Journey’s End: Comet Crash for Rosetta Mission Finale

Rosetta’s OSIRIS narrow-angle camera captured this image of Comet 67P/Churyumov-Gerasimenko from an altitude of about 16 km above the surface during the spacecraft’s final descent on September 30, 2016. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

With a soft “awwww” from the mission team in the control center in Darmstadt, Germany, the signal from the Rosetta spacecraft faded, indicating the end of its journey. Rosetta made a controlled impact onto Comet 67P/Churyumov–Gerasimenko, sending back incredible close-up images during descent, after two years of investigations at the comet.

“Farewell Rosetta. You have done the job. That was space science at its best,” said Patrick Martin, Rosetta mission manager.

Rosetta’s final resting spot appears to be in a region of active pits in the Ma’at region on the two-lobed, duck-shaped comet.

The information collected during the descent – as well as during the entire mission – will be studied for years. So even though the video below about the mission’s end will likely bring a tear to your eye, rest assured the mission will continue as the science from Rosetta is just getting started.

“Rosetta has entered the history books once again,” says Johann-Dietrich Wörner, ESA’s Director General. “Today we celebrate the success of a game-changing mission, one that has surpassed all our dreams and expectations, and one that continues ESA’s legacy of ‘firsts’ at comets.”

Launched in 2004, Rosetta traveled nearly 8 billion kilometers and its journey included three Earth flybys and one at Mars, and two asteroid encounters. It arrived at the comet in August 2014 after being in hibernation for 31 months.

After becoming the first spacecraft to orbit a comet, it deployed the Philae lander in November 2014. Philae sent back data for a few days before succumbing to a power loss after it unfortunately landed in a crevice and its solar panels couldn’t receive sunlight. But Rosetta continued to monitor the comet’s evolution as it made its closest approach and then moved away from the Sun. However, now Rosetta and the comet are too far away from the Sun for the spacecraft to receive enough power to continue operations.

“We’ve operated in the harsh environment of the comet for 786 days, made a number of dramatic flybys close to its surface, survived several unexpected outbursts from the comet, and recovered from two spacecraft ‘safe modes’,” said operations manager Sylvain Lodiot. “The operations in this final phase have challenged us more than ever before, but it’s a fitting end to Rosetta’s incredible adventure to follow its lander down to the comet.”

Compilation of the brightest outbursts seen at Comet 67P/Churyumov–Gerasimenko by Rosetta’s OSIRIS narrow-angle camera and Navigation Camera between July and September 2015. Credit: OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.
Compilation of the brightest outbursts seen at Comet 67P/Churyumov–Gerasimenko by Rosetta’s OSIRIS narrow-angle camera and Navigation Camera between July and September 2015. Credit: OSIRIS: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; NavCam: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0.

Rosetta’s Legacy and Discoveries

Of its many discoveries, Rosetta’s close-up views of the curiously-shaped Comet 67P have already changed some long-held ideas about comets. With the discovery of water with a different ‘flavor’ to that of Earth’s oceans, it appears that Earth impacts of comets like 67P/Churyumov–Gerasimenko may not have delivered as much of Earth’s water as previously thought.

From Philae, it was determined that even though organic molecules exist on the comet, they might not be the kind that can deliver the chemical prerequisites for life. However, a later study revealed that complex organic molecules exist in the dust surrounding the comet, such as the amino acid glycine, which is commonly found in proteins, and phosphorus, a key component of DNA and cell membranes. This reinforces the idea that the basic building blocks may have been delivered to Earth from an early bombardment of comets.

Rosetta’s long-term monitoring has also shown just how important the comet’s shape is in influencing its seasons, in moving dust across its surface, and in explaining the variations measured in the density and composition of the comet’s coma.

And because of Rosetta’s proximity to the comet, we all went along for the ride as the spacecraft captured views of what happens as a comet comes close to the Sun, with ice sublimating and dusty jets exploding from the surface.

Studies of the comet show it formed in a very cold region of the protoplanetary nebula when the Solar System was forming more than 4.5 billion years ago. The comet’s two lobes likely formed independently, but came together later in a low-speed collision.

“Just as the Rosetta Stone after which this mission was named was pivotal in understanding ancient language and history, the vast treasure trove of Rosetta spacecraft data is changing our view on how comets and the Solar System formed,” said project scientist Matt Taylor.

Sequence of images captured by Rosetta during its descent to the surface of Comet 67P/C-G on September 30, 2016. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.
Sequence of images captured by Rosetta during its descent to the surface of Comet 67P/C-G on September 30, 2016. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.

Journey’s End

During the final hours of the mission on Friday morning, the instrument teams watched the data stream in and followed the spacecraft as it moved closer to its targeted touchdown location on the “head” of the 4km-wide comet. The pitted region where Rosetta landed appear to be the places where 67P ejects gas and dust into space, and so Rosetta’s swan song will provide more insight into the comet’s icy jets.

“With the decision to take Rosetta down to the comet’s surface, we boosted the scientific return of the mission through this last, once-in-a-lifetime operation,” said Martin. ““It’s a bittersweet ending, but … Rosetta’s destiny was set a long time ago. But its superb achievements will now remain for posterity and be used by the next generation of young scientists and engineers around the world.”

See more stunning, final images in Bob King’s compilation article, and we bid Rosetta farewell with this lovely poem written by astropoet Stuart Atkinson (used here by permission).

Rosetta’s Last Letter Home

By Stuart Atkinson

And so, my final day dawns.
Just a few grains are left to drain through
The hourglass of my life.
The Comet is a hole in the sky.
Rolling, turning, a black void churning
Silently beneath me.
Down there, waiting for me, Philae sleeps,
Its bed a cold cave floor,
A quilt of sparkling hoarfrost
Pulled over its head…

I have so little time left;
I sense Death flying behind me,
I feel his breath on my back as I look down
At Ma’at, its pits as black as tar,
A skulls’s empty eye sockets staring back
At me, daring me to leave the safety
Of this dusty sky and fly down to join them,
Never to spread my wings again; never
To soar over The Comet’s tortured pinnacles and peaks,
Or play hide and seek in its jets and plumes…

I don’t want to go.
I don’t want to be buried beneath that filthy snow.
This is wrong! I want to fly on!
There is so much more for me to see,
So much more to do –
But the end is coming soon.
All I ask of you is this: don’t let me crash.
Help me land softly, kissing the ground,
Coming to rest with barely a sound
Like a leaf falling from a tree.
Don’t let me die cartwheeling across the plain,
Wings snapping, cameras shattering,
Pieces of me scattering like shrapnel
Across the ice. Let me end my mayfly life
In peace, whole, not as debris rolling uncontrollably
Into Deir el-Medina…

It’s time to go, I know.
Only hours remain until I join Philae
And my great adventure ends
So I’ll send this and say goodbye.
If I dream, I’ll dream of Earth
Turning beneath me, bathing me in
Fifty shades of blue…
In years to come I hope you’ll think of me
And smile, remembering how, for just a while,
We explored a wonderland of ice and dust
Together, hand in hand.

