Rock Legends – the Asteroids and Their Discoverers

Artist's concept of Trojan asteroids, small bodies that dominate our solar system. Credit: NASA

If we are indeed stardust, then what will our future hold? And what happened to all that other dust that isn’t in people or planets? These are pretty heady questions perhaps best left for late at night. Since the age of Galileo and perhaps even beforehand these inquisitive night goers have sought an understanding of “What’s out there?” Paul Murdin in his book “Rock Legends – the Asteroids and Their Discoverers” doesn’t answer the big questions directly but he does shed some capricious light upon what the night time reveals and what the future may hold.

rock-legends

We’re pretty confident that our solar system evolved from a concentration of dust. Let’s leave aside the question about where the dust came from and assume that, at a certain time and place, there was enough free dust that our Sun was made and so too all the planets. In a nice, orderly universe all the dust would have settled out. However, as we’ve discovered since at least the time of Galileo this didn’t happen. There are a plethora of space rocks — asteroids — out wandering through our solar system.

And this is where Murdin’s book steps up. Once people realized that there more than just a few asteroids out there, they took to identifying and classifying them. The book takes a loosely chronological look at this classification and at our increasing knowledge of the orbits, sizes, densities and composition of these space wanderers.

Fortunately this book doesn’t just simply list discovery dates and characteristics. Rather, it includes significant amounts of its contents on the juicy human story that tags along, especially with the naming. It shows that originally these objects were considered special and refined and thus deserved naming with as much aplomb as the planets; i.e. using Greek and Roman deities. Then the number of discovered asteroids outpaced the knowledge of ancient lore, so astronomers began using the names of royalty, friends and eventually pets. Today with well over a million asteroids identified  setting a name to an asteroid doesn’t quite have the same lustre, as the author is quick to point out with his own asteroid (128562) Murdin. Yet perhaps there’s not much else to do while waiting for a computer program to identify a few hundred more accumulations of dust, so naming some of the million nameless asteroids could happily fill in some time.

With the identifying of the early asteroid discoverers and the fun names they chose, this part of the book is quite light and simple. It expands the fun by wandering a bit just like the asteroids. From it you learn of the discovery of palladium, the real spelling of Spock’s name and the meaning of YORP.  Sometimes the wandering is quite far, as with the origins of the Palladium Theatre, the squabbling surrounding the naming of Ceres and the status of the Cubewanos. Yet it is this capriciousness that gives the book its flavour and makes it great for a budding astronomer or a reference for a generalist. The occasional bouts of reflection on the future of various asteroids and even of the Earth add a little seriousness to an otherwise pleasant prose.

So if you’re wondering about the next occultation of Eris or the real background of the name (3512) Eriepa then you’re into asteroids. And perhaps you’re learning how to survive on a few hours of sleep so you can search for one more faint orbiting mote. Whether that’s the case or you’re just interested in how such odd names came to represent these orbiting rocks then Paul Murdin’s book “Rock Legends – the Asteroids and Their Discoverers” will be a treat. Read it and maybe you can use it to place your own curve upon an asteroid’s name.

The book is available on Springer. Find out more about author Paul Murdin here.

Preview: Comet 45P/Honda–Mrkos–Pajdušáková Brightens in December

Comet 45P/Honda-Mrkos-Pajdušáková From October 1st, 2011 taken with a 10"/3.8 Newtonian and CCD imager. Image credit and copyright: Michael Jäger.

Looking for a good binocular comet? Well, if luck is on our side, we should be getting our first looks at periodic Comet 45P/Honda-Mrkos-Pajdušáková as it tops +10th magnitude in dusk skies over the next few weeks. 

Image credit: Starry Night.
The swift path of Comet 45P/Honda-Mrkos-Pajdušáková on the nights of February 9th to February 12th. Image credit: Starry Night.

Comet 45P/Honda-Mrkos-Pajdušáková is expected to reach maximum brightness around late February 2017. Discovered independently by astronomers Minoru Honda, Antonin Mrkos and L’udmila Pajdušáková on December 3rd, 1948, Comet 45P/Honda-Mrkos-Pajdušáková orbits the Sun once every 5.25 years on a short period orbit. Comet 45P/Honda-Mrkos-Pajdušáková is set to break binocular +10th magnitude brightness in mid-December 2017, and may reach a maximum brightness of magnitude +7 from January through February 2017.

Slovak astronomer ?udmila Pajdušáková
Slovak astronomer ?udmila Pajdušáková, co-discoverer of 5 comets, including Comet 45P/Honda-Mrkos-Pajdušáková. Image credit: The Skalnaté Pleso Observatory.

Currently and through the end of 2016, the comet sits towards the center of the Milky Way Galaxy in Sagittarius at a faint +15th magnitude in the evening sky. The comet may break +10th magnitude and become very briefly visible in the first few weeks of December before getting too close to the Sun to observe in late 2016 and crossing into the morning sky in early 2017.

The path of Comet 45/P from mid-November through December 15th, 2016. Image credit: Starry Night.
The path of Comet 45/P from mid-November through December 15th, 2016. Image credit: Starry Night.

Visibility prospects: At its brightest, Comet 45P/Honda-Mrkos-Pajdušáková will be passing through the constellation Hercules during closest approach on February 11th. The comet then passes through the constellations of Corona Borealis, Boötes, Canes Venatici, Ursa Major into Leo through to the end of February as it recedes. In the second week of February, the comet is visible in the dawn sky 82 degrees west of the Sun at maximum brightness. This apparition favors the northern hemisphere. The comet will reach perihelion on December 29th, 2016 at 0.53 Astronomical Units (AU) from the Sun, and the comet passes just 0.08 AU (7.4 million miles) from the Earth on February 11th at 14:44 UT. The comet made a slightly closer pass in 2011, and was a fine binocular object that time around. At its closest, the comet will cross nine degrees of sky from one night to the next. Some notable dates for comet 45P/Honda-Mrkos-Pajdušáková are:

November 23rd: Venus passes 6′ from the comet.

December 12th: May break 10th magnitude.

December 14th: Passes near M75.

December 15th: Crosses into the constellation Capricornus.

January 4th: Passes near the +4th magnitude star Theta Capricorni

January 10th: Crosses the ecliptic northward.

January 16th: Passes into Aquarius.

January 22nd: Passes near NGC 7009, M72 and M73.

January 25th: Passes 8 degrees from the Sun and into the dawn sky.

January 28th: Crosses into Aquila.

February 3rd: Crosses the celestial equator northward.

February 4th: Passes 4′ from the star +3.3 magnitude star Delta Aquilae.

February 6th: Crosses the Galactic equator.

February 7th: Crosses into Ophiuchus.

February 9th: Crosses into Hercules.

February 16th: makes a wide pass near M3.

February 19th: Drops back below +10th magnitude.

Image credit: NASA/JPL.
The path of Comet 45P/Honda-Mrkos-Pajdušáková through the inner solar system. Image credit: NASA/JPL.

This is the final close (less than 0.1 AU) passage of Comet 45P/Honda-Mrkos-Pajdušáková near the Earth for this century.

On July 1st 1770, Comet D/1770 L1 Lexell passed 0.0151AU from the Earth; a comet in 1491 may have passed closer. Next year’s passage of 45P/Honda-Mrkos-Pajdušáková ranks as the 21st closest passage of a comet near the Earth.

The light curve of Comet 45/P
The light curve of Comet 45/P Honda-Mrkos-Pajdušáková. Credit: Seiichi Yoshida’s Weekly Information About Bright Comets.

