JWST Observes the Kuiper Belt: Sedna, Gonggong, and Quaoar

Artist's conception of Sedna, the TNO that orbits in the outer edges of the Solar System. Credit: NASA/JPL-Caltech

The Kuiper Belt, the vast region at the edge of our Solar System populated by countless icy objects, is a treasure trove of scientific discoveries. The detection and characterization of Kuiper Belt Objects (KBOs), sometimes referred to as Trans-Neptunian Objects (TNOs), has led to a new understanding of the history of the Solar System. The disposition of KBOs is an indicator of gravitational currents that have shaped the Solar System and reveal a dynamic history of planetary migrations. Since the late 20th century, scientists have been eager to get a closer look at KBOs to learn more about their orbits and composition.

Studying bodies in the outer Solar System is one of the many objectives of the James Webb Space Telescope (JWST). Using data obtained by Webb’s Near-Infrared Spectrometer (NIRSpec), an international team of astronomers observed three dwarf planets in the Kuiper Belt: Sedna, Gonggong, and Quaoar. These observations revealed several interesting things about their respective orbits and composition, including light hydrocarbons and complex organic molecules believed to be the product of methane irradiation.

Continue reading “JWST Observes the Kuiper Belt: Sedna, Gonggong, and Quaoar”

New Horizon’s Flyby Target 2014 MU69 Gets its Official Name: Arrokoth

Rev. Nick Miles, of the Pamunkey Tribe, opens the 2014 MU69/Arrokoth naming ceremony at NASA Headquarters with a traditional Algonquian song. Credits: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

On July 14th, 2015, the New Horizons made the first-ever flyby of Pluto. As if that wasn’t enough, the mission made history again with the flyby of the Kuiper Belt Object (KBO) 2014 MU69 on December 31st, 2018. This constituted the farthest encounter from Earth with a celestial object, which the team had nicknamed Ultima Thule – a mythical northern island beyond the borders of the known world in Medieval literature.

Unfortunately, this name has generated some controversy due to the fact that it is also the name white supremacists use to refer to a mythical homeland. So with the consent of the tribal elders and representatives of the Powhatan nations, the New Horizons’ team recommended a new name for the KBO. Henceforth, it will be known as “Arrokoth“, the word for “sky” in the Powhatan/Algonquian language.

Continue reading “New Horizon’s Flyby Target 2014 MU69 Gets its Official Name: Arrokoth”

Now You Can See MU69 in Thrilling 3D

This image of Ultima Thule can be viewed with red-blue stereo glasses to reveal the Kuiper Belt object's three-dimensional shape. Credit: NASA/JHUAPL/SwRI/NOAO

Got your 3D glasses handy? Then prepare for the most realistic views of Ultima Thule yet! Yes, it seems that every few weeks, there’s a new image of the Kuiper Belt Object (KBO) that promises the same thing. But whereas all the previous contenders were higher-resolution images that allowed for a more discernible level of detail, these images are the closest we will get to seeing the real thing up close!

Continue reading “Now You Can See MU69 in Thrilling 3D”

Pluto and Charon Don’t Have Enough Small Craters

New Horizons image of the small craters on Pluto's moon Charon. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

In 2015, the New Horizons mission became the first robotic spacecraft to conduct a flyby of Pluto. In so doing, the probe managed to capture stunning photos and valuable data on what was once considered to be the ninth planet of the Solar System (and to some, still is) and its moons. Years later, scientists are still poring over the data to see what else they can learn about the Pluto-Charon system.

For instance, the mission science team at the Southwest Research Institute (SwRI) recently made an interesting discovery about Pluto and Charon. Based on images acquired by the New Horizons spacecraft of some small craters on their surfaces, the team indirectly confirmed something about the Kuiper Belt could have serious implications for our models of Solar System formation.

Continue reading “Pluto and Charon Don’t Have Enough Small Craters”

New Horizons took this shot of MU69 as it sped away from its encounter

Graphic of Ultima Thule showing its true shape. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

On December 31st, 2018, NASA’s New Horizons mission made history by being the first spacecraft to rendezvous with the Kuiper Belt Object (KBO) named Ultima Thule (2014 MU69). This came roughly two and a half years after New Horizons became the first mission in history to conduct a flyby of Pluto. This latest encounter led to some stunning images of the KBO as the spacecraft made it’s approach.

