Higgs Boson Physicists Receive 2013 Nobel Prize

That was fast! Just one year after a Higgs Boson-like particle was found at the Large Hadron Collider, the two physicists who first proposed its existence have received the Nobel Prize in Physics for their work. François Englert (of the former Free University of Brussels in Belgium) and Peter W. Higgs (at the University of Edinburgh in the United Kingdom) received the prize officially this morning (Oct. 8.)

The Brout-Englert-Higgs (BEH) mechanism was first described in two independent papers by these physicists in 1964, and is believed to be responsible for the amount of matter a particle contains. Higgs himself said this mechanism would be visible in a massive boson (or subatomic particle), later called the Higgs boson. Check out more information on what the particle means at this past Universe Today article by editor Nancy Atikinson.

“The awarded theory is a central part of the Standard Model of particle physics that describes how the world is constructed. According to the Standard Model, everything, from flowers and people to stars and planets, consists of just a few building blocks: matter particles. These particles are governed by forces mediated by force particles that make sure everything works as it should,”  the Royal Swedish Academy of Sciences said in a statement.

The Standard Model describes the interactions of fundamental particles. The W boson, the carrier of the electroweak force, has a mass that is fundamentally relevant for many predictions, from the energy emitted by our sun to the mass of the elusive Higgs boson. Credit: Fermilab
The Standard Model describes the interactions of fundamental particles. The W boson, the carrier of the electroweak force, has a mass that is fundamentally relevant for many predictions, from the energy emitted by our sun to the mass of the elusive Higgs boson. Credit: Fermilab

“The entire Standard Model also rests on the existence of a special kind of particle: the Higgs particle. This particle originates from an invisible field that fills up all space. Even when the universe seems empty this field is there. Without it, we would not exist, because it is from contact with the field that particles acquire mass. The theory proposed by Englert and Higgs describes this process.”

A very thrilled CERN (the European Organization for Nuclear Research) noted that the Standard Model theory has been “remarkably successful”, and passed several key tests before the particle was unveiled last year in ATLAS and CMS experiments at the Large Hadron Collider.

Dark matter in the Bullet Cluster.  Otherwise invisible to telescopic views, the dark matter was mapped by observations of gravitational lensing of background galaxies. Credit: X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.;
Dark matter in the Bullet Cluster. Otherwise invisible to telescopic views, the dark matter was mapped by observations of gravitational lensing of background galaxies. Credit: X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.;

“The discovery of the Higgs boson at CERN last year, which validates the Brout-Englert-Higgs mechanism, marks the culmination of decades of intellectual effort by many people around the world,” stated CERN director General Rolf Heuer.

CERN added that the discovery last year was exciting, but the Higgs boson only explains only the matter that we can see. CERN is among the organizations on the hunt for dark matter and energy, forms that can’t be sensed with conventional observatories but can be seen through their effects — such as gravitational lensing.

Sources: CERN, The Royal Swedish Academy of Sciences

Higgs-like Particle Discovered at CERN

Physicists working at the Large Hadron Collider (LHC) have announced the discovery of what they called a “Higgs-like boson” — a particle that resembles the long sought-after Higgs.

“We have reached a milestone in our understanding of nature,” CERN director general Rolf Heuer told scientists and media at a conference near Geneva on July 4, 2012. “The discovery of a particle consistent with the Higgs boson opens the way to more detailed studies, requiring larger statistics, which will pin down the new particle’s properties, and is likely to shed light on other mysteries of our universe.”


Two experiments, ATLAS and CMS, presented their preliminary results, and observed a new particle in the mass region around 125-126 GeV, the expected mass range for the Higgs Boson. The results are based on data collected in 2011 and 2012, with the 2012 data still under analysis. The official results will be published later this month and CERN said a more complete picture of today’s observations will emerge later this year after the LHC provides the experiments with more data.

