InSight Peers Deep Below the Surface on Mars

Artist's concept of InSight "taking the pulse of Mars". Credit: NASA/JPL-Caltech

The InSight lander has been on Mars, gathering data for a thousand days now, working to give us a better understanding of the planet’s interior. It’s at Elysium Planitia, the second largest volcanic region on Mars. A newly-published paper based on seismic data from the lander shows something unexpected underground: a layer of sediment sandwiched between layers of lava flows.

Continue reading “InSight Peers Deep Below the Surface on Mars”

Curiosity Might Not Be In An Ancient Lake At All

Photos can’t do some places justice – nor can any level of sophisticated remote sensing.  That seems to be the case for Gale CraterCuriosity has been wandering around the crater for almost the last nine years.  Scientists thought Gale crater was an old lakebed, and it was specifically chosen as a landing site to allow Curiosity to collect samples from such a lakebed.  But new research from scientists at the University of Hong Kong shows that most likely, the samples Curiosity has been analyzing during its sojourn didn’t actually form in a lake.

Continue reading “Curiosity Might Not Be In An Ancient Lake At All”

What a Geologist Sees When They Look at Perseverance’s Landing Site

A topographic map of the region around Jezero Crater. Image Credit: ESA/DLR/FU CC BY-SA 3.0 IGO

Geologists love fieldwork. They love getting their specialized hammers and chisels into seams in the rock, exposing unweathered surfaces and teasing out the rock’s secrets. Mars would be the ultimate field trip for many of them, but sadly, that’s not possible.

Instead, we’ve sent the Perseverance rover on the field trip. But if a geologist were along for the ride, what would it look like to them?

Continue reading “What a Geologist Sees When They Look at Perseverance’s Landing Site”

This is Mawrth Vallis on Mars, and it’s Positively Bursting with Evidence of Past Water Action on Mars

This image shows a small portion of Mawrth Vallis, one of the many outflow channels feeding north into the Chryse Basin. This ancient valley once hosted flowing water. The erosive power of the flowing water rapidly cut down into the underlying layers of rock to expose a host of diverse geologic landforms visible today. Image Credit: NASA/JPL/UArizona

Here on Earth, geologists seek out deep channels into Earth’s rock, carved over the ages by flowing water. The exposed rock walls are like a visual timeline of a region’s geological history. On Mars, the surface water is long gone. But it flowed long enough to expose layers of rock just like here on Earth.

One of those water-exposed areas on Mars is Mawrth Vallis, an outflow channel that feeds into the Chryse Basin.

Continue reading “This is Mawrth Vallis on Mars, and it’s Positively Bursting with Evidence of Past Water Action on Mars”

Geologists Have Found the Earth’s Missing Tectonic Plate

This image shows plate tectonic reconstruction of western North America 60 million years ago showing subduction of three key tectonic plates, Kula, Farallon and Resurrection. Image Credit: Wu and Fuston 2020.

Northern Canada has been keeping a secret from the rest of the world. It’s home to “Resurrection,” a tectonic plate that has been much theorized but never found until now. A team of researchers used what amounts to a CAT scan of northern Canada and the mantle underneath it to find the missing plate.

Finding it could lead to better hazard prediction and also to finding mineral and hydrocarbon deposits. But better than that, it’s helping scientists piece together Earth’s history.

Continue reading “Geologists Have Found the Earth’s Missing Tectonic Plate”

There Could Be Carbon-Rich Exoplanets Made Of Diamonds

llustration of a carbon-rich planet with diamond and silica as main minerals. Water can convert a carbide planet into a diamond-rich planet. In the interior, the main minerals would be diamond and silica (a layer with crystals in the illustration). The core (dark blue) might be iron-carbon alloy. Credit: Shim/ASU/Vecteezy

Scientists are getting better at understanding exoplanets. We now know that they’re plentiful, and that they can even orbit dead white dwarf stars. Researchers are also getting better at understanding how they form, and what they’re made of.

A new study says that some carbon-rich exoplanets could be made of silica, and even diamonds, under the right circumstances.

Continue reading “There Could Be Carbon-Rich Exoplanets Made Of Diamonds”

Earth’s Oxygen Could be Making the Moon Rust

Enhanced map of hematite (red) on Moon using a spheric projection (nearside only). Credit: Shuai Li

It takes oxygen to make iron rust. So when scientists discovered hematite spread widely through lunar high latitudes, they were surprised. How did that happen?

A new study suggests that oxygen from Earth could be playing a role in rusting the Moon.

Continue reading “Earth’s Oxygen Could be Making the Moon Rust”

A Huge Ring-Like Structure on Ganymede Might be the Result of an Enormous Impact

Jupiter's moon Ganymede is the largest moon in the Solar System and may have an ocean sandwiched between two layers of ice. But how warm is that ocean? Image Credit: By National Oceanic and Atmospheric Administration Public Domain, https://commons.wikimedia.org/w/index.php?curid=8070396

Ganymede’s surface is a bit of a puzzle for planetary scientists. About two-thirds of its surface is covered in lighter terrain, while the remainder is darker. Both types of terrain are ancient, with the lighter portion being slightly younger. The two types of terrain are spread around the moon, and the darker terrain contains concurrent furrows.

For the most part, scientists think that the furrows were caused by tectonic activity, possibly related to tidal heating as the moon went through unstable orbital resonances in the past.

But a new study says that a massive impact might be responsible for all those furrows.

Continue reading “A Huge Ring-Like Structure on Ganymede Might be the Result of an Enormous Impact”

Deep Down in Ocean Worlds, it’s Difficult to Tell Where the Oceans End and the Rock Begins

This artist’s concept shows a hypothetical planet covered in water around the binary star system of Kepler-35A and B. The composition of such water worlds has fascinated astronomers and astrophysicists for years. (Image by NASA/JPL-Caltech.)

We all know what water is. And what rock is. The difference is crystal clear. Well, here on Earth it is.

But on other worlds? The difference might not be so clear.

Continue reading “Deep Down in Ocean Worlds, it’s Difficult to Tell Where the Oceans End and the Rock Begins”

Do We Now Understand Why the Moon’s Near and Far Sides Look So Dramatically Different?

The Full Moon. Our view of the Moon is dominated by the large volcanic mares, and the especially dramatic Tycho Crater. Image Credit: By Gregory H. Revera - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11901243

The Moon is easily the most well-studied object in the Solar System, (other than Earth, of course.) But it still holds some puzzles for scientists. Why, for instance, is one side of the Moon so different from the other?

Continue reading “Do We Now Understand Why the Moon’s Near and Far Sides Look So Dramatically Different?”