But of course, these were not the last images New Horizons was going to capture of this object. While making its flyby of Ultima Thule on New Year’s Day, the spacecraft took a number of images that revealed something very interesting about Ultima Thule’s shape. Rather than consisting of two spheres that are joined together, Ultima Thule is actually made up of two segments – one that looks like a pancake, the other a walnut.

Continue reading “New Horizons took this shot of MU69 as it sped away from its encounter”

Here it is, the high resolution photo of MU69 we’ve all been waiting for.

High-resolution image of Ultima Thule. Credit: NASA/JHUAPL/SwRI

On December 31st, 2018, NASA’s New Horizons mission made history by being the first spacecraft to rendezvous with a Kuiper Belt Object (KBO) named Ultima Thule (2014 MU69). This came roughly two and a half years after New Horizons became the first mission in history to conduct a flyby of Pluto. Much like the encounter with Pluto, the probe’s rendezvous with Ultima Thule led to a truly stunning encounter image.

And now, thanks to a team of researchers from the John Hopkins University Applied Physics Lab (JHUAPL), this image has been enhanced to provide a more detailed and high-resolution look at Ultima Thule and its surface features. Thanks to these efforts, scientists may be able to learn more about the history of this object and how it was formed, which could tell us a great deal about the early days of the Solar System.

Continue reading “Here it is, the high resolution photo of MU69 we’ve all been waiting for.”

The Pictures are Here! New Horizons Close Up View of 2014 MU69

This image taken by the Long-Range Reconnaissance Imager (LORRI) is the most detailed of Ultima Thule returned so far by the New Horizons spacecraft. It was taken at 5:01 Universal Time on January 1, 2019, just 30 minutes before closest approach from a range of 18,000 miles (28,000 kilometers), with an original scale of 730 feet (140 meters) per pixel. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

On December 31st, 2018, NASA and the New Horizon‘s team (plus millions of people watching the live stream at home) rang in the New Year by watching the New Horizons mission make the first rendezvous in history with a Kuiper Belt Object (KBO). About thirty minutes after the probe conducted its flyby of Arrokoth (2014 MU69), the mission controllers were treated to the first clear images ever taken of a KBO.

Since the first approach photographs were released (which were pixilated and blurry), the New Horizons team has released new images from the spacecraft that show Ultimate Thule in color and greater detail. It’s appearance, which resembles that of a snowman, beautifully illustrates the kinds of processes that created our Solar System roughly four and a half billion years ago.

Continue reading “The Pictures are Here! New Horizons Close Up View of 2014 MU69”

New Horizons Sees its Next Target for the First Time: Ultima Thule. Flyby Happens January 1, 2019

Composite image (left) produced by adding 48 different exposures from the News Horizons Long Range Reconnaissance Imager (LORRI) taken on Aug. 16, 2018 and a magnified view (right) of the region in the yellow box taken by LORRI in September 2017. Credits: NASA/JHUAPL/SwRI

In July of 2015, NASA’s New Horizons mission made history when it became the first spacecraft to conduct a flyby of Pluto. Since that time, the spacecraft’s mission was extended so it could make its way farther into the outer Solar System and become the first spacecraft to explore some Kuiper Belt Objects (KBOs). It’s first objective will be the KBO known as 2014 MU69, which was recently given the nickname “Ultima Thule” (“ultima thoo-lee”).

Continue reading “New Horizons Sees its Next Target for the First Time: Ultima Thule. Flyby Happens January 1, 2019”

New Horizons Team Has a New Nickname for the Spacecraft’s Next Target

Artist’s impression of NASA’s New Horizons spacecraft encountering 2014 MU69, a Kuiper Belt object that orbits one billion miles (1.6 billion kilometers) beyond Pluto, on Jan. 1, 2019. With public input, the team has selected the nickname “Ultima Thule” for the object, which will be the most primitive and most distant world ever explored by spacecraft. Credits: NASA/JHUAPL/SwRI/Steve Gribben

In July of 2015, NASA’s New Horizons mission made history when it became the first spacecraft to conduct a flyby of Pluto. Since that time, the spacecraft’s mission was extended so it could make its way farther into the outer Solar System and explore some Kuiper Belt Objects (KBOs). Another historic first, the spacecraft will study these ancient objects in the hopes of learning more about the formation and evolution of the Solar System.