(c) Stuart Atkinson 2016

Rosetta Wows With Amazing Closeups of Comet 67P Before Final ‘Crunchdown’

ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Landscape on Comet 67P taken from just 10 miles (16 km) up late Thursday evening during Rosetta's free fall . The image measures 2,014 feet (614 meters) across or just under a half-mile. At typical walking speed, you could walk from one end to the other in 10 minutes. Credit: ESA/Rosetta
Craggy hills meet dust-covered plains in this landscape on Comet 67P taken from 10 miles (16 km) up late Thursday evening during Rosetta’s free fall . The image measures 2,014 feet (614 meters) across or just under a half-mile. At typical walking speed, you could walk from one side to the other in 10 minutes. This and all the photos below are copyright ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta fell silent moments after 6:19 a.m. Eastern Time (12:19 UT) this morning, when it gently crashed into 67P/C-G 446 million miles (718 million km) from Earth. As the probe descended to the comet’s bouldery surface of the comet in free fall, it snapped a series of ever-more-detailed photographs while gathering the last bits data on the density and composition of cometary gases, surface temperature and gravity field before the final curtain was drawn.

Let’s take the trip down, shall we?

Rosetta's last navigation camera image was taken just after the collision maneuver sequence Thursday evening (CDT) when the probe was 9.56 miles (15.4 km) above the comet's surface. Credit: ESA/Rosetta
Rosetta’s last navigation camera image was taken just after the collision maneuver sequence Thursday evening (CDT) when the probe was 9.56 miles (15.4 km) above the comet’s surface. As in the photo above, much of the landscape is coated in a thick layer of dust that smoothes the comet’s contours.
As Rosetta continues its descent onto the Ma'at region on the small lobe of Comet 67P/Churyumov-Gerasimenko, the OSIRIS narrow-angle camera captured this image at 08:18 GMT from an altitude of about 5.8 km. The image shows dust-covered terrains, exposed walls and a few boulders on Ma'at, not far from the target impact region (not visible in this view - located below the lower edge).Copyright ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
As Rosetta continued its descent onto the Ma’at region on the small lobe of Comet 67P/Churyumov-Gerasimenko, the OSIRIS narrow-angle camera captured this photo from 3.6 miles (5.8 km) up. We see dust-covered terrains, exposed walls and a few boulders on Ma’at, not far from the target impact region, which is located just below the lower edge. The image measures 738 feet (225 meters) across.
Comet from 5.7 km. Rosetta’s OSIRIS narrow-angle camera captured this image of Comet 67P/Churyumov-Gerasimenko at 08:21 GMT during the spacecraft’s final descent on September 30, 2016. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Just a little bit lower now. This photo showing dramatic shadows was taken from 3.5 miles (5.7 km) above the surface of the comet at 4:21 a.m. EDT Friday morning September 30.
It looks like the probe's headed for the abyss! This photo was made at 6:14 a.m. just minutes before impact from 3/4 mile (1.2 km) high. The scene measures just 33 meters across.
Headed for the abyss? This photo was made at 6:14 a.m. from 3/4 mile (1.2 km) high just a few minutes before impact. The scene measures just 108 feet (33 meters) wide.
This is Rosetta's last image of Comet 67P/Churyumov-Gerasimenko, taken shortly before impact, an estimated 51 m above the surface.
This is Rosetta’s final image of Comet 67P/Churyumov-Gerasimenko, taken shortly before impact, an estimated 66 feet (~20 meters) above the surface. The view is similar to looking down from atop a three-story building. Side to side, the photo depicts an area only 7.8 feet (2.4 meters) across. The image is soft because Rosetta’s cameras weren’t designed to photograph the comet from this close.
Sad to see its signal fade. Going... going... gone! A sequence of screenshots showing the signal from Rosetta seen at ESA's ESOC mission control centre via NASA's 70m tracking station at Madrid during comet landing on 30 September 2016. The peak of the spectrum analyser is strong at 12:19 CEST, and a few moments later, it's gone. Credit: ESA
Sad to see its signal fade. A sequence of screenshots taken at ESA’s ESOC mission control show the signal from Rosetta fading moments before impact. The peak of the spectrum analyser is strong at 6:19 EDT, and a few moments later, it’s gone. At impact, Rosetta’s was shut down and no further communication will or can be made with the spacecraft. It will continue to rest on the comet for well-nigh eternity until 67P vaporizes and crumbles apart. Credit: ESA

What Does Earth Look like from Mars?

Image taken by the HiRISE camera on NASA's Mars Reconnaissance Orbiter, showing Earth and the Moon. Credit: NASA/JPL

Modern astronomy and space exploration has blessed us with a plethora of wonderful images. Whether they were images of distant planets, stars and galaxies taken by Earth-based telescopes, or close-ups of planets or moons in our own Solar System by spacecraft, there has been no shortage of inspiring pictures. But what would it look like to behold planet Earth from another celestial body?

We all remember the breathtaking photos taken by the Apollo astronauts that showed what Earth looked like from the Moon. But what about our next exploration destination, Mars? With all the robotic missions on or in orbit around the Red Planet, you’d think that there would have been a few occasions where they got a good look back at Earth. Well, as it turn out, they did!

Pictures from Space:

Pictures of Earth have been taken by both orbital missions and surface missions to Mars. The earliest orbiters, which were part of the Soviet Mars and NASA Mariner programs, began arriving in orbit around Mars by 1971. NASA’s Mariner 9 probe was the first to establish orbit around the planet’s (on Nov. 14, 1971), and was also the first spacecraft to orbit another planet.

Image of Earth and Moon, taken by the Mars Orbiter Camera of Mars Global Surveyor on May 8 2003. Credit: NASA/JPL/Malin Space Science Systems
Image of Earth and Moon, taken by the Mars Orbiter Camera of Mars Global Surveyor on May 8 2003. Credit: NASA/JPL/Malin Space Science Systems

The first orbiter to capture a picture of Earth from Mars, however, was the Mars Global Surveyor, which launched in Nov. 7th, 1996, and arrived in orbit around the planet on Sept. 12th, 1997. In the picture (shown above), which was taken in 2003, we see Earth and the Moon appearing closely together.

At the time the picture was taken, the distance between Mars and Earth was 139.19 million km (86.49 million mi; 0.9304 AU) while the distance between Mars and the Moon was 139.58 million km (86.73 million mi; 0.9330 AU). Interestingly enough, this is what an observer would see from the surface of Mars using a telescope, whereas a naked-eye observer would simply see a single point of light.