Why do comets end up with such cumbersome names? Well, comets derive their names from the first three discovers that submit the find within a 24 hour period to the Minor Planet Center’s Central Bereau for Astronomical Telegrams, which, in fact, received its last ‘telegram’ during the discovery of Comet Hale-Bopp around two decades ago. Increasingly, comets are receiving names of all sky surveys such as LINEAR and PanSTARRS from robotic competition against amateur hunters. It does seem like you need an umlaut or the chemical symbol for boron to in your moniker to qualify these days… rare is the ‘Comet Smith.’ But hey, it’s still fun to watch science journalists try and spell the Icelandic volcano Eyjafjallajökull and comet Churyumov-Gerasimenko over and over… Perhaps, we should insist that our first comet discovery is actually spelled Comet Dîckînsðn…

And Comet 45/P is just one of the fine binocular comets on deck for 2017. We’re also expecting Comet 41P/Tuttle-Giacobini-Kresák, 2/P Encke, C/2015 ER61 PanSTARRS Comet C/2015 V2 Johnson to break +10th magnitude next year… and the next great naked eye ‘Comet of the Century’ could light up the skies at any time.

Goldstone radar pings comet 45/P back in 2011. Image credit: NASA.
Goldstone radar pings comet 45/P back in 2011. Image credit: NASA.

Binoculars are the best tool to observe bright comets, as they allow you to simply sweep the star field and admire the full beauty of a comet, coma, tail(s) and all. Keep in mind, a comet will often appear visually fainter than its quoted brightness… this is because, like nebulae, that intrinsic magnitude is ‘smeared out’ over an extended area. To my eye, a binocular comet often looks like a fuzzy, unresolved globular cluster that stubbornly refuses to snap into focus.

Don’t miss your first looks at Comet 45/P 45P/Honda-Mrkos-Pajdušáková, as it spans 2016 into 2017.

Where Will President-Elect Trump Take American Space Endeavours?

Given the fiscal policies of his party, and his own stances on Climate Change, there is concern about how a Trump administration will affect NASA. Credit: Wikipedia Commons/Gage Skidmore

With the 2016 election now finished and Donald Trump confirmed as the president-elect of the United States, there are naturally some concerns about what this could means for the future of NASA. Given the administration’s commitment to Earth science, and its plans for crewed missions to near-Earth Orbit and Mars, there is understandably some worry that the budget environment might be changing soon.

At this juncture, it is not quite clear how a Trump presidency will affect NASA’s mandate for space exploration and scientific research. But between statements made by the president-elect in the past, and his stances on issues like climate change, it seems clear that funding for certain types of research could be threatened. But there is also reason to believe that larger exploration programs might be unaffected.

Back in September, the Senate Committee on Commerce, Science, and Transportation passed the NASA Transition Authorization Act of 2016. This bill granted $19.5 billion in funding for NASA for fiscal year 2017, thus ensuring that NASA’s proposed activities would not be affected by the transition in power. Central to this bill was the continued funding of operations that NASA considered to be central to its “Journey to Mars“.

Looking forward, it is unclear how the new administration will affect NASA's plans for space exploration. Credit: NASA/AESP
Looking forward, it is unclear how the new administration will affect NASA’s plans for space exploration. Credit: NASA/AESP

Beyond FY 2017, though, the picture is unclear. When it comes to things like NASA’s Earth Science program, the administration of a president that denies the existence of Climate Change is expected to mean budget cuts. For instance, back in May, Trump laid out his vision for an energy policy. Central to this was a focus on oil, natural gas and coal, the cancellation of the Paris Agreement, and the cessations of all payments to the UN Green Climate Fund.

This could signal a possible reverse of policies initiated by the Obama administration, which increased funding for Earth science research by about 50 percent. And as NASA indicated in a report issued on Nov. 2nd by the Office of the Inspect General – titled “NASA’s Earth Science Mission Portfolio” – this has resulted in some very favorable developments.

Foremost among these has been the increased in the number of products delivered to users by NASA, going from 8.14 million in 2000 to 1.42 billion in 2015. In other words, usage of NASA resources has increased by a factor of 175, and in the space of just 15 years (much of that in the last 8). Another major benefit has been the chance for collaboration and lucrative partnerships. From the report:

“Government agencies, scientists, private entities, and other stakeholders rely on NASA to process raw information received from Earth observation systems into useable data. Moreover, NASA’s Earth observation data is routinely used by government agencies, policy makers, and researchers to expand understanding of the Earth system and to enhance economic competitiveness, protect life and property, and develop policies to help protect the planet. Finally, NASA is working to address suggestions that it use commercially provided data to augment its Earth observation data. However, NASA must reconcile its policy that promotes open sharing of data at minimal cost to users with a commercial business model under which fees may create a barrier to use.”
Much of NASA's research into Climate Change takes place through the Earth Sciences Directorate. Credit: NASA
Much of NASA’s research into Climate Change takes place through the Earth Science division of the Mission Directorate. Credit: NASA

Unfortunately, it has been this same increase in funding that prompted Congressional Republicans, in the name of fiscal responsibility, to demand changes and new standards. These sentiments were voiced back in March of 2015 during NASA’s budget request for 2016. As Senator Ted Cruz – currently one of the Trump campaign’s backers – said at the time:

“We’ve seen a disproportionate increase in the amount of federal funds going to the earth sciences program at the expense of funding for exploration and space operations, planetary sciences, heliophysics, and astrophysics, which I believe are all rooted in exploration and should be central to NASA’s core mission. We need to get back to the hard sciences, to manned space exploration, and to the innovation that has been integral to NASA.

While Trump himself has little to say about space during his long campaign, his team did manage to recruit Robert Walker – a former Republican congressman from Pennsylvania – this past October to draft a policy for them. In an op-ed to SpaceNews in late October, he echoed Cruz’s sentiments about cutting back on Earth sciences to focus on space exploration:

“NASA should be focused primarily on deep space activities rather than Earth-centric work that is better handled by other agencies. Human exploration of our entire solar system by the end of this century should be NASA’s focus and goal. Developing the technologies to meet that goal would severely challenge our present knowledge base, but that should be a reason for exploration and science.”

“It makes little sense for numerous launch vehicles to be developed at taxpayer cost, all with essentially the same technology and payload capacity. Coordinated policy would end such duplication of effort and quickly determine where there are private sector solutions that do not necessarily require government investment.

NASA's Journey to Mars. NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL
NASA is developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Credit: NASA/JPL

Next, there is the issue of NASA’s long-term goals, which (as noted) seem more secure for the time being. In May of 2016, Trump was issued the Aerospace America Questionnaire – a series of ten questions issued by NASA to determine the stances of the candidates on space exploration. On the subject of a crewed mission to Mars in the future, Trump’s campaign indicated that things would depend upon the state of the country’s economy:

“A lot of what my administration would recommend depends on our economic state. If we are growing with all of our people employed and our military readiness back to acceptable levels, then we can take a look at the timeline for sending more people into space.

However, they also professed an admiration for NASA and a commitment to its overall goal:

“NASA has been one of the most important agencies in the United States government for most of my lifetime. It should remain so. NASA should focus on stretching the envelope of space exploration for we have so much to discover and to date we have only scratched the surface.”

From all of this, a general picture of what NASA’s budget environment will look like in the near future begins to emerge. In all likelihood, the Earth Science division (and other parts of NASA) are likely to find their budgets being scrutinized based on newly-developed criteria. Essentially, unless it benefits space exploration and research beyond Earth, it’s not likely to see continued funding.

NASA Administrator Charles Bolden. Credit: NASA
NASA Administrator Charles Bolden. Credit: NASA

But regardless of the results of the election, it appears at this juncture that NASA is looking forward with cautious optimism. Addressing the future, NASA Administrator Charles Bolden issued an internal memo on Wednesday, Nov. 9th. Titled “Reaching for New Heights in 2017 and Beyond“, Bolden expressed positive thoughts about the transition of power and what it would mean:

“In times when there has been much news about all the things that divide our nation, there has been noticeable bipartisan support for this work, our work – support that not only reaches across the aisle, but across the public, private, academic and non-profit sectors.

