Hubble Predicts the Future of Omega Centauri

[/caption]

Using four years of data from the Hubble Space Telescope’s Advanced Camera for Surveys, astronomers have made the most accurate measurements of the movement of stars in the globular cluster Omega Centauri, and now can predict their movements for the next 10,000 years. This “beehive” of stars is tightly crammed together, so resolving the individual stars was a job that perhaps only Hubble could do. “It takes high-speed, sophisticated computer programs to measure the tiny shifts in the positions of the stars that occur in only four years’ time,” says astronomer Jay Anderson of the Space Telescope Science Institute in Baltimore, Md., who conducted the study with fellow Institute astronomer Roeland van der Marel. “Ultimately, though, it is Hubble’s razor-sharp vision that is the key to our ability to measure stellar motions in this cluster.”

Astronomers say that the precise measurement of star motions in giant clusters can yield insights into how stellar groupings formed in the early universe, and whether an “intermediate mass” black hole, one roughly 10,000 times as massive as our Sun, might be lurking among the stars.

Analyzing archived images taken over a four-year period by Hubble’s astronomers have made the most accurate measurements yet of the motions of more than 100,000 cluster inhabitants, the largest survey to date to study the movement of stars in any cluster.

The astronomers used the Hubble images, which were taken in 2002 and 2006, to make a movie simulation of the frenzied motion of the cluster’s stars. The movie shows the stars’ projected migration over the next 10,000 years.

Omega Centauri is the biggest and brightest globular cluster in the Milky Way, and one of the few that can be seen by the unaided eye. It is located in the constellation Centaurus, Omega Centauri, so is viewable in the southern skies, and is one of about 150 such clusters in our Milky Way Galaxy.

In this video below, astronomers Jay Anderson and Roeland van der Marel discuss their in-depth study of the giant cluster Omega Centauri.

Source: HubbleSite

The Black Hole/Globular Cluster Correlation

[/caption]

Often in astronomy, one observable property traces another property which may be more difficult to observe directly; X-ray activity on stars can be used to trace turbulent heating of the photosphere. CO is used to trace cold H2. Sometimes these correlations make sense. Activities in stars produce the X-ray emissions. Other times, the tracer seems distantly related at best.

This is the case of a newly discovered correlation between the mass of the central black hole of galaxies and the number of globular clusters they contain. What can this relationship teach astronomers? Why does it hold for some types of galaxies better than others? And where does it come from in the first place.

The mass of a galaxy’s super massive black hole (SMBH) is known to have a strong relationship between many features of their host galaxies. It has identified to follow the range of velocities of stars in the galaxy, the mass and luminosity of the bulge of spiral galaxies, and the total amount of dark matter in galaxies. Because dark matter in the halo of galaxies and the luminosity have also been known to correspond to the number of globular clusters, Andreas Burkert of the Max-Planck-Institute for Extraterrestrial Physics in Germany, and Scott Tremaine at Princeton wondered if they could cut out the middlemen of dark matter and luminosity and still maintain a strong correlation between the central SMBH and the number of globular clusters.

Their initial investigation involved only 13 galaxies, but a follow-up study by Gretchen and William Harris and submitted to the Monthly Notices of the Royal Astronomical Society, increased the number of galaxies included in the survey to 33. The results of these studies indicated that for elliptical galaxies, the SMBH-GC relationship is evident. However, for lenticular galaxies there was no clear correlation. While there appeared to be a trend for classical spirals, the small number of data points (4) would not provide a strong statistical case independently, but did appear to follow the trend established by the elliptical galaxies.

Although the correlation appeared strong in most cases, about 10% of the galaxies included in the larger surveys were clear outliers. This included the Milky Way which has a SMBH mass that falls significantly short of the expectation from cluster number. One source of error the authors of the original study suspect is that it is possible that, in some cases, objects identified as globular clusters may have been misidentified and in actuality, be the cores of tidally stripped dwarf galaxies. Regardless, the relationship as it stands presently, seems to be quite strong and is even more tightly defined than that of the correlation between that of the SMBH mass and velocity dispersion that implied the potential relationship in the first place. The reason for the discordance in lenticular galaxies has not yet been explained and no reasons have yet been postulated.