Usually, the Earth and Moon are visible as two separate points of light, but at this point in the Moon’s orbit they were too close to resolve with the naked eye from Mars. If you look closely at Earth, you can just make out the shape of South America.

Earth and the Moon, captured by the Mars Express spacecraft on July 3, 2003. Credit: ESA
Earth and the Moon, captured by the Mars Express spacecraft on July 3, 2003. Credit: ESA

The picture above was snapped by the Mars Express’s High Resolution Stereo Camera (HRSC) on the ESA’s Mars Express probe. It was also taken in 2003, and is similar in that it shows the Earth and Moon together. However, in this image, we see the two bodies at different points in their orbit – which is why the Moon looks like its farther away. Interestingly enough, this image was actually part of the first data sets to be sent by the spacecraft.

The next orbiter to capture an image of Earth from Mars was the Mars Reconnaissance Orbiter (MRO), which was launched in August of 2005 and attained Martian orbit on March 10th, 2006. When the probe reached Mars, it joined five other active spacecraft that were either in orbit or on the surface, which set a record for the most operational spacecraft in the vicinity of Mars at the same time.

In the course of its mission – which was to study Mars’ surface and weather conditions, as well as scout potential landing sites – the orbiter took many interesting pictures. The one below was taken on Oct. 3rd, 2007, which showed the Earth and the Moon in the same frame.

Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE) camera can also be used to view other planets. MRO took this image of the Earth and the Moon on 3 October 2007. Credit: NASA/JPL
Image of Earth and the Moon taken by the Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE) on Oct. 3rd, 2007. Credit: NASA/JPL

Pictures from the Surface:

As noted already, pictures of Earth have also been taken by robotic missions to the surface of Mars. This has been the case for as long as space agencies have been sending rovers or landers that came equipped with mobile cameras. The earliest rovers to reach the surface – Mars 2 and Mars 3– were both sent by the Soviets.

However, it was not until early March of 2004, while taking photographs of the Martian sky, that the Spirit rover became the first to snap a picture of Earth from the surface of another planet. This image was caught while the rover was attempting to observe Mars’ moon Deimos making a transit of the Sun (i.e. a partial eclipse).

This is something which happens quite often given the moon’s orbital period of about 30 hours. However, on this occasion, the rover managed to also capture a picture of distant Earth, which appeared as little more than a particularly bright star in the night sky.

Earth as seen from Mars, shortly before daybreak. This is the first image of the Earth from the surface of another planet. Credit: NASA/JPL
Earth seen from Mars shortly before daybreak. This is the first image of the Earth from the surface of another planet. Credit: NASA/JPL

The next rover to snap an image of Earth from the Martian surface was Curiosity, which began sending back many breathtaking photos even before it landed on Aug. 6th, 2012. And on Jan. 31st, 2014 – almost a year and a half into its mission – the rover managed to capture an image of both Earth and the Moon in the night sky.

In the image (seen below), Earth and the Moon are just visible as tiny dots to the naked eye – hence the inset that shows them blown up for greater clarity. The distance between Earth and Mars when Curiosity took the photo was about 160 million km (99 million mi).

Earth has been photographed from Mars several times now over the course of the past few decades. Each picture has been a reminder of just how far we’ve come as a species. It also provides us with a preview of what future generations may see when looking out their cabin window, or up at the night sky from other planets.

Image taken by NASA's Curiosity Mars rover, showing Earth and the Moon shining in the night sky. Credit: NASA/JPL
Image taken by NASA’s Curiosity Mars rover, showing Earth and the Moon shining in the night sky. Credit: NASA/JPL

We have written many interesting articles about Earth and Mars here at Universe Today. Here’s Incredible Image of Mars from Earth, Mars Compared to Earth, How Far is Mars from Earth, and How Long Does it Take to get to Mars?

For more information, be sure to check out NASA’s Solar System Exploration page on Mars.

Astronomy Cast also has an interesting episode on the subject – Episode 52: Mars

Sources:

NASA’s Outbound OSIRIS-Rex Asteroid Sampler Snaps ‘First-Light’ Images

On Sept. 19, 2016 the OCAMS MapCam camera recorded a star field in Taurus, north of the constellation Orion as part of the OSIRIS-REx spacecraft’s post-launch instrument check. Credits: NASA/Goddard/University of Arizona
On Sept. 19, 2016 the OCAMS MapCam camera recorded a star field in Taurus, north of the constellation Orion as part of the OSIRIS-REx spacecraft’s post-launch instrument check. Credits: NASA/Goddard/University of Arizona
On Sept. 19, 2016 the OCAMS MapCam camera recorded a star field in Taurus, north of the constellation Orion as part of the OSIRIS-REx spacecraft’s post-launch instrument check. Credits: NASA/Goddard/University of Arizona

NASA’s newest planetary probe, the OSIRIS-REx asteroid sampling spacecraft, is merrily snapping its ‘First-Light’ images following the successful power up and health check of all of the probes science instruments, barely three weeks after a stunning sunset launch from the Florida Space Coast – as it is outbound to asteroid Bennu.

“The spacecraft has passed its initial instrument check with flying colors as it speeds toward a 2018 rendezvous with the asteroid Bennu,” NASA officials reported in a mission update.

All five of the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft science instruments and one of its navigational instruments were powered on, starting last week on September 19.

NASA says they are all fully healthy for the groundbreaking mission whose purpose is to visit the carbon rich asteroid Bennu, snatch samples from the black as coal surface and return them to Earth in 2023 inside a Sample Return Capsule that will soft land by parachute in the Utah desert.

The seven year roundtrip mission to Bennu and back could potentially bring back samples infused with the organic chemicals like amino acids that are the building blocks of life as we know it.

“The data received from the checkout indicate that the spacecraft and its instruments are all healthy.”

The ‘First-Light’ image shown above was taken on Sept. 19, 2016 by the probes OCAMS MapCam camera and recorded a star field in Taurus, north of the constellation Orion along with Orion’s bright red star Betelgeuse.

“MapCam’s first color image is a composite of three of its four color filters, roughly corresponding to blue, green, and red wavelengths. The three images are processed to remove noise, co-registered, and enhanced to emphasize dimmer stars,” researchers said.

The OSIRIS-REx Camera Suite (OCAMS) was the first of the five science instrument to be tested and checlked out perfectly with “no issues.” It was provided by the University of Arizona and is comprised of three cameras which will image and map Bennu in high resolution.

View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA's Kennedy Space Center.  Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL.  Credit: Ken Kremer/kenkremer.com
View of science instrument suite and TAGSAM robotic sample return arm on NASA’s OSIRIS-REx asteroid sampling spacecraft inside the Payloads Hazardous Servicing Facility at NASA’s Kennedy Space Center. Probe is slated for Sep. 8, 2016 launch to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Ken Kremer/kenkremer.com

All the other instruments were also powered on and checked out flawlessly – including the OSIRIS-REx Laser Altimeter (OLA) which fired its laser, the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS), the OSIRIS-REx Thermal Emissions Spectrometer (OTES), and the student designed Regolith X-ray Imaging Spectrometer (REXIS).