“For this reason, I think we can all be confident that the new Trump Administration and future administrations after that will continue the visionary course on which President Barack Obama has set us, a course that all of you have made possible.”

For NASA’s sake, I hope Bolden’s words prove to be prophetic. For no matter who holds of the office of the President of the United States, the American people – and indeed, all the world’s people – depend upon the continued efforts of NASA. As the leader in space exploration, their presence is essential to humanity’s return to space!

Further Reading: Planetary Society

November’s Supermoon 2016 – Closest of a Lifetime?

The 2015 Supermoon. Image credit and copyright: Wils 888.

What’s that, rising in the sky?

By now, you’ve heard the news. We’ll spare you the “it’s a bird, it’s a plane…” routine to usher in the Supermoon 2016. This month’s Full Moon is not only the closest for the year, but the nearest Full Moon for a 80 year plus span.

Like Blue and Black Moons, a Supermoon is more of a cultural phenomenon than a true astronomical event. The Moon’s orbit is elliptical, taking it from 362,600 to 405,400 km from the Earth in the course of its 27.55 day anomalistic orbit from one perigee to the next. For the purposes of this week’s discussion, we consider a Supermoon as when the Full Moon occurs within 24 hours of perigee, and a Minimoon as when the Full Moon occurs within 24 hours of apogee. From the Earth, the Moon varies in apparent size from 29.3” to 34.1” across. This month, the Moon reaches perigee on November 14th at 356,511 kilometers distant, 2 hours and 22 minutes before Full.

A perigee 'Supermoon' versus an apogee 'Minimoon'. Image credit and copyright: Raven Yu.
A perigee ‘Supermoon’ versus an apogee ‘Minimoon’. Image credit and copyright: Raven Yu.

This is the closest perigee Moon for 2016, beating out the April 7th, 2016 perigee Moon by just 652 kilometers. Perigee can vary over a span of 2,800 kilometers. In the 21st century, the farthest lunar perigee (think the ‘most distant near point’) occurs on January 3rd, 2100 at 370,356 kilometers distant, while the closest perigee of the century (356,425 kilometers) occurs on December 6th , 2052.

When the Moon reaches Full on November 14th at 13:51 UT, it’s just 356,520 kilometers distant, (that is , as measured from the Earth’s center) the closest Full Moon since January 26th, 1948 (356,490 km) and until November 25th , 2034 (356,446 km) losing out to either dates by just 21 kilometers.

Why does perigee vary? Well, as the Moon orbits the Earth, the Sun tugs our large natural satellite’s orbit around as well, in an 8.85 year cycle known as the precession of the line of apsides. Earth’s orbit is elliptical as well, and the tugging of the Sun (and to a much lesser degree, the other planets in the solar system) alters the perigee and apogee points slightly based on where the Earth-Moon pair fall in their swing about a common barycenter.

The November Full Moon is also known as the Full Beaver Moon by the Algonquin Native Americans, a good time to ensure a supply of winter furs before the swamps froze over. A good sign that even in 2016, ‘Winter is Coming.’

Does the Moon look any larger to you than usual as it rises to the east opposite to the setting Sun on Monday night? When the Moon reaches Full, it passes the zenith as seen from the central Indian Ocean region just south of Sri Lanka, 354,416 km distant. Of course, as the Moon rises, it’s actually one full Earth radii more distant than when straight overhead at the zenith.

A side-by-side 'Super' vs 'Minimoon.' Image credit and copyright: Marco Langbroek.
A side-by-side ‘Super’ vs ‘Minimoon.’ Image credit and copyright: Marco Langbroek.

Would you notice any difference in the size of the November Full Moon, if you didn’t know better? The 4′ odd difference between an apogee and perigee Full Moon is certainly discernible in side-by-side images… but it’s interesting to note that early cultures did not uncover the elliptical nature of the Moon’s motion, though it certainly would have been possible. Crystalline spheres ruled the day, a sort of perfection that was just tough to break in the minds of many.

Be sure to enjoy the rising Full Moon on Monday night, the largest for many years to come.

What are Active Galactic Nuclei?

An artist's impression of the accretion disc around the supermassive black hole that powers an active galaxy. Astronomers want to know if the energy radiated from a black hole is caused by jets of material shooting away from the hole, or by the accretion disk of swirling material near the hole. Credit: NASA/Dana Berry, SkyWorks Digital
An artist's impression of the accretion disc around the supermassive black hole that powers an active galaxy. Astronomers want to know if the energy radiated from a black hole is caused by jets of material shooting away from the hole, or by the accretion disk of swirling material near the hole. Credit: NASA/Dana Berry, SkyWorks Digital

In the 1970s, astronomers became aware of a compact radio source at the center of the Milky Way Galaxy – which they named Sagittarius A. After many decades of observation and mounting evidence, it was theorized that the source of these radio emissions was in fact a supermassive black hole (SMBH). Since that time, astronomers have come to theorize that SMBHs at the heart of every large galaxy in the Universe.

Most of the time, these black holes are quiet and invisible, thus being impossible to observe directly. But during the times when material is falling into their massive maws, they blaze with radiation, putting out more light than the rest of the galaxy combined. These bright centers are what is known as Active Galactic Nuclei, and are the strongest proof for the existence of SMBHs.

Description:

It should be noted that the enormous bursts in luminosity observed from Active Galactic Nuclei (AGNs) are not coming from the supermassive black holes themselves. For some time, scientists have understood that nothing, not even light, can escape the Event Horizon of a black hole.

Instead, the massive burst of radiations – which includes emissions in the radio, microwave, infrared, optical, ultra-violet (UV), X-ray and gamma ray wavebands – are coming from cold matter (gas and dust) that surround the black holes. These form accretion disks that orbit the supermassive black holes, and gradually feeding them matter.

The incredible force of gravity in this region compresses the disk’s material until it reaches millions of degrees kelvin. This generates bright radiation, producing electromagnetic energy that peaks in the optical-UV waveband. A corona of hot material forms above the accretion disc as well, and can scatter photons up to X-ray energies.

A large fraction of the AGN’s radiation may be obscured by interstellar gas and dust close to the accretion disc, but this will likely be re-radiated at the infrared waveband. As such, most (if not all) of the electromagnetic spectrum is produced through the interaction of cold matter with SMBHs.

The interaction between the supermassive black hole’s rotating magnetic field and the accretion disk also creates powerful magnetic jets that fire material above and below the black hole at relativistic speeds (i.e. a significant fraction of the speed of light). These jets can extend for hundreds of thousands of light-years, and are a second potential source of observed radiation.

Types of AGN:

Typically, scientists divide AGN into two categories, which are referred to as “radio-quiet” and “radio-loud” nuclei. The radio-loud category corresponds to AGNs that have radio emissions produced by both the accretion disk and the jets. Radio-quiet AGNs are simpler, in that any jet or jet-related emission are negligible.

Carl Seyfert discovered the first class of AGN in 1943,  which is why they now bear his name. “Seyfert galaxies” are a type of radio-quiet AGN that are known for their emission lines, and are subdivided into two categories based on them. Type 1 Seyfert galaxies have both narrow and broadened optical emissions lines, which imply the existence of clouds of high density gas, as well as gas velocities of between 1000 – 5000 km/s near the nucleus.

Type 2 Seyferts, in contrast, have narrow emissions lines only. These narrow lines are caused by low density gas clouds that are at greater distances from the nucleus, and gas velocities of about 500 to 1000 km/s. As well as Seyferts, other sub classes of radio-quiet galaxies include radio-quiet quasars and LINERs.

Low Ionisation Nuclear Emission-line Region galaxies (LINERs) are very similar to Seyfert 2 galaxies, except for their low ionization lines (as the name suggests), which are quite strong. They are the lowest-luminosity AGN in existence, and it is often wondered if they are in fact powered by accretion on to a supermassive black hole.

