How Was the Solar System Formed? – The Nebular Hypothesis

Solar System Themed Products

Since time immemorial, humans have been searching for the answer of how the Universe came to be. However, it has only been within the past few centuries, with the Scientific Revolution, that the predominant theories have been empirical in nature. It was during this time, from the 16th to 18th centuries, that astronomers and physicists began to formulate evidence-based explanations of how our Sun, the planets, and the Universe began.

When it comes to the formation of our Solar System, the most widely accepted view is known as the Nebular Hypothesis. In essence, this theory states that the Sun, the planets, and all other objects in the Solar System formed from nebulous material billions of years ago. Originally proposed to explain the origin of the Solar System, this theory has gone on to become a widely accepted view of how all star systems came to be.

Nebular Hypothesis:

According to this theory, the Sun and all the planets of our Solar System began as a giant cloud of molecular gas and dust. Then, about 4.57 billion years ago, something happened that caused the cloud to collapse. This could have been the result of a passing star, or shock waves from a supernova, but the end result was a gravitational collapse at the center of the cloud.

From this collapse, pockets of dust and gas began to collect into denser regions. As the denser regions pulled in more and more matter, conservation of momentum caused it to begin rotating, while increasing pressure caused it to heat up. Most of the material ended up in a ball at the center while the rest of the matter flattened out into disk that circled around it. While the ball at the center formed the Sun, the rest of the material would form into the protoplanetary disc.

The planets formed by accretion from this disc, in which dust and gas gravitated together and coalesced to form ever larger bodies. Due to their higher boiling points, only metals and silicates could exist in solid form closer to the Sun, and these would eventually form the terrestrial planets of Mercury, Venus, Earth, and Mars. Because metallic elements only comprised a very small fraction of the solar nebula, the terrestrial planets could not grow very large.

In contrast, the giant planets (Jupiter, Saturn, Uranus, and Neptune) formed beyond the point between the orbits of Mars and Jupiter where material is cool enough for volatile icy compounds to remain solid (i.e. the Frost Line). The ices that formed these planets were more plentiful than the metals and silicates that formed the terrestrial inner planets, allowing them to grow massive enough to capture large atmospheres of hydrogen and helium. Leftover debris that never became planets congregated in regions such as the Asteroid Belt, Kuiper Belt, and Oort Cloud.

Artist's impression of the early Solar System, where collision between particles in an accretion disc led to the formation of planetesimals and eventually planets. Credit: NASA/JPL-Caltech
Artist’s impression of the early Solar System, where collision between particles in an accretion disc led to the formation of planetesimals and eventually planets. Credit: NASA/JPL-Caltech

Within 50 million years, the pressure and density of hydrogen in the center of the protostar became great enough for it to begin thermonuclear fusion. The temperature, reaction rate, pressure, and density increased until hydrostatic equilibrium was achieved. At this point, the Sun became a main-sequence star. Solar wind from the Sun created the heliosphere and swept away the remaining gas and dust from the protoplanetary disc into interstellar space, ending the planetary formation process.

History of the Nebular Hypothesis:

The idea that the Solar System originated from a nebula was first proposed in 1734 by Swedish scientist and theologian Emanual Swedenborg. Immanuel Kant, who was familiar with Swedenborg’s work, developed the theory further and published it in his Universal Natural History and Theory of the Heavens (1755). In this treatise, he argued that gaseous clouds (nebulae) slowly rotate, gradually collapsing and flattening due to gravity and forming stars and planets.

A similar but smaller and more detailed model was proposed by Pierre-Simon Laplace in his treatise Exposition du system du monde (Exposition of the system of the world), which he released in 1796. Laplace theorized that the Sun originally had an extended hot atmosphere throughout the Solar System, and that this “protostar cloud” cooled and contracted. As the cloud spun more rapidly, it threw off material that eventually condensed to form the planets.

This image from the NASA/ESA Hubble Space Telescope shows Sh 2-106, or S106 for short. This is a compact star forming region in the constellation Cygnus (The Swan). A newly-formed star called S106 IR is shrouded in dust at the centre of the image, and is responsible for the surrounding gas cloud’s hourglass-like shape and the turbulence visible within. Light from glowing hydrogen is coloured blue in this image. Credit: NASA/ESA
The Sh 2-106 Nebula (or S106 for short), a compact star forming region in the constellation Cygnus (The Swan). Credit: NASA/ESA

The Laplacian nebular model was widely accepted during the 19th century, but it had some rather pronounced difficulties. The main issue was angular momentum distribution between the Sun and planets, which the nebular model could not explain. In addition, Scottish scientist James Clerk Maxwell (1831 – 1879) asserted that different rotational velocities between the inner and outer parts of a ring could not allow for condensation of material.

It was also rejected by astronomer Sir David Brewster (1781 – 1868), who stated that:

“those who believe in the Nebular Theory consider it as certain that our Earth derived its solid matter and its atmosphere from a ring thrown from the Solar atmosphere, which afterwards contracted into a solid terraqueous sphere, from which the Moon was thrown off by the same process… [Under such a view] the Moon must necessarily have carried off water and air from the watery and aerial parts of the Earth and must have an atmosphere.”