Lastly, the Touch and Go Camera System (TAGCAMS) navigational camera was successfully powered on and tested.

Furthermore, TAGCAMS took a dramatic image of the spacecraft’s Sample Return Capsule (below) – which is designed to bring at least a 60-gram (2.1-ounce) sample of Bennu’s surface soil and rocks back to Earth in 2023 for study by scientists using the world’s most advanced research instruments.

Image of OSIRIS-Rex Sample Return Capsule taken by StowCam instrument on Sept. 22, 2016, two weeks after launch, during initial science instrument checkout at a distance of 3.9 million miles (6.17 million km) away from Earth.  Credit: NASA
Image of OSIRIS-Rex Sample Return Capsule taken by StowCam instrument on Sept. 22, 2016, two weeks after launch, during initial science instrument checkout at a distance of 3.9 million miles (6.17 million km) away from Earth. Credit: NASA

The capsule image was captured by the StowCam portion of TAGCAMS when it was 3.9 million miles (6.17 million km) away from Earth and traveling at a speed of 19 miles per second (30 km/s) around the Sun.

The StowCam image of the Sample Return Capsule shows it “is in perfect condition,” according to the science team.

Overhead view of NASA’s OSIRIS-REx asteroid sampling spacecraft with small white colored sample return canister atop,  inside the Payloads Hazardous Servicing Facility high bay at NASA's Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL.   Credit:  Julian Leek
Overhead view of NASA’s OSIRIS-REx asteroid sampling spacecraft with small white colored sample return canister atop, inside the Payloads Hazardous Servicing Facility high bay at NASA’s Kennedy Space Center. Launch is slated for Sep. 8, 2016 to asteroid Bennu from Cape Canaveral Air Force Station, FL. Credit: Julian Leek

The OSIRIS-REx spacecraft departed Earth with an on time engine ignition of a United Launch Alliance Atlas V rocket under crystal clear skies on Thursday, September 8 at 7:05 p.m. EDT from Space Launch Complex 41 at Cape Canaveral Air Force Station.

The ULA Atlas V injected OSIRIS-Rex perfectly onto its desired trajectory.

“We got everything just exactly perfect,” said Dante Lauretta, the principal investigator for OSIRIS-REx at the University of Arizona, at the post launch briefing at the Kennedy Space Center. “We hit all our milestone within seconds of predicts.

United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study.  Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter.  Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT on September 8, 2016 in this remote camera view taken from inside the launch pad perimeter. Note the newly install crew access arm and white room for astronaut flights atop Atlas starting in early 2018. Credit: Ken Kremer/kenkremer.com

The space rock measures about the size of a small mountain at about a third of a mile in diameter.

“The primary objective of the OSIRIS-Rex mission is to bring back pristine material from the surface of the carbonaceous asteroid Bennu, OSIRIS-Rex Principal Investigator Dante Lauretta told Universe Today in a prelaunch interview in the KSC cleanroom with the spacecraft as the probe was undergoing final preparations for shipment to the launch pad.

“We are interested in that material because it is a time capsule from the earliest stages of solar system formation.”

“It records the very first material that formed from the earliest stages of solar system formation. And we are really interested in the evolution of carbon during that phase. Particularly the key prebiotic molecules like amino acids, nucleic acids, phosphates and sugars that build up. These are basically the biomolecules for all of life.”

The asteroid is 1,614-foot (500 m) in diameter and crosses Earth’s orbit around the sun every six years.

After a two year flight through space, including an Earth swing by for a gravity assisted speed boost in 2017, OSIRIS-REx will reach Bennu in Fall 2018 to begin about 2 years of study in orbit to determine the physical and chemical properties of the asteroid in extremely high resolution.

Watch my up close launch video captured directly at the pad with the sights and sounds of the fury of blastoff:

Video Caption: ULA Atlas V rocket lifts off on September 8, 2016 from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s OSIRIS-REx asteroid sampling spacecraft, in this remote camera view taken from inside the launch pad perimeter. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing OSIRIS-REx mission reporting. He reported on the spacecraft and launch from on site at the Kennedy Space Center and Cape Canaveral Air Force Station, FL.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

The 2016 Nobel Prize In Physics: It’s Complicated

This year's Nobel Prize in physics highlights the complications of awarding breakthrough achievements. Credit: nobelprize.org

Update: This year’s Nobel Prize in Physics has been awarded to David J. Thouless (University of Washington), F. Duncan M. Haldane (Princeton University), and J. Michael Kosterlitz of Brown University for “theoretical discoveries of topological phase transitions and topological phases of matter”. One half of the prize was awarded to Thouless while the other half was jointly awarded to Haldane and Kosterlitz.

The Nobel Prize in physics is a coveted award. Every year, the prize is bestowed upon the individual who is deemed to have made the greatest contribution to the field of physics during the preceding year. And this year, the groundbreaking discovery of gravitational waves is anticipated to be the main focus.

This discovery, which was announced on February 11th, 2016, was made possible thanks to the development of the Laser Interferometer Gravitational-Wave Observatory (LIGO). As such, it is expected that the three scientists that are most responsible for the invention of the technology will receive the Nobel Prize for their work. However, there are those in the scientific community who feel that another scientist – Barry Barish – should also be recognized.

But first, some background is needed to help put all this into perspective. For starers, gravitational waves are ripples in the curvature of spacetime that are generated by certain gravitational interactions and which propagate at the speed of light. The existence of such waves has been postulated since the late 19th century.

LIGO's two facilities, located in . Credit: ligo.caltech.edu
LIGO’s two observatories, the located in Livingston, Louisiana; and Hanford, Washington. Credit: ligo.caltech.edu

However, it was not until the late 20th century, thanks in large part to Einstein and his theory of General Relativity, that gravitational-wave research began to emerge as a branch of astronomy. Since the 1960s, various gravitational-wave detectors have been built, which includes the LIGO observatory.

Founded as a Caltech/MIT project, LIGO was officially approved by the National Science Board (NSF) in 1984. A decade later, construction began on the facility’s two locations – in Hanford, Washington and Livingston, Louisiana. By 2002, it began to obtain data, and work began on improving its original detectors in 2008 (known as the Advanced LIGO Project).

The credit for the creation of LIGO goes to three scientists, which includes Rainer Weiss, a professor of physics emeritus at the Massachusetts Institute of Technology (MIT); Ronald Drever, an experimental physics who was professor emeritus at the California Institute of Technology and a professor at Glasgow University; and Kip Thorne, the Feynman Professor of Theoretical Physics at Caltech.