Artist's representation of an active galactic nucleus (AGN) at the center of a galaxy. Credit: NASA/CXC/M.Weiss
Artist’s representation of an active galactic nucleus (AGN) at the center of a galaxy. Credit: NASA/CXC/M.Weiss

Radio-loud galaxies can also be subdivded into categories like radio galaxies, quasars, and blazars. As the name suggests, radio galaxies are elliptical galaxies that are strong emitters of radiowaves. Quasars are the most luminous type of AGN, which have spectra similar to Seyferts.

However, they are different in that their stellar absorption features are weak or absent (meaning they are likely less dense in terms of gas) and the narrow emission lines are weaker than the broad lines seen in Seyferts.  Blazars are a highly variable class of AGN that are radio sources, but do not display emission lines in their spectra.

Detection:

Historically speaking, a number of features have been observed within the centers of galaxies that have allowed for them to be identified as AGNs. For instance, whenever the accretion disk can be seen directly, nuclear-optical emissions can be seen. Whenever the accretion disk is obscured by gas and dust close to the nucleus, an AGN can be detected by its infra-red emissions.

Then there are the broad and narrow optical emission lines that are associated with different types of AGN. In the former case, they are produced whenever cold material is close to the black hole, and are the result of the emitting material revolving around the black hole with high speeds (causing a range of Doppler shifts of the emitted photons). In the former case, more distant cold material is the culprit, resulting in narrower emission lines.

Image taken by the Hubble Space Telescope of a 5000-light-year-long jet ejected from the active galaxy M87. The blue synchrotron radiation contrasts with the yellow starlight from the host galaxy. Credit: NASA/The Hubble Heritage Team (STScI/AURA)
Image taken by the Hubble Space Telescope of a 5000-light-year-long jet ejected from the active galaxy M87. Credit: NASA/The Hubble Heritage Team (STScI/AURA)

Next up, there are radio continuum and x-ray continuum emissions. Whereas radio emissions are always the result of the jet, x-ray emissions can arise from either the jet or the hot corona, where electromagnetic radiation is scattered. Last, there are x-ray line emissions, which occur when x-ray emissions illuminate the cold heavy material that lies between it and the nucleus.

These signs, alone or in combination, have led astronomers to make numerous detections at the center of galaxies, as well as to discern the different types of active nuclei out there.

The Milky Way Galaxy:

In the case of the Milky Way, ongoing observation has revealed that the amount of material accreted onto Sagitarrius A is consistent with an inactive galactic nucleus. It has been theorized that it had an active nucleus in the past, but has since transitioned into a radio-quiet phase. However, it has also been theorized that it might become active again in a few million (or billion) years.

When the Andromeda Galaxy merges with our own in a few billion years, the supermassive black hole that is at its center will merge with our own, producing a much more massive and powerful one. At this point, the nucleus of the resulting galaxy – the Milkdromeda (Andrilky) Galaxy, perhaps? – will certainly have enough material for it to be active.

The discovery of active galactic nuclei has allowed astronomers to group together several different classes of galaxies. It’s also allowed astronomers to understand how a galaxy’s size can be discerned by the behavior at its core. And last, it has also helped astronomers to understand which galaxies have undergone mergers in the past, and what could be coming for our own someday.

We have written many articles about galaxies for Universe Today. Here’s What Fuels the Engine of a Supermassive Black Hole?, Could the Milky Way Become a Black Hole?, What is a Supermassive Black Hole?, Turning on a Supermassive Black Hole, What Happens when Supermassive Black Holes Collide?.

For more information, check out Hubblesite’s News Releases on Galaxies, and here’s NASA’s Science Page on Galaxies.

Astronomy Cast also has episodes about galactic nuclei and supermassive black holes. Here’s Episode 97: Galaxies and Episode 213: Supermassive Black Holes.

Source:

SpaceX Aims for Mid-December Falcon 9 Launch Resumption: Musk

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL,  on Sept. 1, 2016.  A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport
SpaceX Falcon 9 rocket moments after catastrophic explosion destroys the rocket and Amos-6 Israeli satellite payload at launch pad 40 at Cape Canaveral Air Force Station, FL, on Sept. 1, 2016. A static hot fire test was planned ahead of scheduled launch on Sept. 3, 2016. Credit: USLaunchReport

Hoping to recover quickly after suffering a calamitous launch pad explosion of their Falcon 9 rocket at Cape Canaveral some two months ago, SpaceX is aiming to resume launches of the booster in mid-December, said company founder and CEO Elon Musk in a recent televised interview on Nov. 4.

Musk further indicated in the Nov. 4 interview with CNBC that they have discovered the problem that suddenly triggered the catastrophic Falcon 9 launch pad explosion that suddenly destroyed the rocket and $200 million Israeli Amos-6 commercial payload during a routine fueling and planned static fire engine test on Sept. 1.

“I think we’ve gotten to the bottom of the problem,” Musk said. “It was a really surprising problem. It’s never been encountered before in the history of rocketry.”

Musk said the issue related to some type of interaction between the liquid helium bottles , carbon composites and solidification of the liquid oxygen propellant in the SpaceX Falcon 9 second stage.

“It basically involves a combination of liquid helium, advanced carbon fiber composites, and solid oxygen, Musk elaborated.

“Oxygen so cold that it enters the solid phase.”

“Turning out to be the most difficult and complex failure we have ever had in 14 years,” Musk previously tweeted on Sept. 9.

“It’s never happened before in history. So that’s why it took us awhile to sort it out,” Musk told CNBC on Nov. 4.

SpaceX founder and CEO Elon Musk.  Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk. Credit: Ken Kremer/kenkremer.com

The explosion took place without warning as liquid oxygen and RP-1 propellants were being loaded into the second stage of the 229-foot-tall (70-meter) Falcon 9 during a routine fueling test and engine firing test at SpaceX’s Space Launch Complex-40 launch facility at approximately 9:07 a.m. EDT on Sept. 1 on Cape Canaveral Air Force Station, Fl.

But the rocket blew up during the fueling operations and the SpaceX launch team never even got to the point of igniting the first stage engines for the static fire test.

Launch of the AMOS-6 comsat from pad 40 had been scheduled to take place two days later.

In company updates posted to the SpaceX website on Sept. 23 and Oct 28, the company said the anomaly appears to be with a “large breach” in the cryogenic helium system of the second stage liquid oxygen tank – but that the root cause had not yet been determined.

“The root cause of the breach has not yet been confirmed, but attention has continued to narrow to one of the three composite overwrapped pressure vessels (COPVs) inside the LOX tank.”

“Through extensive testing in Texas, SpaceX has shown that it can re-create a COPV failure entirely through helium loading conditions.”

The helium loading is “mainly affected by the temperature and pressure of the helium being loaded.”

“This was the toughest puzzle to solve that we’ve ever had to solve,”Musk explained to CNBC.

After the Sept. 1 accident, SpaceX initiated a joint investigation to determine the root cause with the FAA, NASA, the US Air Force and industry experts who have been “working methodically through an extensive fault tree to investigate all plausible causes.”

“We have been working closely with NASA, and the FAA [Federal Aviation Administration] and our commercial customers to understand it,” says Musk.

SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9.  Credit: Ken Kremer/kenkremer.com
SpaceX is renovating Launch Complex 39A at the Kennedy Space Center for launches of the Falcon Heavy and human rated Falcon 9. Credit: Ken Kremer/kenkremer.com

Musk was not asked and did not say from which launch pad the Falcon 9 would launch or what the payload would be.

“It looks like we’re going to be back to launching around mid-December,” he replied.

SpaceX maintains launch pads on both the US East and West coasts.

