For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe

Artist impression of ESA's Gaia satellite observing the Milky Way. The background image of the sky is compiled from data from more than 1.8 billion stars. It shows the total brightness and colour of stars observed by Gaia
Artist impression of ESA's Gaia satellite observing the Milky Way (Credit : ESA/ATG medialab; Milky Way: ESA/Gaia/DPAC)

Ripples in a pond can be captivating on a nice sunny day as can ripples in the very fabric of space, although the latter are a little harder to observe.  Using the highly tuned Gaia probe, a team of astronomers propose that it might just be possible to detect gravitational waves through the disturbance they impart on the movement of asteroids in our Solar System!

Continue reading “For its Next Trick, Gaia Could Help Detect Background Gravitational Waves in the Universe”

Astronomers Find Dozens of Massive Stars Fleeing the Milky Way

This is Zeta Ophiuchi, a runaway star observed by Spitzer. The star is creating a bow shock as it travels through an interstellar dust cloud. A new study found dozens of new runaway stars in the Milky Way. Image Credit: NASA/JPL-Caltech

The Milky Way can’t hold onto all of its stars. Some of them get ejected into intergalactic space and spend their lives on an uncertain journey. A team of astronomers took a closer look at the most massive of these runaway stars to see what they could find out how they get ejected.

Continue reading “Astronomers Find Dozens of Massive Stars Fleeing the Milky Way”

Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?

This artist's concept illustrates a young, red dwarf star surrounded by three planets. There's growing evidence that red dwarfs place serious limits on exoplanet habitability. Image Credit: By NASA/JPL-Caltech - NASA Image of the Day, Public Domain, https://commons.wikimedia.org/w/index.php?curid=17104843

Earth is our only example of a habitable planet, so it makes sense to search for Earth-size worlds when we’re hunting for potentially-habitable exoplanets. When astronomers found seven of them orbiting a red dwarf star in the TRAPPIST-1 system, people wondered if Earth-size planets are more common around red dwarfs than Sun-like stars.

But are they? Maybe not.

Continue reading “Do Red Dwarfs or Sunlike Stars Have More Earth-Sized Worlds?”

A Huge New Gaia Data Release: More Stars, Gravitational Lenses and Asteroids

The ESA's Gaia observatory expanded its targets to include the tightly-packed center of Omega Centauri, an ancient globular cluster. Image Credit: ESA/Gaia/DPAC, CC BY-SA 3.0 IGO. Acknowedgements: Michele Trabucchi, Nami Mowlavi and Thomas Lebzelter

The ESA’s Gaia mission is releasing a new tranche of astronomical data. The mission has released three regular, massive hauls of data since it launched in 2013, named Gaia DR1, DR2, and DR3. The ESA is calling this one a ‘focused product release,’ and while it’s smaller than the previous three releases, it’s still impactful.

Continue reading “A Huge New Gaia Data Release: More Stars, Gravitational Lenses and Asteroids”

The Milky Way has Trapped the Large Magellanic Cloud With its Gravity. What Comes Next?

Our galaxy’s largest nearby companion is the Large Magellanic Cloud (LMC), a dwarf galaxy visible to the naked eye in the Southern Hemisphere. In recent years, new theoretical research and better observational capabilities have taught astronomers a great deal about our (not-so-little) neighbour. It’s becoming increasingly clear that the LMC is helping shape the Milky Way’s evolution.

Continue reading “The Milky Way has Trapped the Large Magellanic Cloud With its Gravity. What Comes Next?”

Not Just Stars. Gaia Mapped a Diverse and Shifting Universe of Variable Objects

We’ve reported on Gaia’s incredible data-collection abilities in the past. Recently, it released DR3, its latest data set, with over 1.8 billion objects in it. That’s a lot of data to sift through, and one of the most effective ways to do so is through machine learning. A group of researchers did just that by using a supervised learning algorithm to classify a particular type of object found in the data set. The result is one of the world’s most comprehensive catalogs of the type of astronomical object known as variables.