“We observe in our data clear signs of a new particle, at the level of 5 sigma, in the mass region around 126 GeV. The outstanding performance of the LHC and ATLAS and the huge efforts of many people have brought us to this exciting stage,” said ATLAS experiment spokesperson Fabiola Gianotti, “but a little more time is needed to prepare these results for publication.”

The discovery of the Higgs is big, in that it is the last undiscovered piece of the Standard Model that describes the fundamental make-up of the universe.

Scientists believe that the Higgs boson, named for Scottish physicist Peter Higgs, who first theorized its existence in 1964, is responsible for particle mass, the amount of matter in a particle. According to the theory, a particle acquires mass through its interaction with the Higgs field, which is believed to pervade all of space and has been compared to molasses that sticks to any particle rolling through it.

And so, in theory, the Higgs would be responsible for how particles come together to form matter, and without it, the universe would have remained a formless miss-mash of particles shooting around at the speed of light.

“It’s hard not to get excited by these results,” said CERN Research Director Sergio Bertolucci. “We stated last year that in 2012 we would either find a new Higgs-like particle or exclude the existence of the Standard Model Higgs. With all the necessary caution, it looks to me that we are at a branching point: the observation of this new particle indicates the path for the future towards a more detailed understanding of what we’re seeing in the data.”

A CERN press release says that the next step will be to determine the precise nature of the particle and its significance for our understanding of the universe.

Are its properties as expected for the long-sought Higgs boson, the final missing ingredient in the Standard Model of particle physics? Or is it something more exotic? The Standard Model describes the fundamental particles from which we, and every visible thing in the universe, are made, and the forces acting between them. All the matter that we can see, however, appears to be no more than about 4% of the total. A more exotic version of the Higgs particle could be a bridge to understanding the 96% of the universe that remains obscure. – CERN press release

“We have reached a milestone in our understanding of nature,” said CERN Director General Rolf Heuer. “The discovery of a particle consistent with the Higgs boson opens the way to more detailed studies, requiring larger statistics, which will pin down the new particle’s properties, and is likely to shed light on other mysteries of our universe.”

Positive identification of the new particle’s characteristics will take more time and more experiments. But the scientists feel that whatever form the Higgs particle takes, our knowledge of the fundamental structure of matter is about to take a major step forward.

Lead image caption: Event recorded with the CMS detector in 2012 at a proton-proton centre of mass energy of 8 TeV. The event shows characteristics expected from the decay of the SM Higgs boson to a pair of photons (dashed yellow lines and green towers). The event could also be due to known standard model background processes. Credit: CERN

Source: CERN

Particle Physicists Put the Squeeze on the Higgs Boson; Look for Conclusive Results in 2012

[/caption]

With “freshly squeezed” plots from the latest data garnered by two particle physics experiments, teams of scientists from the Large Hadron Collider at CERN, the European Center for Nuclear Research, said Tuesday they had recorded “tantalizing hints” of the elusive subatomic particle known as the Higgs Boson, but cannot conclusively say it exists … yet. However, they predict that 2012 collider runs should bring enough data to make the determination.

“The very fact that we are able to show the results of very sophisticated analysis just one month after the last bit of data we used has been recorded is very reassuring,” Dr. Greg Landsberg, physics coordinator for the Compact Muon Solenoid (CMS) detector at the LHC told Universe Today. “It tells you how quick the turnaround time is. This is truly unprecedented in the history of particle physics, with such large and complex experiments producing so much data, and it’s very exciting.”

For now, the main conclusion of over 6,000 scientists on the combined teams from CMS and the ATLAS particle detectors is that they were able to constrain the mass range of the Standard Model Higgs boson — if it exists — to be in the range of 116-130 GeV by the ATLAS experiment, and 115-127 GeV by CMS.

The Standard Model is the theory that explains the interactions of subatomic particles – which describes ordinary matter that the Universe is made of — and on the whole works very well. But it doesn’t explain why some particles have mass and others don’t, and it also doesn’t describe the 96% of the Universe that is invisible.