“Pending the results of the investigation, we continue to work towards returning to flight before the end of the year. Our launch sites at Kennedy Space Center, Florida, and Vandenberg Air Force Base, California, remain on track to be operational in this timeframe,” SpaceX said on Oct 28.

At KSC launches will initially take place from pad 39A, the former shuttle pad that SpaceX has leased from NASA.

Pad 40 is out of action until extensive repairs and testing are completed.

Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016  after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com
Aerial view of pad and strongback damage at SpaceX Launch Complex-40 as seen from the VAB roof on Sept. 8, 2016 after fueling test explosion destroyed the Falcon 9 rocket and AMOS-6 payload at Cape Canaveral Air Force Station, FL on Sept. 1, 2016. Credit: Ken Kremer/kenkremer.com

The Sept. 1 calamity was the second Falcon 9 failure within 15 months time and will call into question the rockets overall reliability.

The first Falcon 9 failure involved a catastrophic mid air explosion in the second stage about two and a half minutes after liftoff, during the Dragon CRS-9 cargo resupply launch for NASA to the International Space Station on June 28, 2015 – and witnessed by this author.

Although both incidents involved the second stage, SpaceX maintains that they are unrelated – even as they continue seeking to determine the root cause.

SpaceX must determine the root cause before Falcon 9 launches are allowed to resume. Effective fixes must be identified and effective remedies must be verified and implemented.

Overview schematic of SpaceX Falcon 9. Credit: SpaceX
Overview schematic of SpaceX Falcon 9. Credit: SpaceX

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Mars One Merges With Mobile Payment Company In Odd Restructuring

An artist's illustration of a Mars settlement. Image: Bryan Versteeg/MarsOne
An artist's illustration of an early Mars settlement. Credit: Bryan Versteeg/MarsOne

“Pssst. Hey you! Want to go to Mars? No, you won’t be able to come back, you’ll die there. No, we don’t have a ship. No, we don’t have any plans for life support, or for growing food to eat while you there. But we do have our own mobile payment app!”

So goes the sales pitch from Mars One, the oddball of the space exploration world.

In a move that can charitably be described as “puzzling”, Mars One is merging with Swiss mobile payment company InFin Innovative Finance AG. InFin is a small player in a mobile payment field dominated by huge entities like Google, Apple, and Samsung. So, other than ensuring that Mars One astronauts will be able to complete their online shopping without hassle, what is behind this merger?

Money.

In case you don’t know, Mars One is the Netherlands-based company proposing to send astronauts to Mars and set up a human colony there. There would be no returning to Earth, and the “lucky” people chosen by Mars One to be the first to go, would die there. Mars One has been roundly criticized by the aerospace community at large for its lack of detail and its lack of technical capability.

This latest move is unlikely to quell any of the criticism.

Artist's concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One
Artist’s concept of a Martian astronaut standing outside the Mars One habitat. Credit: Bryan Versteeg/Mars One

Mars One has had no problem attracting a huge number of applicants to become astronauts and colonists. Over 200,000 people applied, and that number has been whittled down to 100. They’ve been able to attract applicants, and a lot of attention, but one thing they haven’t been able to attract is money.

Mars One say they need $6 billion to establish their colony on Mars, but they’ve only raised about $1 million so far, mostly from donations, astronaut application fees, and from t-shirt sales and other merchandise. Yes, t-shirts.

“Mars One is very pleased to have been acquired by InFin. This step provides the opportunity to raise capital through the listing on the Frankfurt Stock Exchange.” – Bas Lansdorp

Clearly, Mars One needs cash, and this merger gives Mars One access to capital. You see, InFin is traded on the Frankfurt Stock Exchange, and once the two entities have merged, Mars One will be publicly traded. It’s difficult to see how any institutional investors would ever go anywhere near Mars One stock, but it may be an investment for novelty-seekers, space enthusiasts, or true believers. Who knows?

In a press release, Mars One CEO and co-founder Bas Lansdorp said “This listing also supports our aim to attract international support to establish a permanent human settlement on Mars: our global followers will have the opportunity to be part of this adventure and to literally own a piece of this historic venture.”

A cynic might say that Mars One was just created by Lansdorp as a way to generate some cash from the interest surrounding human travel to Mars. This latest move just adds to the cynicism, since there’s no apparent synergy between a space travel company and a mobile payment company.

If the fact that they sell t-shirts to raise money for their Mars colony doesn’t make you question how capable and serious Mars One is, then this latest move surely will.

Or, maybe we’re being too hard on Mars One. It’s not like NASA or the ESA has ever inspired a line of clothing, or an opera.

Maybe Mars One is an innovator, and is thinking outside the box. Just because space exploration has always been done one way, doesn’t mean it can’t be done in another. Maybe in the final analysis, Mars One will be a successful endeavour, and will show others how unorthodox approaches can work. Only the future knows, and we’re still waiting for the future to tell us.

In the meantime, want to buy a t-shirt?

What are Magellanic Clouds?

The night sky above the Danish 1.54-metre telescope at ESO's La Silla Observatory. The Magellanic Clouds are visible to the right of the central bar of the Milky Way. Credit: ESO/Z. Bardon

Since ancient times, human beings have been staring at the night sky and been amazed by the celestial objects looking back at them. Whereas these objects were once thought to be divine in nature, and later mistaken for comets or other astrological phenomena, ongoing observation and improvements in instrumentation have led to these objects being identified for what they are.

For example, there are the Small and Large Magellanic Clouds, two large clouds of stars and gas that can be seen with the naked eye in the southern hemisphere. Located at a distance of 200,000 and 160,000 light years from the Milky Way Galaxy (respectively), the true nature of these objects has only been understand for about a century. And yet, these objects still have some mysteries that have yet to be solved.

Characteristics:

The Large Magellanic Cloud (LMC) and the neighboring the Small Magellanic Cloud (SMC) are starry regions that orbit our galaxy, and look conspicuously like detached pieces of the Milky Way. Though they are separated by 21 degrees in the  night sky – about 42 times the width of the full moon – their true distance is about 75,000 light-years from each other.

An ultraviolet view of the Large Magellanic Cloud from Swift's Ultraviolet/Optical Telescope. Almost 1 million ultraviolet sources are visible in the image, which took 5.4 days of cumulative exposure to do. The wavelengths of UV shown in this picture are mostly blocked on Earth's surface. Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State)
Ultraviolet view of the Large Magellanic Cloud from Swift’s Ultraviolet/Optical Telescope. Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State)

The Large Magellanic Cloud is located about 160,000 light-years from the Milky Way, in the constellation Dorado. This makes it the 3rd closest galaxy to us, behind the Sagittarius Dwarf and Canis Major Dwarf galaxies. Meanwhile, the Small Magellanic Cloud is located in the constellation of Tucana, about 200,000 light-years away.

The LMC is roughly twice the diameter of the SMC, measuring some 14,000 light-years across vs. 7,000 light years (compared to 100,000 light years for the Milky Way). This makes it the 4th largest galaxy in our Local Group of galaxies, after the Milky Way, Andromeda and the Triangulum Galaxy. The LMC is about 10 billion times as massive as our Sun (about a tenth the mass of the Milky Way), while the SMC is equivalent to about 7 billion Solar Masses.

In terms of structure, astronomers have classified the LMC as an irregular type galaxy, but it does have a very prominent bar in its center. Ergo, it’s possible that it was a barred spiral before its gravitational interactions with the Milky Way. The SMC also contains a central bar structure and it is speculated that it too was once a barred spiral galaxy that was disrupted by the Milky Way to become somewhat irregular.

Aside from their different structure and lower mass, they differ from our galaxy in two major ways. First, they are gas-rich – meaning that a higher fraction of their mass is hydrogen and helium – and they have poor metallicity, (meaning their stars are less metal-rich than the Milky Way’s). Both possess nebulae and young stellar populations, but are made up of stars that range from very young to the very old.