In 1967 and 68, Weiss and Thorne initiated efforts to construct prototype detectors, and produced theoretical work to prove that gravitational waves could be successfully analyzed. By the 1970s, using different methods, Weiss and Denver both succeeded in building detectors. In the coming years, all three men remained pivotal and influential, helping to make gravitational astronomy a legitimate field of research.

 A bird's eye view of LIGO Hanford's laser and vacuum equipment area (LVEA). The LVEA houses the pre-stabilized laser, beam splitter, input test masses, and other equipment. Credit: ligo.caltech.edu
LIGO Hanford’s laser and vacuum equipment area (LVEA), which houses the pre-stabilized laser, beam splitter, input test masses, and other equipment. Credit: ligo.caltech.edu

However, it has been argued that without Barish – a particle physicist at Caltech – the discovery would never have been made. Having become the Principal Investigator of LIGO in 1994, he inherited the project at a very crucial time. It had begun funding a decade prior, but coordinating the work of Wiess, Thorne and Drever (from MIT, Caltech and the University of Glasgow, respectively) proved difficult.

As such, it was decided that a single director was needed. Between 1987 and 1994, Rochus Vogt – a professor emeritus of Physics at Caltech – was appointed by the NSF to fill this role. While Vogt brought the initial team together and helped to get the construction of the project approved, he proved difficult when it came to dealing with bureaucracy and documenting his researchers progress.

As such, between 1989 through 1994, LIGO failed to progress technically and organizationally, and had trouble acquiring funding as well. By 1994, Caltech eased Vogt out of his position and appointed Barish to the position of director. Barish got to work quickly, making significant changes to the way LIGO was administered, expanding the research team, and developing a detailed work plan for the NSF.

Barish was also responsible for expanding LIGO beyond its Caltech and MIT constraints. This he did through the creation of the independent LIGO Scientific Collaboration (LSC), which gave access to outside researchers and institutions. This was instrumental in creating crucial partnerships, which included the UK Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council.

Artist's impression of how massive bodies (like our Sun) distort space time. Credit: T. Pyle/Caltech/MIT/LIGO Lab
Artist’s impression of how massive bodies (like our Sun) distort space time. Such bodies also create gravity waves when they accelerate through space and time. Credit: T. Pyle/Caltech/MIT/LIGO Lab

By 1999, construction had wrapped up on the LIGO observatories, and by 2002, they began taking their first bits of data. By 2004, the funding and groundwork was laid for the next phase of LIGO development, which involved a multi-year shut-down while the detectors were replaced with improved “Advanced LIGO” versions.

All of this was made possible by Barish, who retired in 2005 to head up other projects. Thanks to his sweeping reforms, LIGO got to work after an abortive start, began to produce data, procured funding, crucial partnerships, and now has more than 1000 collaborators worldwide, thanks to the LSC program he established.

Little wonder then why some scientists think the Nobel Prize should be split four-ways, awarding the three scientists who conceived of LIGO and the one scientist who made it happen. And as Barish himself was quoted as saying by Science:

“I think there’s a bit of truth that LIGO wouldn’t be here if I didn’t do it, so I don’t think I’m undeserving. If they wait a year and give it to these three guys, at least I’ll feel that they thought about it,” he says. “If they decide [to give it to them] this October, I’ll have more bad feelings because they won’t have done their homework.”

The approximate locations of the two gravitational-wave events detected so far by LIGO are shown on this sky map of the southern hemisphere. . Credit: LIGO/Axel Mellinger
The approximate locations of the two gravitational-wave events detected so far by LIGO are shown on this sky map of the southern hemisphere. . Credit: LIGO/Axel Mellinger

However, there is good reason to believe that the award will ultimately be split three ways, leaving Barish out. For instance, Weiss, Drever, and Thorne have been honored three times already this year for their work on LIGO. This has included the Special Breakthrough Prize in Fundamental Physics, the Gruber Cosmology Prize, and Kavli Prize in Astrophysics.

What’s more, in the past, the Nobel Prize in physics has tended to be awarded to those responsible for the intellectual contributions leading to a major breakthrough, rather than to those who did the leg work. Out of the last six Prizes issued (between 2010 and 2015), five have been awarded for the development of experimental methods, observational studies, and theoretical discoveries.

Only one award was given for a technical development. This was the case in 2014 where the award was given jointly to Isamu Akasaki, Hiroshi Amano and Shuji Nakamura for “the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources”.

Basically, the Nobel Prize is a complicated matter. Every year, it is awarded to those who made a considerable contribution to science, or were responsible for a major breakthrough. But contributions and breakthroughs are perhaps a bit relative. Whom we choose to honor, and for what, can also be seen as an indication of what is valued most in the scientific community.

In the end, this year’s award may serve to highlight how significant contributions do not just entail the development of new ideas and methods, but also in bringing them to fruition.

Further Reading: Science, LIGO, Nobelprize.org

Where Can I Take Off My Space Helmet?

Where Can I Take Off My Space Helmet?

It’s been a while since I read the NASA manual on space helmet operation, but if I recall correctly, they really just have one major rule. When you go to space, keep your space helmet on.

I don’t care what haunting music those beguiling space sirens are playing. It doesn’t matter if you’ve got a serious case of space madness, and you’re hallucinating that you’re back on your Iowa farm, surrounded by your loved ones. Even if you just turned on an ancient terraforming machine and you’re stumbling around the surface of Mars like an idiot. You keep your helmet on.

Keep. Your. Helmet. On. Credit: NASA
Keep. Your. Helmet. On. Credit: NASA

Not convinced? Well then, allow me to explain what happens if you decide to break that rule. Without a helmet, and your own personal Earth-like atmosphere surrounding you, you’ll be exposed to the hard vacuum of space.

Within a moment, all the air will rush out of your lungs, and then you’ll fall unconscious in about 45 seconds. Starved for oxygen, you’ll die of suffocation in just a couple of minutes. Then you’ll freeze solid and float about forever. Just another meat asteroid in the Solar System.

That’s the official stance on space helmet operation, but just between you and me, there might be a little wiggle room. A few other places in the Solar System where you can take your helmet off for just a moment, and maybe not die instantaneously.

Earth is obviously safe. If you’re down here on the planet, and you’re still wearing your helmet, you’re missing the whole point of why you need a helmet in the first place. That space helmet rule only applies to space, silly, you can take it off down here.

In order to survive, the human body needs a few things. First, we need pressure surrounding our body, and helping to keep our lungs inflated. The Earth’s atmosphere provides that service, stacking a huge column of air down on top of you.

Without enough pressure, the air will blast out of your lungs and you’ll suffocate. Too much pressure and your lungs will crush and your heart will give out.

You’re going to want atmospheric pressure somewhere between .5 to 5 times the atmosphere of Earth.