In 1964, physicist Peter Higgs and colleagues proposed the existence of a mysterious energy field that interacts with some subatomic particles more than others, resulting in varying values for particle mass. That field is known as the Higgs field, and the Higgs Boson is the smallest particle of the Higgs field. But the Higgs Boson hasn’t been discovered yet, and one of the main reasons the LHC was built was to try to find it.

To look for these tiny particles, the LHC smashes high-energy protons together, converting some energy to mass. This produces a spray of particles which are picked up by the detectors. However, the discovery of the Higgs relies on observing the particles these protons decay into rather than the Higgs itself. If they do exist, they are very short lived and can decay in many different ways. The problem is that many other processes can also produce the same results.

How can scientists tell the difference? A short answer is that if they can figure out all the other things that can produce a Higgs-like signal and the typical frequency at which they will occur, then if they see more of these signals than current theories suggest, that gives them a place to look for the Higgs.

The experiments have seen excesses in similar ranges. And as the CERN press release noted, “Taken individually, none of these excesses is any more statistically significant than rolling a die and coming up with two sixes in a row. What is interesting is that there are multiple independent measurements pointing to the region of 124 to 126 GeV.”

“This is very promising,” said Landsberg, who is also a professor at Brown University. “This shows that both experiments understand what is going on with their detectors very, very well. Both calibrations saw excesses at low masses. But unfortunately the nature of our process is statistical and statistics is known to play funny tricks once in a while. So we don’t really know — we don’t have enough evidence to know — if what we saw is a glimpse of the Higgs Boson or these are just statistical fluctuations of the Standand Model process which mimic the same type of signatures as would come if the Higgs Boson is produced.”

Landsberg said the only way to cope with statistics is to get more data, and the scientists need to increase the size of the data samples considerably in order to definitely answer the question on whether the Higgs Boson exists at the mass of 125 GeV or any mass range which hasn’t been excluded yet.

The good news is that loads of data are coming in 2012.

“We hope to quadruple the data sample collected this year,” Landsberg said. “And that should give us enough statistical confidence to essentially solve this puzzle and tell the world whether we saw the first glimpses of the Higgs Boson. As the team showed today, we will keep increasing until we reach a level of statistical significance which is considered to be sufficient for discovery in our field.”

Landsberg said that within this small range, there is not much room for the Higgs to hide. “This is very exciting, and it tells you that we are almost there. We have enough sensitivity and beautiful detectors; we need just a little bit more time and a little more data. I am very hopeful we should be able to say something definitive by sometime next year.”

So the suspense is building and 2012 could be the year of the Higgs.

More info: CERN press release, ArsTechnica

Q&A with Brian Cox, part 1: Recent Hints of the Higgs

[/caption]

At two separate conferences in July, particle physicists announced some provoking news about the Higgs boson, and while the Higgs has not yet been found, physicists are continuing to zero in on the elusive particle. Universe Today had the chance to talk with Professor Brian Cox about these latest findings, and he says that within six to twelve months, physicists should be able to make a definite statement about the existence of the Higgs particle. Cox is the Chair in Particle Physics at the University of Manchester, and works on the ATLAS experiment (A Toroidal LHC ApparatuS) at the Large Hadron Collider at CERN. But he’s also active in the popularization of science, specifically with his new television series and companion book, Wonders of the Universe, a follow up to the 2010 Peabody Award-winning series, Wonders of the Solar System.

Universe Today readers will have a chance to win a copy of the book, so stay tuned for more information on that. But today, enjoy the first of a three-part interview with Cox:


Universe Today: Can you tell us about your work with ATLAS and its potential for finding things like extra dimensions, the unification of forces or dark matter?

Brian Cox, during the filming of one of his television series. Image courtesy Brian Cox.