The Small Magellanic Cloud as seen by Swift's Ultraviolet/Optical Telescope. This composite of 656 separate pictures has a cumulative exposure time of 1.8 days. Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State)
The Small Magellanic Cloud as seen by Swift’s Ultraviolet/Optical Telescope. This composite of 656 separate pictures has a cumulative exposure time of 1.8 days. Credit: NASA/Swift/S. Immler (Goddard) and M. Siegel (Penn State)

In fact, this abundance in gas is what ensures that the Magellanic Clouds are able to create new stars, with some being only a few hundred million years in age. This is especially true of the LMC, which produces new stars in large quantities. A good example of this is it’s glowing-red Tarantula Nebula, a gigantic star-forming region that lies 160,000 light-years from Earth.

Astronomers estimate that the Magellanic Clouds were formed approximately 13 billion years ago, around the same time as the Milky Way Galaxy. It has also been believed for some time that the Magellanic Clouds have been orbiting the Milky Way at close to their current distances. However, observational and theoretical evidence suggests that the clouds have been greatly distorted by tidal interactions with the Milky Way as they travel close to it.

This indicates that they are not likely to have frequently got as close to the Milky Way as they are now. For instance, measurements conducted with the Hubble Space Telescope in 2006 suggested that the Magellanic Clouds may be moving too fast to be long terms companions of the Milky Way. In fact, their eccentric orbits around the Milky Way would seem to indicate that they came close to our galaxy only once since the universe began.

Small and Large Magellanic Clouds over Paranal Observatory Credit: ESO/J. Colosimo
The Small and Large Magellanic Clouds visible over the Paranal Observatory in Chile. Credit: ESO/J. Colosimo

This was followed in 2010 by a study that indicated that the Magellanic Clouds may be passing clouds that were likely expelled from the Andromeda Galaxy in the past. The interactions between the Magellanic Clouds and the Milky Way is evidenced by their structure and the streams of neutral hydrogen that connects them. Their gravity has affected the Milky Way as well, distorting the outer parts of the galactic disk.

History of Observation:

In the southern hemisphere, the Magellanic clouds were a part of the lore and mythology of the native inhabitants, including the Australian Aborigines, the Maori of New Zealand, and the Polynesian people of the South Pacific. For the latter, they served as important navigational markers, while the Maori used them as predictors of the winds.

While the study Magellanic Clouds dates back to the 1st millennium BCE, the earliest surviving record comes from the 10th century Persian astronomer Al Sufi. In his 964 treatise, Book of Fixed Stars, he called the LMC al-Bakr (“the Sheep”) “of the southern Arabs”. He also noted that the Cloud is not visible from northern Arabia or Baghdad, but could be seen at the southernmost tip of Arabian Peninsula.

By the late 15th century, Europeans are believed to have become acquainted with the Magellanic Clouds thanks to exploration and trade missions that took them south of the equator. For instance, Portuguese and Dutch sailors came to know them as the Cape Clouds, since they could only be viewed when sailing around Cape Horn (South America) and the Cape of Good Hope (South Africa).

Panoramic Large and Small Magellanic Clouds as seen from ESO's VLT observation site. The galaxies are on the left side of the image. Credit: ESO/Y. Beletsky
Panoramic view of the Large and Small Magellanic Clouds above the ESO’s VLT observation site in Chile. Credit: ESO/Y. Beletsky

During the circumnavigation of the Earth by Ferdinand Magellan (1519–22), the Magellanic Clouds were described by Venetian Antonio Pigafetta (Magellan’s chronicler) as dim clusters of stars. In 1603, German celestial cartographer Johann Bayer published his celestial atlas Uranometria, where he named the smaller cloud “Nebecula Minor” (Latin for “Little Cloud”).

Between 1834 and 1838, English astronomer John Herschel conducted surveys of the southern skies from the Royal Observatory at the Cape of Good Hope. While observing the SMC, he described it as a cloudy mass of light with an oval shape and a bright center, and catalogued a concentration of 37 nebulae and clusters within it.

In 1891, the Harvard College Observatory opened an observing station in southern Peru. From 1893-1906, astronomers used the observatory’s 61 cm (24 inch) telescope to survey and photograph the LMC and SMC. One such astronomers was Henriette Swan Leavitt, who used the observatory to discover Cephied Variable stars in the SMC.

Her findings were published in 1908 a study titled “1777 variables in the Magellanic Clouds“, in which she showed the relationship between these star’s variability period and luminosity – which became a very reliable means of determining distance. This allowed the SMCs distance to be determined, and became the standard method of measuring the distance to other galaxies in the coming decades.

Hubble image of variable star RS Puppis (NASA, ESA, and the Hubble Heritage Team)
Hubble image of variable star RS Puppis, a Cepheid Variable located in the Milky Way Galaxy. Credit: NASA/ESA/Hubble Heritage Team

As noted already, in 2006, measurements made suing the Hubble Space Telescope were announced that suggested the Large and Small Magellanic Clouds may be moving too fast to be orbiting the Milky Way. This has given rise to the theory that they originated in another galaxy, most likely Andromeda, and were kicked out during a galactic merger.

Given their composition, these clouds – especially the LMC – will continue making new stars for some time to come. And eventually, millions of years from now, these clouds may merge with our own Milky Way Galaxy. Or, they could keep orbiting us, passing close enough to suck up hydrogen and keep their star-forming process going.

But in a few billion years, when the Andromeda Galaxy collides with our own, they may find themselves having no choice but to merge with the giant galaxy that results. One might say Andromeda regrets spitting them out, and is coming to collect them!

We have written many articles about the Magellanic Clouds for Universe Today. Here’s What is the Small Magellanic Cloud?, What is the Large Magellanic Cloud?, Stolen: Magellanic Clouds – Return to Andromeda, The Magellanic Clouds are Here for the First Time.

If you’d like more info on galaxies, check out Hubblesite’s News Releases on Galaxies, and here’s NASA’s Science Page on Galaxies.

We have also recorded an episode of Astronomy Cast about galaxies – Episode 97: Galaxies.

Sources:

What I Learned Writing ‘Night Sky with the Naked Eye’

Credit: Duluth News Tribune / King

The author enjoys a pretty display of the northern lights on October 23 under a starry sky. His new book, "Night Sky with the Naked Eye," explores all the amazing things you can see in the sky without special equipment including satellites, planets, meteor showers and of course, the aurora.
The author enjoys a pretty display of the northern lights on October 23, 2016 under a starry sky. His new book, “Night Sky with the Naked Eye,” explores all the amazing things you can see in the sky without special equipment including satellites, planets, meteor showers and of course, the aurora.

My book Night Sky with the Naked Eye publishes today. It would have never seen the light of day much less ever been conceived were it not for Fraser Cain, publisher of Universe Today, and Nancy Atkinson, an editor and writer for the same. Several years ago, Nancy invited me to write for UT. I hopped at the chance. Before her contact, I’d been writing a daily blog on astronomy called Astro Bob (and still do).

Fast forward to last summer when I got an email from Nancy saying Page Street Publishing had contacted her about writing a book about space missions. The publisher also wanted a book about night sky observing without fancy equipment for which she recommended me. Me? I felt like the luckiest guy on the planet!

Book writing proceeds in many stages. First, the table of contents had to be prepared and approved. Then followed a sample chapter. The publisher chose the one on artificial satellites, which I wrote in about a week. The tone was right, but he asked for changes in the organization, which I dutifully made. By November, a contract followed and the project was underway with a first draft due to my editor in about 10 weeks.