Continue reading “Not Just Stars. Gaia Mapped a Diverse and Shifting Universe of Variable Objects”

Gaia Could Detect Free-Floating Black Holes Passing Near Stars in the Milky Way

The thing with black holes is they’re hard to see. Typically we can only detect their presence when we can detect their gravitational pull. And if there are rogue black holes simply traveling throughout the galaxy and not tied to another luminous astronomical, it would be fiendishly hard to detect them. But now we have a new potential data set to do so.  

Gaia just released its massive 3rd data set that contains astrometry data for over 1.5 billion stars, about 1% of the total number of stars in the galaxy. According to a new paper by Jeff Andrews of the University of Florida and Northwestern University, it might be possible for Gaia to detect perturbances caused by a rogue black hole briefly interacting with one of the 1.5 billion stars in the catalog. Unfortunately, it’s just not very likely that any such interaction actually took place during Gaia’s observing time.

Continue reading “Gaia Could Detect Free-Floating Black Holes Passing Near Stars in the Milky Way”

ESA’s Gaia Just Took a Picture of L2 Neighbor JWST

Gaia snaps photo of Webb. Credit: ESA

Oh, hello there new neighbor!  In February, the Gaia spacecraft took a picture of its new closest companion in space at the second Lagrangian point, the James Webb Space Telescope.

Gaia is an optical telescope that is mapping out our galaxy by surveying the motions of more than a thousand million stars. Astronomers for the mission realized that once JWST reached L2, it would be in Gaia’s field of view.  It spied JWST when the two spacecraft were a million km apart.

Continue reading “ESA’s Gaia Just Took a Picture of L2 Neighbor JWST”

Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way

Artist's impression of the ESA's Gaia Observatory. Credit: ESA

A recent study looked at stellar streams hidden in Gaia data, to uncover evidence of an ancient remnant dubbed Pontus.

Our home galaxy the Milky Way is a monster with a ravenous past. In its estimated 12 billion years of existence, our galaxy has swallowed smaller satellite galaxies whole, with collisions resulting in massive rounds of star formation. We see threads of these remnant mergers as streams of stars and clusters, strung out around the Milky Way.

Continue reading “Gaia Finds Ancient Satellite Galaxy Pontus Embedded in Milky Way”

“Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space

Simulated Hyperspace Travel
We're not at Hyperspace yet, but the next gen of interstellar space craft might be traveling at a good fraction of the speed of light c. - SpaceEngine by Author

May the 4th be With You!

Blasting out of Mos Eisley Space Port, the Millennium Falcon carries our adventurers off Tatooine bringing Luke Skywalker across the threshold into space. With Imperial Star Destroyers closing, Luke bemoans Han Solo’s delay in jumping to Hyperspace. It takes time to make these calculations through the Falcon’s “Navicomputer.” Han explains that otherwise they could “fly right through a star” or “bounce too close to a supernova.” (probably the same effect of each – also are supernovas bouncy?)

Celestial calculations are needed to figure out where you’re going. In Star Wars these are done by ship computers, or later by trusty astromech droids like R2-D2. But, for the first time, simulations have been conducted of an uncrewed ship’s ability to autonavigate through interstellar space. While not at Hyperspace speeds, the simulations do account for velocities at up to half the speed of light. Created by Coryn A.L. Bailer-Jones of the Max Plank Institute for Astronomy, these simulations may be our first step to creating our own “Navicomputers” (or R2-D2s if they have a personality).

The most distant object we’ve ever sent into space, Voyager1, was launched in 1977 (same year as the release of Star Wars). It took 4 decades to leave the solar system. The next generation of interstellar craft may be far faster but also need their own way to navigate
c. NASA
Continue reading ““Ain’t like Dusting Crops!” How We’ll Actually Navigate Interstellar Space”