Brian Cox: The big question is the origin and mass of the universe. It is very, very important because it is not an end in itself. It is a fundamental part of Quantum Field Theory, which is our theory of three of the four forces of nature. So if you ask the question on the most basic level of how does the universe work, there are only two pillars of our understanding at the moment. There is Einstein’s Theory of General Relatively, which deals with gravity — the weakest force in the Universe that deals with the shape of space and time and all those things. But everything else – electromagnetism, the way the atomic nuclei works, the way molecules work, chemistry, all that – everything else is what’s called a Quantum Field Theory. Embedded in that is called the Standard Model of particle physics. And embedded in that is this mechanism for generating mass, and it’s just so fundamental. It’s not just kind of an interesting add-on, it’s right in the heart of the way the theory works.

So, understanding whether our current picture of the Universe is right — and if there is this thing called the Higgs mechanism or whether there is something else going on — is critical to our progress because it is built into that picture. There are hints in the data recently that maybe that mechanism is right. We have to be careful. It’s not a very scientific thing to say that we have hints. We have these thresholds for scientific discovery, and we have them for a reason, because you get these statistical flukes that appear in the data and when you get more data they go away again.

The statement from CERN now is that if they turn out to be more than just fluctuations, really, within six months we should be able to make some definite statement about the existence of the Higgs particle.

I think it is very important to emphasize that this is not just a lot of particle physicists looking for particles because that’s their job. It is the fundamental part of our understanding of three of the four forces of nature.

Brian Cox at Fermilab. Photo by Paul Olding.

UT : So these very interesting results from CERN and the Tevatron at Fermilab giving us hints about the Higgs, could you can talk little bit more about that and your take on the latest findings?

COX: The latest results were published in a set of conferences a few weeks ago and they are just under what is called the Three Sigma level. That is the way of assessing how significant the results are. The thing about all quantum theory and particle physics in general, is it is all statistical. If you do this a thousand times, then three times this should happen, and eight times that should happen. So it’s all statistics. As you know if you toss a coin, it can come up heads ten times, there is a probability for that to happen. It doesn’t mean the coin is weighted or there’s something wrong with it. That’s just how statistics is.

So there are intriguing hints that they have found something interesting. Both experiments at the Large Hadron Collider, the ATLAS and the Compact Muon Solenoid (CMS) recently reported “excess events” where there were more events than would be expected if the Higgs does not exist. It is about the right mass: we think the Higgs particle should be somewhere between about 120 and 150 gigaelectron volts [GeV—a unit of energy that is also a unit of mass, via E = mc2, where the speed of light, c, is set to a value of one] which is the expected mass range of the Higgs. These hints are around 140, so that’s good, it’s where it should be, and it is behaving in the way that it is predicted to by the theory. The theory also predicts how it should decay away, and what the probability should be, so all the data is that this is consistent with the so-called standard model Higgs.

But so far, these events are not consistently significant enough to make the call. It is important that the Tevatron has glimpsed it as well, but that has even a lower significance because that was low energy and not as many collisions there. So you’ve got to be scientific about things. There is a reason we have these barriers. These thresholds are to be cleared to claim discoveries. And we haven’t cleared it yet.

But it is fascinating. It’s the first time one of these rumors have been, you know, not just nonsense. It really is a genuine piece of exciting physics. But you have to be scientific about these things. It’s not that we know it is there and we’re just not going to announce it yet. It’s the statistics aren’t here yet to claim the discovery.

Brian Cox, while filming a BBC series in the Sahara. Image courtesy Brian Cox

UT : Well, my next question was going to be, what happens next? But maybe you can’t really answer that because all you can do is keep doing the research!

COX: The thing about the Higgs, it is so fundamentally embedded in quantum theory. You’ve got to explore it because it is one thing to see a hint of a new particle, but it’s another thing to understand how that particle behaves. There are lots of different ways the Higgs particles can behave and there are lots of different mechanisms.