Cover of my book that publishes today. Credit: Bob King
Cover of my book that publishes today. Credit: Bob King

Writing is hard work. But it’s a special place all writers come back to again and again. We can’t help but keep trying to find just the right words to capture a concept or emotion. And when we do, a quiet pleasure flows down the spine like warmth creeping into cold fingers splayed in front of a fire. Not that these moments always come easily. Writer Colson Whitehead describes the experience of writing as “crawling through glass.” I would soon become well-acquainted with that feeling, too.

Nancy wrote her book Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos at nearly the same time. We were grateful for each other’s support, and it was a kick to follow her progress as well as bounce ideas around. With a tight deadline in front of me, I set to work immediately, taking more than two weeks of vacation from my regular job to make sure the draft was done on time. No way was I going to compromise an opportunity of a lifetime.

Maybe you’ve thought of writing a book, starting a blog or hope one day to write for Universe Today or another online astronomy site. There’s plenty of good advice for writers out there. I’ll share what worked for me.

#1: Put your butt in the chair and keep it in the chair. My wife reminded me of this often, adding that the book wasn’t going to write itself. Temptations are everywhere. Answering the phone, making another cup of tea, staring out the window and my favorite, shoveling the driveway. I had the cleanest driveway in the neighborhood. Even an inch of new snow was enough to grab the shovel and happily scrape down to the gravel. So yes, I did occasionally get out of the chair, but many times it did me good, freeing up the brain to see more clearly into a topic. Or dream up a fitting photo or illustration.

Creativity comes at odd little moments. It can flow while tapping away in front of a glowing screen or sneak into consciousness when you’re bending down to feed the dog. So a mix of activities seemed the best but with extra emphasis on staying put. I rarely hiked last winter and kept my walks in the neighborhood brief. Instead of observing at night, I wrote or gathered photos. By January, I joked to my friends that I’d voluntarily put myself under house arrest.

#2: Spill your guts, worry about the details later. It’s incredibly tempting when writing to continuously edit one’s work, going back over every sentence to make each “perfect”. This is a muse-killer. Though difficult to stick to, once you let your thoughts flow onto paper without worrying about spelling, clauses and the whole lot of burdensome rules, you’ll become a wild horse running free on the prairie. Let it out, let it out and worry about the commas later. I don’t play a musical instrument, but free-flow writing — just getting the ideas out — must feel something like riffing on a jazz melody.

#3: When stuck, move on to another topic, take a walk, listen to music. Struggling to describe an important concept or connecting your thoughts in a way that flows on the page can drive you nuts, even bring you to tears.  Sure, you can keep beating on the idea like a madman hammering on a bent nail, but why why torture yourself? A little distraction can be good. Move on to another part of the story or a different chapter or get up and take a short walk. Defocusing allows the ideas you’re having a tug-of-war with to come of their own accord.

To keep track of ideas, topics and the photos I'd need for the book, I kept a notebook. Credit: Bob King
To keep track of ideas, topics and the photos I’d need for the book, I kept a notebook filled to the gills with lists. Checkmarks indicate tasks accomplished. Credit: Bob King

As the February 1 deadline approached, time took on a physical dimension under the intense pressure to get everything done. I cut time into little blocks that when added up would get me to the finish line on the first draft. I made it just in time, shipped off my copy via e-mail, got in the car to go to work and turn up the music really LOUD. For a fews days I was on top of the world. Invincible.

My editor, Elizabeth, contacted me later with positive comments and then returned the manuscript with “developmental edits” or questions about descriptions and organization. We pitched the ever-refined draft back and forth over the next few months. Each time I read through the ten chapters and made both suggested changes and other refinements. I also added photos during this stage and worked via e-mail with the layout staff to place the best images and graphics at the best places in the text. I shot more images and requested photos from talented astrophotographers, prepared the acknowledgments and sought our recommendations from respected scientists and writers.

This diagram from the book uses the human face to illustrate how changing lighting angles causes the phases of the moon. Credit: Bob King
This diagram from the book uses the human face to illustrate how changing lighting angles causes the phases of the moon. Credit: Bob King

The editors at Page Street were quite generous with photo usage, a joy for me because that’s what I do for a living. I’ve been a photographer and photo editor at the Duluth News Tribune in Duluth, Minn. for many years. My favorite subjects are people, but I slip in an aurora or eclipse now and again. And that’s the irony. I never saw myself as a writer.

Like many, I started by keeping a journal of my observations through the telescope and reflections about the night sky. The Astro Bob blog took that a step further and writing for Universe Today and Sky & Telescope let me find my voice. So I maybe I have a voice, and I like to think I can be a helpful guide at your side, but writer? That still seems too lofty a term to describe what I do. But here we are.

After several edits including the final one, when I was sent a thick stack of low-res black and white pages of the book to mark up and return, I rested briefly before beginning the final phase: publicity. This is the weird part, where you tell everyone what a nice book you’ve written and how it would make a great Christmas gift for that budding astronomer in the family. When I held the first copy in my hands I couldn’t believe that all those hours of work at the computer became a physical object, a beautiful one even.

This map from the book shows Saturn's location around the time of opposition through 2021.
This map from the book shows Saturn’s location around the time of opposition through 2021. Credit: Bob King, Source: Stellarium

I’m biased of course, but I think both beginning and amateur astronomers will find the book useful. It includes lots of suggested activities – set off in separate boxes – to encourage you to get out under the stars. I make regular mention of the Web and phone apps as ways to become more familiar with the constellations, learn of newly-discovered bright comets and even find a dark sky.

Besides the easy naked eye topics like how to find the brightest constellations or see the best meteor showers of the year, the book offers visual challenges. Have you ever seen craters on the Moon without optical aid or the midnight glow of the gegenschein? You’ll find out how in my book. As a photographer, I’ve included tips on how to focus a digital camera and use it to photograph the aurora or a space station pass.

I’d be willing to bet that most books aren’t as complete as their authors would hope. I had to cut precious photos, graphics, 3 years of a sky calendar and other bits and pieces from mine. Ouch! To this day, I’m still thinking of ways to improve it with a fresh photo, new diagram or change of wording. Now it’s your turn to be the judge.

The zodiacal light punctuated by the planet Jupiter reflects off Lake Superior near Duluth, Minn. this morning (Nov. 8). The book describes nighttime lights such as the zodiacal, gegenschein, airglow and lunar halo and corona phenomena. Credit: Bob King
The zodiacal light punctuated by the planet Jupiter towers over northern Wisconsin along Lake Superior near Duluth, Minn. this morning (Nov. 8). The book describes nighttime lights such as the zodiacal, gegenschein, airglow in addition to lunar halo and corona phenomena. Credit: Bob King

Throughout, Nancy and I rooted for one another and shared our ups and downs. Incredible Stories was to publish within a week of Night Sky, but a type corruption error discovered in several chapters put the book on hold. Her new publication date is December 20, and I encourage you to pre-order a copy, so it arrives in time for Christmas. Order a copy of my book also, and I promise the two of us will keep you company on those long winter nights ahead.

Can I share one final tip? Once you’ve found your passion, say ‘yes’ to every opportunity that furthers it. You’ll be amazed at the places that one word will take you to.

***  To order a copy of Night Sky with the Naked Eye just click an icon to go to the site of your choice — Amazon, Barnes & Noble or Indiebound. It’s currently available at the first two outlets for a very nice discount. It should also be at your local B&N bookstore.  And don’t forget to vote today!

night-sky-book-cover-amazon-anno-150x150night-sky-book-cover-bn-150x150night-sky-book-cover-indie-150x150

Next Cygnus Cargo Launch to Space Station Switched to ULA Atlas V

A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

A United Launch Alliance (ULA) Atlas V rocket carrying the OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com
A United Launch Alliance (ULA) Atlas V rocket carrying the Orbital ATK Cygnus OA-6 mission lifted off from Space Launch Complex 41 at 11:05 p.m. EDT on March 22, 2016 from Cape Canaveral Air Force Station, Fla. Credit: Ken Kremer/kenkremer.com

In a complete change of plans from less than three weeks ago, NASA has asked Orbital ATK to switch rockets and launch the firms next Cygnus commercial cargo freighter to the space station on the tried and true Atlas V rather than their own Antares rocket – which just successfully delivered another Cygnus to the orbiting outpost with a hefty stash of science and supplies.