If you can’t find air, then some other gas or even water will do in a pinch. You can’t breathe it, but it can provide the pressure you’re looking for.

Do not take your helmet off on the Moon. Credit: NASA

If you’ve got the pressure right, then your next priority will be the temperature. You know what it’s like to be too cold on Earth, and too hot, so use your judgement here. It’s too cold if you’re starting to die of hypothermia, and too hot if you’re above 60 C for a few minutes.

If you really want to thrive, find air you can breathe. Ideally a nice mixture of nitrogen and oxygen. Again, here on Earth, that column of air pushing down on you also allows you to breathe. If you swapped air for carbon dioxide or water, you’re going to need to hold your breath.

So what are some other places in the Solar System that you could take your helmet off for a few brief moments?

Your best bet is the planet Venus. Not down at the surface, where the temperature is hot enough to melt lead, and it’s 90 atmospheres pressure.

But up in the cloud tops, it’s a whole different story. At 52.5 kilometers altitude, the temperature is about 37 C. A little stifling, but not too bad. And the air pressure is about 65% Earth’s air pressure.

Credit: NASA
Hold your breath if you’re planning on taking off your helmet within the clouds of Venus. Credit: NASA

The problem is that this region is right in the middle of Venus’ sulphuric acid cloud layer, so you might inhale a mist of toxic acid if you tried to breathe. Not to mention the fact that Venus’ atmosphere is carbon dioxide, which means you’ll asphyxiate if you tried to breathe it.

But assuming you had some kind of air supply to breathe, and a suit to protect you from the sulphuric acid, you could hang around, without a helmet as long as you liked.

Take that! Overly draconian NASA helmet rules.

Out on the surface of Titan? Good news! The surface pressure on Titan is 1.45 times that of Earth. You won’t need a pressure helmet at all, ever. You will need a warming helmet, however, since the temperature on Titan is -179 C. You might be able to take that helmet off for a brief moment, before your face freezes, but don’t take a breath, otherwise you’ll freeze your lungs.

Want another location? No problem. Astronomers are pretty sure there are vast reservoirs of water under the surface of many moons and large objects in the Solar System, from Europa to Charon.

This artist's concept of Jupiter's moon Ganymede, the largest moon in the solar system, illustrates the club sandwich model of its interior oceans. Credit: NASA/JPL
This artist’s concept of Jupiter’s moon Ganymede, the largest moon in the solar system, illustrates the club sandwich model of its interior oceans. You could try taking your helmet off while diving in them. Credit: NASA/JPL

They’re heated up through tidal interactions, and could be dozens of kilometers thick. Drill down through the ice sheet, and then just dive into the icy waters without a helmet. It’ll be really cold, and you won’t be able to breathe, but you can stay alive as long as you can hold your breath.

Did you jump out of your spacecraft and now you’re falling to your death into one of the Solar System’s gas giants? That’s bad news and it won’t end well. However, there’s a tiny silver lining. As you fall through the atmosphere of Jupiter, for example, there’ll be a moment when the temperature and pressure roughly match what your body can handle.

Go ahead and take your helmet off and enjoy that sweet spot before you plunge into the swirling hydrogen gas. Once again, though, don’t breathe. Hold your breath, the moment will last longer before you go unconscious.

And listen, if you really really need to take off your helmet in the cold vacuum of space, you can do it. Make sure you completely exhale so you don’t wreck your lungs. Then you’ve got about 45 seconds before you go unconscious.

That’s enough time to jump across to an open airlock, or kick that nasty xenomorph holding onto your leg into deep space.

Even though the NASA space helmet manual has one rule – keep your helmet on – you can see there are a few times and places where you can bend those rules without instantly dying. Use your judgement.

I’d like to thank Mechadense for posting a comment on an earlier Guide to Space YouTube video, which became the inspiration for this episode. Thanks for doing the math Mechadense and bringing the science.

What is Carbon Dating?

Full length negatives of the shroud of Turin. Radiocarbon dating allowed for its true age to be determined. Credit: Wikipedia Commons

Here on Earth, Carbon is found in the atmosphere, the soil, the oceans, and in every living creature. Carbon 12 – aka. C-12, so-named because it has an atomic weight of 12 – is the most common isotope, but it is by no means the only one. Carbon 14 is another, an isotope of carbon that is produced when Nitrogen (N-14) is bombarded by cosmic radiation.

This process causes a proton to be displaced by a neutron, effectively turning atoms of Nitrogen it into an isotope of carbon – known as”radiocarbon”. It is naturally radioactive and unstable, and will therefore spontaneously decay back into N-14 over  a period of time. This property makes it especially useful in a process known as “radiocarbon dating”, or carbon dating for short.

Origin of Radiocarbon:

Radiocarbon enters the biosphere through natural processes like eating and breathing. Plants and animals absorb both C-12 and C-14 in the course of their natural lifetimes simply by carrying out these basic functions. When they die, they cease to consume them, and the isotope of C-14 begins to revert back to its Nitrogen state at an exponential rate due to its radioactive decay.

Comparing the remaining C-14 of a sample to that expected from atmospheric C-14 allows the age of the sample to be estimated. In addition, scientists know that the half-life of radiocarbon is 5,730 years. This means that it takes a sample of radiocarbon 5,730 years for half of it to decay back into nitrogen.

After about 10 half-lives, the amount of radiocarbon left becomes too minuscule to measure and so this technique isn’t particularly reliable for dating specimens which died more than 60,000 years ago – i.e. during the late Middle Paleolithic (aka. Old Stone Age) period.

History of Development:

Experiments that would eventually lead to carbon dating began in the 1939s, thanks to the efforts of the Radiation Laboratory at the University of California, Berkeley. At the time, researchers were attempting to determine if any of the elements common to organic matter had isotopes with half-lives long enough to be of value in biomedical research.

By 1940, the half-life of Carbon 14 was determined, as was the mechanism through which it was created (slow neutrons interacting with Nitrogen in the atmosphere). This contradicted previous work, which held that it was the product of deuterium (H², or heavy hydrogen) and Carbon 13.

A hydrogen atom is made up of one proton and one electron, but its heavy form, called deuterium, also contains a neutron. HDO or heavy water is rare compared to normal drinking water, but being heavier, more likely to stick around when the lighter form vaporizes into space. Credit: NASA/GFSC
A hydrogen atom is made up of one proton and one electron, but its heavy form, called deuterium, also contains a neutron. Credit: NASA/GFSC

During World War II, Willard Libby – a chemist and graduate of Berkeley – read a paper by W. E. Danforth and S. A. Korff (published in 1939) which predicted that C 14 would be created in the atmosphere due to interactions between nitrogen and cosmic rays. From this, Libby came up with the idea of measuring the decay of C 14 as a method of dating organic material.

In 1945, Libby moved to the University of Chicago, where he began the work that would lead to the development of radiocarbon dating. In 1946, he published a paper in which he speculated that C 14 might exist within organic material alongside other carbon isotopes.