There is a very popular theory called supersymmetry which also would explain dark matter, one of the great mysteries in astrophysics. There seems to be a lot of extra stuff in the Universe that is not behaving the way that particles of matter that we know of behave, and with five times more “stuff” as what makes up everything we can see in the Universe. We can’t see dark matter, but we see its gravitational influence. There are theories where we have a very strong candidate for that — a new kind of particle called a supersymmetry particles. There are five Higgs particles in them rather than one. So the next question is, if that is a Higgs-like particle that we’ve discovered, then what is it? How does it behave? How does it talk to the other particles?

And then there are a huge amount of questions. The Higgs theory as it is now doesn’t explain why the particles have the masses they do. It doesn’t explain why the top quark, which is the heaviest of the fundamental particles, is something like 180 times heavier than the proton. It’s a tiny point-like thing with no size but it’s 180 times the mass of a proton! That is heavier than some of the heaviest atomic nuclei!

Why? We don’t know.

I think it is correct to say there is a door that needs to be opened that has been closed in our understanding of the Universe for decades. It is so fundamental that we’ve got to open it before we can start answering these further questions, which are equally intriguing but we need this answered first.

UT: When we do get some of these questions answered, how is that going to change our outlook and the way that we do things, or perhaps the way YOU do things, anyway! Maybe not us regular folks…

COX: Well, I think it will – because this is part of THE fundamental theory of the forces of nature. So quantum theory in the past has given us an understanding, for example, of the way semiconductors work, and it underpins our understanding of modern technology, and the way chemistry works, the way that biological systems work – it’s all there. This is the theory that describes it all. I think having a radical shift and deepening in understanding of the basic laws of nature will change the way that physics proceeds in 21st century, without a doubt. It is that fundamental. So, who knows? At every paradigm shift in science, you never really could predict what it was going to do; but the history of science tells you that it did something quite remarkable.

There is a famous quote by Alexander Fleming, who discovered penicillin, who said that when he woke up on a certain September morning of 1928, he certainly didn’t expect to revolutionize modern medicine by discovering the world’s first antibiotic. He said that in hindsight, but he just discovered some mold, basically, but there it was.

But it was fundamental and that is the thing to emphasize.

Some of our theories, you look at them and wonder how we worked them! The answer is mathematically, the same way that Einstein came up with General Relativity, with mathematical predictions. It is remarkable we’ve been able to predict something so fundamental about the way that empty space behaves. We might turn out to be right.

Tomorrow: Part 2: The space exploration and hopes for the future

Find out more about Brian Cox at his website, Apollo’s Children

God Particle

[/caption]
When the media talks about the “god particle”, they’re really talking about a theoretical particle in physics known as the higgs boson. If reality matches the predictions made by theoretical physics, the higgs boson is the particle that gives objects mass. It explains why objects at rest tend to stay at rest and objects in motion tend to stay in motion.

One of the primary goals of the Large Hadron Collider in Switzerland is to search for the so called “god particle”. When it finally gets running, the Large Hadron Collider, or LHC, will run beams of protons around a 27 kilometer circle, slamming them together at close to the speed of light. All the kinetic energy of the protons is instantly frozen out as mass in a shower of particles. Remember Einstein’s famous E=mc2 formula? Well, you can reconfigure the equation to be m = E/c2.

The higgs boson is thought to be a very heavy particle, and so it takes a lot of energy in the collider to create particles this massive. When the LHC starts running, it will collide protons at higher and higher energies, searching for the higgs boson. If it is found, it will confirm a theorized class of particles predicted by the theory of supersymmetry. And even if the higgs boson isn’t found, it will help disprove the theory. Either way, physicists win.

The term “god particle” was coined by physicist Leon Lederman, the 1988 Nobel prize winner in physics and the director of Fermilab. He even wrote a book called the “God Particle”, where he defended the use of the term.

We have written many articles about the Higgs Boson and the Large Hadron Collider here on Universe Today. Here’s an article about how the LHC won’t create a black hole and destroy the Earth. And here’s more on Fermilab’s search for the Higgs Boson.

We have also recorded an episode of Astronomy Cast all about the higgs boson. Listen to it here, Episode 69: The Large Hadron Collider and the Search for the Higgs Boson.