The altered schedule “provides margin flexibility for the entire Antares workforce” Orbital ATK noted in a statement to Universe Today.

However, the change of events comes as something of a surprise following the spectacularly successful nighttime blastoff of Antares on Oct. 17 with the Cygnus OA-5 resupply ship from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility on Virginia’s picturesque Eastern shore – as I reported on from onsite.

At the time, Orbital ATK officials told Universe Today they were working towards efforts for the next Cygnus to launch from Wallops on the OA-7 resupply mission sometime next spring – tentatively in March 2017.

“Following a successful Antares launch for the recent OA-5 Commercial Resupply Services mission and subsequent rendezvous and berthing of the Cygnus spacecraft with the International Space Station, Orbital ATK has responded to NASA’s needs for enhanced schedule assurance for cargo deliveries and maximum capacity of critical supplies to the space station in 2017 by once again partnering with United Launch Alliance to launch Cygnus aboard an Atlas V for the upcoming OA-7 mission in the spring timeframe,” Orbital ATK said in a statement to Universe Today.

“We anticipate the earliest we may need a NASA commercial resupply mission is early 2017. We mutually agreed with Orbital ATK to use an Atlas V for the company’s seventh contracted cargo resupply mission to the space station in the spring. We will provide additional details at a later date,” NASA HQ public affairs told Universe Today for this story.

The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
The Orbital ATK Antares rocket topped with the Cygnus cargo spacecraft launches from Pad-0A, Monday, Oct. 17, 2016 at NASA’s Wallops Flight Facility in Virginia. Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer

The ULA Atlas V would launch from Space Launch Complex-41 on Cape Canaveral Air Force Station.

Cygnus OA-7 will be processed and loaded at NASA’s Kennedy Space Center in Florida for later integration with the Atlas V.

A Cygnus cargo spacecraft named the SS Rick Husband  is being prepared inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016.  Credit: Ken Kremer/kenkremer.com
A Cygnus cargo spacecraft named the SS Rick Husband is being prepared inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center for upcoming Orbital ATK CRS-6/OA-6 mission to deliver hardware and supplies to the International Space Station. Cygnus is scheduled to lift off atop a United Launch Alliance Atlas V rocket on March 22, 2016. Credit: Ken Kremer/kenkremer.com

When Cygnus launches on Atlas from KSC it can carry roughly over 300 pounds more to orbit vs. using Antares from Virginia.

The Cygnus OA-5 spaceship is currently still berthed at the million pound station and carried about 5100 pounds to orbit.

Thus the ISS is in good shape overall at this time from a supplies standpoint.

“Supplies and research investigations are at good levels aboard the International Space Station. In addition to Orbital ATK’s recent successful commercial resupply services mission to station in October, a Russian Progress and Japanese HTV will carry additional cargo to the orbiting laboratory before the end of the year,” NASA public affairs elaborated for this story.

Installation complete! Orbital ATK's Cygnus cargo spacecraft was attached to the International Space_Station at 10:53 a.m.  EDT on 23 Oct. 2016 after launching atop Antares rocket on 17 Oct. 2016 from NASA Wallops in Virginia. Credit: NASA
Installation complete! Orbital ATK’s Cygnus cargo spacecraft was attached to the International Space_Station at 10:53 a.m. EDT on 23 Oct. 2016 after launching atop Antares rocket on 17 Oct. 2016 from NASA Wallops in Virginia. Credit: NASA

Last month’s ‘Return to Flight’ liftoff of the upgraded Antares took place two years after its catastrophic failure moments after launch on October 28, 2014 with another Cygnus cargo ship bound for the International Space Station (ISS) that was destroyed along with all its precious contents.

And that may be the rub, along with the fact that launches by NASA’s other Commercial Resupply Services (CRS) provider – namely SpaceX – are on hold due to the catastrophic launch pad failure on Sept. 1.

Thus it’s not clear at this time when SpaceX can resume launching their Dragon cargo ships to the ISS.

NASA must have a robust and steady train of cargo ships flying to the ISS to keep it fully operational and stocked with research and provisions for the international crews to maximize the stations science output.

“NASA is continuously working with all our partners on range availability, space station traffic and other factors to ensure we operate station in a safe and effective way as we use it for preparing for longer duration missions farther into the solar system,” NASA PAO told me.

The Atlas V built by competitor United Launch Alliance (ULA) enjoys a 100% record of launch success and was recently employed by Orbital ATK to launch a pair of Cygnus vessels to the International Space Station in the past year – in Dec. 2015 on the OA-4 mission and March 2016 on the OA-6 mission.

Orbital ATK contracted ULA to launch Cygnus spacecraft to the ISS as an interim measure to fulfill their obligations to NASA to keep the station fully operational.

Orbital ATK Vice President Frank Culbertson had previously told me that Orbital ATK could readily launch future Cygnus spaceships on the ULA Atlas V again, if the need arose.

Seeking some near term launch stability NASA has apparently decided that that need has now arisen.

Both Atlas/Cygnus cargo missions went off without a hitch and provide a ready and working template for the upcoming OA-7 cargo ship to be processed again at KSC and launched from Cape Canaveral in the spring of 2017.

Orbital ATK says that follow on Cygnus craft will again return to the Antares rocket for Virginia launches later in 2017.

“Orbital ATK’s remaining missions to be conducted in 2017 and 2018 under the CRS-1 contract will launch aboard the company’s Antares rockets from NASA Wallops Flight Facility in Virginia.”

On-Ramp to the International Space Station (ISS) with Orbital ATL Antares rocket and Cygnus cargo freighter which launched on 17 Oct. 2016 and berthed at the Unity docking port on 23 Oct. 2016.    Credit: Ken Kremer/kenkremer
On-Ramp to the International Space Station (ISS) with Orbital ATL Antares rocket and Cygnus cargo freighter which launched on 17 Oct. 2016 and berthed at the Unity docking port on 23 Oct. 2016. Credit: Ken Kremer/kenkremer

Altogether a trio of Cygnus vessels might launch in 2017.

“The company will be ready to support three cargo resupply missions to the station next year, and will work with NASA to finalize the flight schedule,” the company said.

“The schedule provides margin flexibility for the entire Antares workforce, who worked tirelessly for the past several months to prepare and successfully launch the upgraded rocket from Wallops Island on the OA-5 mission.”

Cygnus was designed from the start to launch on a variety of launch vehicles – in addition to Antares.

“This plan also allows NASA to again capitalize on the operational flexibility built into Orbital ATK’s Cygnus spacecraft to assure the space station receives a steady and uninterrupted flow of vital supplies, equipment and scientific experiments.”

Under the Commercial Resupply Services (CRS) contract with NASA, Orbital ATK will deliver approximately 28,700 kilograms of cargo to the space station. OA-5 is the sixth of these missions.

It is not clear at this time who will shoulder the added cost of launching Cygnus OA-7 on Atlas instead of Antares.

Watch for Ken’s Antares/Atlas/Cygnus mission and launch reporting. He was reporting from on site at NASA’s Wallops Flight Facility, VA during the OA-5 launch campaign and previously from KSC for the OA-4 and OA-6 liftoffs.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer
Cygnus cargo spacecraft atop Orbital ATK Antares rocket on Pad-0A prior to blastoff on Oct. 17, 2016 from NASA’s Wallops Flight Facility in Virginia on Orbital ATK’s sixth contracted cargo resupply mission with NASA to the International Space Station. Credit: Ken Kremer/kenkremer