By Jan. 1st, 2019, it will have arrived at its first destination, the KBO known as 2014 MU69. And with the help of the public, this object recently received the nickname “Ultima Thule” (“ultima thoo-lee”). This object, which orbits our Sun at a distance of about 1.6 billion km (1 billion miles) beyond Pluto, will be the most primitive object ever observed by a spacecraft. It will also be the farthest encounter ever achieved in the history of space exploration.

Artist’s concept of Kuiper Belt object 2014 MU69, the next flyby target for NASA’s New Horizons missionCredits: NASA/JHUAPL/SwRI/Alex Parker

In 2015, MU69 was identified as one of two potential destinations for the New Horizons mission and was recommended to NASA by the mission science team. It was selected because of the immense opportunities for research it presented. As Alan Stern, the Principle Investigator (PI) for the New Horizons mission at the Southwest Research Institute (SwRI), indicated at the time:

“2014 MU69 is a great choice because it is just the kind of ancient KBO, formed where it orbits now, that the Decadal Survey desired us to fly by. Moreover, this KBO costs less fuel to reach [than other candidate targets], leaving more fuel for the flyby, for ancillary science, and greater fuel reserves to protect against the unforeseen.”

Originally, the KBO was thought to be a spherical chunk of ice and rock. However, in August of 2017, new occultation observations made by telescopes in Argentina led the team to conclude that MU69 could actually be a large object with a chunk taken out of it (an “extreme prolate spheroid”). Alternately, they suspected that it might be two objects orbiting very closely together or touching – aka. a close or contact binary.

Given the significance of New Horizons‘ impending encounter with this object, its only proper that it receive a an actual name. In medieval literature and cartography, Thule was a mythical, far-northern island. Ultima Thule means “beyond Thule”, which essentially means that which lies beyond the borders of the known world. This name is highly appropriate, since the exploration of a KBO is something that has never been done before.

This artist's impression shows the New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben)
This artist’s impression shows the New Horizons spacecraft encountering a Pluto-like object in the distant Kuiper Belt. (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Steve Gribben)

As Alan Stern, the principal investigator of the New Horizons mission at the Southwest Research Institute, said in a recent NASA press release:

“MU69 is humanity’s next Ultima Thule. Our spacecraft is heading beyond the limits of the known worlds, to what will be this mission’s next achievement. Since this will be the farthest exploration of any object in space in history, I like to call our flyby target Ultima, for short, symbolizing this ultimate exploration by NASA and our team.”

The campaign to name this object was launched by NASA and the New Horizons team in early November, and was hosted by the SETI Institute and led by Mark Showalter – an institute fellow and member of the New Horizons science team. The campaign involved 115,000 participants from around the world who nominated 34,000 names – 37 of which were selected for a final ballot based on their popularity.

These included eight names suggested by the New Horizons team and 29 nominated by the public. The team then narrowed its selection to the 29 publicly-nominated names and gave preference to names near the top of the polls. Along with Ultima Thule, other names that were considered included Abeona, Pharos, Pangu, Rubicon, Olympus, Pinnacle and Tiramisu.

This chart shows the path of NASA’s New Horizons spacecraft toward its next potential target, the Kuiper Belt object 2014 MU69, (aka. Ultima Thule). Credit: Alex Parker/NASA/JHUAPL/SwRI

After a five-day extension was granted to accommodate more voting, the campaign wrapped up on Dec. 6th, 2017. Ultima Thule received about 40 nominations from the public and was among those that got the most votes. “We are grateful to those who proposed such an interesting and inspirational nickname,” Showalter said. “They deserve credit for capturing the true spirit of exploration that New Horizons embodies.”

This name, however, is not a permanent one, but a working one which reflects the fact that MU69 is beyond Pluto – once held to be the most distant planet of the Solar System. Once the flyby is complete, NASA and the New Horizons team will submit a formal name to the International Astronomical Union (IAU). The name will depend on whether or not MU69 is a single body, a binary pair, or multiple objects.

You can check out the he final tallies on all the highest-voted names at http://frontierworlds.seti.org/.

Further Reading: NASA