer ones have arrows showing the size of their motion over a 4 year period.

HR 8799 b, is one of those imaged, and is one of three gas-giant planets orbiting the star HR 8799, located 130 light-years away from Earth in the constellation Pegasus. Bowler and his team said the properties of the planet’s atmosphere can’t be explained by current theoretical models of gas giant exoplanets, even those with what is considered a normal amount of thick or dusty atmospheres. From the new data on this planet, the astronomers believe that this exoplanet is extremely cloudy, and perhaps, all young gas-giant planets exhibit the same type of cloud cover in their atmospheres.

The technique the team used to determine the planet’s temperature relies on the chemistry of the planet’s atmosphere. Specifically, the presence or absence of gaseous methane can be used as a thermometer. The team found that HR 8799 b shows little or no methane in its atmosphere. Based on their spectrum and previously obtained images of the planet, and by comparing the observations to theoretical models of low-temperature atmospheres, they estimate the coolest possible temperature for the planet is about 1200 Kelvin (about 1,700 degrees Fahrenheit).

This planet is quite far from the star, 67 times the Earth-sun separation from the host star.

Current theoretical models predict HR 8799 b should be about 400 Kelvin cooler than they measured, based on the age of the planet and the amount of energy it is currently emitting. The team suspects the discrepancy arises because the planet is much more dusty and cloudy than expected by current models.

“Direct studies of extrasolar planets are just in their infancy. But even at this early stage, we are learning they are a different beast than objects we have known about previously,” said University of Hawaii astronomy professor Michael Liu, coauthor of the study.

The planets around HR 8799 are incredibly faint, about 100,000 times dimmer than their parent star. To obtain the spectrum of HR 8799 b, the team relied on the adaptive optics system of the Keck II Telescope, and focused on the star for several hours. Then they used the Keck facility instrument called OSIRIS, a special kind of spectrograph, to precisely separate the spectrum of the planet from the light of its parent star.

A paper describing the study will be published in the Astrophysical Journal later this year, but you can read the team’s abstract here.

There’s also a new paper out that suggests the these planets around HR 8799 could actually be brown dwarfs.

Source: Keck Observatory