But what of the cause of this unusual relation? Both sets of authors suggest the connection lies in the formation of the objects. While distinct in most respects, both are fed by major merger events; Black holes gain mass by accreting gas and globular clusters are often formed from the resulting shocks and interactions. Additionally, the majority of both types of objects formed at high redshifts.

Sources:

A correlation between central supermassive black holes and the globular cluster systems of early-type galaxies

The Globular Cluster/Central Black Hole Connection in Galaxies

Stellar Destruction Could Be from Intermediate Black Hole

NGC 1399, an elliptical galaxy about 65 million light years from Earth. Credit: NASA, Chandra

A dense stellar remnant has been ripped apart by a black hole a thousand times as massive as the Sun. If confirmed, this discovery would be a cosmic double play: it would be strong evidence for an intermediate mass black hole — which has been a hotly debated topic — and would mark the first time such a black hole has been caught tearing a star apart. Scientists believe a mysterious intense X-ray emission, called an “ultraluminous X-ray source” or ULX is responsible for the destruction. “Astronomers have made cases for stars being torn apart by supermassive black holes in the centers of galaxies before, but this is the first good evidence for such an event in a globular cluster,” said Jimmy Irwin of the University of Alabama, who led the study.

The new results come from the Chandra X-ray Observatory and the Magellan telescope, and were announced at the 215th American Astronomical Society meeting today.

The scenario is based on Chandra observations, which revealed the ULX in a dense cluster of old stars, and optical observations that showed a peculiar mix of elements associated with the X-ray emission. Taken together, a case can be made that the X-ray emission is produced by debris from a disrupted white dwarf star that is heated as it falls towards a massive black hole. The optical emission comes from debris further out that is illuminated by these X-rays.

The intensity of the X-ray emission places the source in the category, meaning that it is more luminous than any known stellar X-ray source, but less luminous than the bright X-ray sources (active galactic nuclei) associated with supermassive black holes in the nuclei of galaxies. The nature of ULXs is a mystery, but one suggestion is that some ULXs are black holes with masses between about a hundred and several thousand times that of the Sun, a range intermediate between stellar-mass black holes and supermassive black holes located in the nuclei of galaxies.

Evidence from NASA's Chandra X-ray Observatory and the Magellan telescopes suggest a star has been torn apart by an intermediate-mass black hole in a globular cluster. Credit: NASA, Chandra

This ULX is in a globular cluster, NGC 1399, an elliptical galaxy about 65 million light-years from Earth that is a very old and crowded conglomeration of stars. Astronomers have suspected that globular clusters could contain intermediate-mass black holes, but conclusive evidence for this has been elusive.

Irwin and his colleagues obtained optical spectra of the object using the Magellan I and II telescopes in Las Campanas, Chile. These data reveal emission from gas rich in oxygen and nitrogen but no hydrogen, a rare set of signals from globular clusters. The physical conditions deduced from the spectra suggest that the gas is orbiting a black hole of at least 1,000 solar masses. The abundant amount of oxygen and absence of hydrogen indicate that the destroyed star was a white dwarf, the end phase of a solar-type star that has burned its hydrogen leaving a high concentration of oxygen. The nitrogen seen in the optical spectrum remains an enigma.

“We think these unusual signatures can be explained by a white dwarf that strayed too close to a black hole and was torn apart by the extreme tidal forces,” said coauthor Joel Bregman of the University of Michigan.

Theoretical work suggests that the tidal disruption-induced X-ray emission could stay bright for more than a century, but it should fade with time. So far, the team has observed there has been a 35% decline in X-ray emission from 2000 to 2008.

Irwin said at today’s press conference that a new survey just getting started will look for more globular clusters with x-ray sources.

Sources: Chandra, AAS Meeting