After conducting experiments, which measured C-14 in methane derived from sewage samples, Libby and his colleagues were able to demonstrate that organic matter contained radioactive C-14. This was followed by experiments involving wood samples for the tombs of two Egyptian kings, for which the age was known.

Their results proved accurate, with allowances for a small margin of error, and were published in 1949 in the journal Science. In 1960, Libby received the Nobel Prize in Chemistry for this work. Since that time, carbon dating has been used in multiple fields of science, and allowed for key transitions in prehistory to be dated.

Diagram showing how radiocarbon dating works. Credit: howstuffworks.com
Diagram showing how radiocarbon dating works. Credit: howstuffworks.com

Limits of Carbon Dating:

Carbon dating remains limited for a number of reasons. First, there is the assumption that the ratio of C-12 to C-14 in the atmosphere has remained constant, when in fact, the ratio can be affected by a number of factors. For instance, C-14 production rates in the atmosphere, which in turn are affected by the amount of cosmic rays penetrating the Earth’s atmosphere.

This is itself affected by things like the Earth’s magnetic field, which deflects cosmic rays. Furthermore, precise measurements taken over the last 140 years have shown a steady decay in the strength of the Earth’s magnetic field. This means there’s been a steady increase in radiocarbon production (which would increase the ratio).

Another limitation is that this technique can only be applied to organic material such as bone, flesh, or wood, and can’t be used to date rocks directly. On top of that, the addition of Carbon 12 will throw off the ration, thus leading to inaccurate assessments of a sample’s age.

This is where anthropogenic factors come into play. Since fossil fuels have no Carbon 14 content, the burning of gasoline, oil, and other hydrocarbons – and in greater and greater quantity over the course of the past century and a half – has diluted the C-14 content of the atmosphere.

On the other hand, atmospheric testing of nuclear weapons during the 1950s and 1960s is likely to have increased the Carbon 14 content of the atmosphere. In fact, research has been conducted which suggests that nuclear tests may have doubled the concentration of C-14 in this time, compared to natural production by cosmic rays.

Nevertheless, it remains the most accurate means of dating the scientific community has discovered so far. Until such time that another method becomes available – and one that produces smaller margins of error – it will remain the method of choice for archeology, paleontology, and other branches of scientific research.

We have written many articles about Carbon Dating for Universe Today. Here’s How Do We Know How Old Everything Is?, How Old is the Universe?, How Old is the Solar System?, How Long has Humans been on Earth?

If you’d like more info on Carbon Dating, check out NASA’s Virtual Dating: Isochron and Radiocarbon – Geology Labs On-line, and here’s a link to USGS Radiometric Dating Page.

We’ve also recorded an entire episode of Astronomy Cast all about How Carbon Dating Works. Here’s Episode 122: How Old is the Universe? and Episode 164: Inside the Atom.

Sources:

The Questions After Musk’s Mars Speech Were Bizarre & Cringeworthy

Elon Musk on stage at his September 27th presentation at the IAC. Image: SpaceX
Elon Musk on stage at his September 27th presentation at the IAC. Image: SpaceX

When Elon Musk speaks publicly about SpaceX and their efforts to make space travel less expensive, people listen. He attracts all kinds of scientists and journalists to his presentations. But he also attracts… other types of people. And those people ask some strange questions.

Musk must be getting used to it by now. He’s one of those public figures that, by virtue of his efforts to bring the future closer, attracts a lot of interest. But some of the questions in the Q&A following his presentation on Sept. 27 were truly bizarre.

Anybody could stand in line at one of the microphones in the audience and ask their question. And ask they did.

One man started off by saying he just recently attended Burning Man in the desert. Mars is like one big desert, he said, with no water to wash away all the sewage. What will future Mars colonists do with all their s**t he asked?

I felt bad for the guy. Here was his chance to ask Musk, who is clearly some sort of hero the guy, any question about space travel. And he chose to ask about poop. It was truly cringe-worthy, but Musk handled it well. He must be used to it.

Elon Musk looking perplexed after being grilled about Martian toilets. Image: SpaceX
Elon Musk looking perplexed after being grilled about Martian toilets. Image: SpaceX

It’s not like it’s not a legitimate concern, way down the line, if we ever do establish a city. But good grief. Musk was there to talk about the Interplanetary Transport System, not the nuts and bolts of city planning. It’s clear that this gentleman travelled all that way just to ask about sewage. Fail. (Jump to 1:06:30 in the video for that bit of magic.)

Another person asked everyone to give Elon a hand because he “Inspires the s**t out of us!” (At 1:10:35 in the video.) Musk looked uncomfortable. I don’t think he likes the hero-worship part of his gig. The guy then tried to give him a comic book about Mars, but complained that security wouldn’t let him. Ummmm, yeah.

One person complained that SpaceX won’t hire internationally, and how can they claim to be going interplanetary when they won’t even hire from other countries? Musk patiently explained that when it comes to rocketry, the government tightly restricts who is allowed to come from other countries to work on projects. Rocketry is governed by the same rules as weaponry, as it turns out. Thanks for explaining, Elon.

There were others. One lady wanted to come upstairs and give him a kiss, on behalf of all the ladies. Another asked if they were going to mathematically determine the most expendable human on Earth, and send them to Mars? That gem is 1:16:45 in the video. BTW, that guy thought it would be Michael Cera. Huh?

The same guy wanted to pitch a comedy video to him after the presentation. He was, unfortunately, turned down.

Another guy, who called himself a “local idiot” asked if Elon himself was planning on going to Mars. The guy said he would’ve hated to put in all this work and then not go. Musk’s answer was, in short, that he would like to go, but only if a good succession plan was in place in case he perished. That way the company’s work could continue.

There were some good questions too, of course. Questions about launch site for the craft, where it will be manufactured, and other pertinent questions around who should be the first people to go. Others asked about the journey itself, and how travellers would be kept safe from radiation and other hazards. So the Q&A wasn’t a waste of time by any means.

The whole presentation is worth watching, if you haven’t already. For those of you who just want to watch the wackiest parts of the Q&A, you’re in luck. There’s a highlight video.

Apollo 11 Moonwalker Buzz Aldrin Talks to Universe Today about ‘Destination Mars’

Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Sending humans on a ‘Journey to Mars’ and developing strategies and hardware to accomplish the daunting task of getting ‘Humans to Mars’ is NASA’s agency wide goal and the goal of many space enthusiasts – including Apollo 11 moonwalker Buzz Aldrin.

NASA is going full speed ahead developing the SLS Heavy lift rocket and Orion crew module with a maiden uncrewed launch from the Kennedy Space Center set for late 2018 to the Moon. Crewed Mars missions would follow by the 2030s.

In the marketplace of ideas, there are other competing and corollary proposals as well from government, companies and private citizens on pathways to the Red Planet. For example SpaceX CEO Elon Musk wants to establish a colony on Mars using an Interplanetary Transport System of SpaceX developed rockets and spaceships.

Last week I had the opportunity to ask Apollo 11 Moonwalker Buzz Aldrin for his thoughts about ‘Humans to Mars’ and the role of commercial space – following the Grand Opening ceremony for the new “Destination Mars’ holographic exhibit at the Kennedy Space Center visitor complex in Florida.

Moonwalker Aldrin strongly advocated for more commercial activity in space and that “exposure to microgravity” for “many commercial products” is good, he told Universe Today.

More commercial activities in space would aid space commerce and getting humans to Mars.

“We need to do that,” Aldrin told me.

Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin describes newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

Buzz Aldrin is the second man to set foot on the Moon. He stepped onto the lunar soil a few minutes after Apollo 11 Commander Neil Armstrong, on July 20, 1969 in the Sea of Tranquility.

Aldrin also strongly supports some type of American space station capability “beyond the ISS” to foster the Mars capability.

And we need to be thinking about that follow on “US capability” right now!

“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning,” Aldrin elaborated.

Currently the ISS partnership of the US, Russia, ESA, Japan and Canada has approved extending the operations of the International Space Station (ISS) until 2024. What comes after that is truly not known.

NASA is not planning for a follow-on space station in low Earth orbit at this time. The agency seems to prefer development of a commercial space station, perhaps with core modules from Bigelow Aerospace and/or other companies.

So that commercial space station will have to be designed, developed and launched by private companies. NASA and others would then lease space for research and other commercial activities and assorted endeavors on the commercial space station.

For example, Bigelow wants to dock their privately developed B330 habitable module at the ISS by 2020, following launch on a ULA Atlas V. And then spin it off as an independent space station when the ISS program ends – see my story.

Only China has firm plans for a national space station in the 2020’s. And the Chinese government has invited other nations to submit proposals. Russia’s ever changing space exploration plans may include a space station – but that remains to be actually funded and seen.

Regarding Mars, Aldrin has lectured widely and written books about his concept for “cycling pathways to occupy Mars,” he explained.

Watch this video of Apollo 11 moonwalker Buzz Aldrin speaking to Universe Today:

Video Caption: Buzz Aldrin at ‘Destination Mars’ Grand Opening at KSCVC. Apollo 11 moonwalker Buzz Aldrin talks to Universe Today/Ken Kremer during Q&A at ‘Destination Mars’ Holographic Exhibit Grand Opening ceremony at Kennedy Space Center Visitor Complex (KSCVC) in Florida on 9/18/16. Credit: Ken Kremer/kenkremer.com

Here is a transcript:

Universe Today/Ken Kremer: Can you talk about the role of commercial space [in getting humans to Mars]. Elon Musk wants to try and send people to Mars, maybe even before NASA. What do you think?

Buzz Aldrin: “Well, being a transportation guy in space for humans – well commercial, what that brings to mind is tourism plus space travel.

And there are many many more things commercial that are done with products that can be fine tuned by exposure to microgravity. And we need to do that.”

“I think we need to have a US capability beyond the ISS to prepare for future activities right from the beginning.”

“And that’s why what has sort of fallen into place is the name for my plan for the future – which is ‘cycling pathways to occupy Mars.’”

“A cycler in low Earth orbit, one in lunar orbit, and one to take people to Mars.”

“And they are utilized in evolutionary fashion.”

Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit Julian Leek
Apollo 11 moonwalker Buzz Aldrin during media preview of newly opened ‘Destination Mars’ holographic experience at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit Julian Leek

Meanwhile, be sure to visit the absolutely spectacular “Destination Mars” holographic exhibit before it closes on New Year’s Day 2017 – because it is only showing at KSCVC.

A scene from ‘Destination Mars’ of Buzz Aldrin and  NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft
A scene from ‘Destination Mars’ of Buzz Aldrin and NASA’s Curiosity Mars rover with the Gale crater rim in the distance. The new, limited time interactive exhibit is now showing at the Kennedy Space Center visitor complex in Florida through Jan 1, 2017. Credit: NASA/JPL/Microsoft

You can get more information or book a visit to Kennedy Space Center Visitor Complex, by clicking on the website link:

https://www.kennedyspacecenter.com/things-to-do/destination-mars.aspx

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016.  Credit: Ken Kremer/kenkremer.com
Apollo 11 moonwalker Buzz Aldrin discusses the human ‘Journey to Mars with Universe Today at newly opened ‘Destination Mars’ holographic experience during media preview at the Kennedy Space Center visitor complex in Florida on Sept. 18, 2016. Credit: Ken Kremer/kenkremer.com

Watch Scott Manley Build and Fly the Interplanetary Transport Ship in Kerbal

KSP Interplanetary Transport Ship
KSP Interplanetary Transport Ship

When SpaceX CEO Elon Musk took to the stage at the International Astronautical Congress in Mexico on Monday, he announced his bold vision to send humanity into the Solar System, he laid out one of the most elaborate and ambitious projects ever put forward in the field of human space exploration.

Like many of you, I watched his announcement slack jawed at the implications.

My first thought? A spaceship capable of carrying 100 humans from Earth to Mars with a reusable main stage? Uh, that’s ambitious.

My second thought? I’d like to see Scott Manley simulate this in Kerbal Space Program.

Scott Manley is one of my favorite YouTubers/Twitch Streamers. In case you’ve never seen him before, Scott is an absolute master of the space game, running instructional videos on EVE Online, Kerbal Space Program and other cosmic simulations.

Entering the atmosphere of Duna with 100 Kerbals on board.
Entering the atmosphere of Duna with 100 Kerbals on board.

The planets aligned, and Scott was planning to run a livestream game on his Twitch channel Monday night, so I jumped in and provided colour commentary while Scott constructed all aspects of the mission: a spacecraft capable of carrying 100 Kerbals safely to the surface of the Red Planet (Duna), a monster booster rocket to blast the crew compartment into orbit, and a refueling module that travels on a re-purposed booster.

Over the course of 2-hours, Scott built and tested all parts of the Interplanetary Transport Ship in KSP to varying levels of success. Some boosters exploded, Kerbals were left stranded on the surface of Duna (maybe that does match Musk’s plans), and Scott was unable to use the docking claw to mate spacecraft to transfer fuel.

In Scott’s defense, though, he was consuming 10% space beer during the broadcast.

But if I know Scott, he’s working on version 2 right now, and we’ll see a smooth video demonstrating all aspects of the mission shortly.

If you haven’t already, go ahead and subscribe to Scott’s channel, and enjoy the silliness.

P.S. If you’re interested in space games, Pamela and I discuss them in this week’s Astronomy Cast.