By the early 20th century, the Laplacian model had fallen out of favor, prompting scientists to seek out new theories. However, it was not until the 1970s that the modern and most widely accepted variant of the nebular hypothesis – the solar nebular disk model (SNDM) – emerged. Credit for this goes to Soviet astronomer Victor Safronov and his book Evolution of the protoplanetary cloud and formation of the Earth and the planets (1972). In this book, almost all major problems of the planetary formation process were formulated and many were solved.

For example, the SNDM model has been successful in explaining the appearance of accretion discs around young stellar objects. Various simulations have also demonstrated that the accretion of material in these discs leads to the formation of a few Earth-sized bodies. Thus the origin of terrestrial planets is now considered to be an almost solved problem.

While originally applied only to the Solar System, the SNDM was subsequently thought by theorists to be at work throughout the Universe, and has been used to explain the formation of many of the exoplanets that have been discovered throughout our galaxy.

Problems:

Although the nebular theory is widely accepted, there are still problems with it that astronomers have not been able to resolve. For example, there is the problem of tilted axes. According to the nebular theory, all planets around a star should be tilted the same way relative to the ecliptic. But as we have learned, the inner planets and outer planets have radically different axial tilts.

Whereas the inner planets range from almost 0 degree tilt, others (like Earth and Mars) are tilted significantly (23.4° and 25°, respectively), outer planets have tilts that range from Jupiter’s minor tilt of 3.13°, to Saturn and Neptune’s more pronounced tilts (26.73° and 28.32°), to Uranus’ extreme tilt of 97.77°, in which its poles are consistently facing towards the Sun.

The latest list of potentially habitable exoplanets, courtesy of The Planetary Habitability Laboratory. Credit: phl.upr.edu
A list of potentially habitable exoplanets, courtesy of The Planetary Habitability Laboratory. Credit: phl.upr.edu

Also, the study of extrasolar planets have allowed scientists to notice irregularities that cast doubt on the nebular hypothesis. Some of these irregularities have to do with the existence of “hot Jupiters” that orbit closely to their stars with periods of just a few days. Astronomers have adjusted the nebular hypothesis to account for some of these problems, but have yet to address all outlying questions.

Alas, it seems that it questions that have to do with origins that are the toughest to answer. Just when we think we have a satisfactory explanation, there remain those troublesome issues it just can’t account for. However, between our current models of star and planet formation, and the birth of our Universe, we have come a long way. As we learn more about neighboring star systems and explore more of the cosmos, our models are likely to mature further.

We have written many articles about the Solar System here at Universe Today. Here’s The Solar System, Did our Solar System Start with a Little Bang?, and What was Here Before the Solar System?

For more information, be sure to check out the origin of the Solar System and how the Sun and planets formed.

Astronomy Cast also has an episode on the subject – Episode 12: Where do Baby Stars Come From?

Student Discovers Four New Planets

The four new, but as yet unconfirmed, exoplanets. Image: University of British Columbia

A student at the University of British Columbia (UBC), Canada, has discovered four new exoplanets hidden in data from the Kepler spacecraft.

Michelle Kunimoto recently graduated from UBC with a Bachelor’s degree in physics and astronomy. As part of her coursework, she spent a few months looking closely at Kepler data, trying to find planets that others had overlooked.

In the end, she discovered four planets, (or planet candidates until they are independently confirmed.) The first planet is the size of Mercury, two are roughly Earth-sized, and one is slightly larger than Neptune. According to Kunimoto, the largest of the four, called KOI (Kepler Object of Interest) 408.05, is the most interesting. That one is 3,200 light years away from Earth and occupies the habitable zone of its star.

“Like our own Neptune, it’s unlikely to have a rocky surface or oceans,” said Kunimoto, who graduates today from UBC. “The exciting part is that like the large planets in our solar system, it could have large moons and these moons could have liquid water oceans.”

Her astronomy professor, Jaymie Matthews, shares her enthusiasm. “Pandora in the movie Avatar was not a planet, but a moon of a giant planet,” he said. And we all know what lived there.

On its initial mission, Kepler looked at 150,000 stars in the Milky Way. Kepler looks for dips in the brightness of these stars, which can be caused by planets passing between us and the star. These dips are called light curves, and they can tell us quite a bit about an exoplanet.

“A star is just a pinpoint of light so I’m looking for subtle dips in a star’s brightness every time a planet passes in front of it,” said Kunimoto. “These dips are known as transits, and they’re the only way we can know the diameter of a planet outside the solar system.”

Michelle Kunimoto and her prof., Jaymie Matthews, at the University of British Columbia in Vancouver, Canada. Image: Martin Dee/UBC
Michelle Kunimoto and her prof., Jaymie Matthews, at the University of British Columbia in Vancouver, Canada. Image: Martin Dee/UBC

One of the limitations of the Kepler mission is that it’s biased against planets that take a long time to orbit their star. That’s because the longer the orbit is, the fewer transits can be witnessed in a given amount of time. The “warm Neptune” KOI 408.05 found by Kunimoto takes 637 days to orbit its sun.

This long orbit explains why the planet was not found initially, and also why Kunimoto is receiving recognition for her discovery. It took a substantial commitment and effort to uncover it. Kepler has discovered almost 5,000 planet and planet candidates, and of those, only 20 have longer orbits than KOI 408.05.

Kunimoto and Matthews have submitted the findings to the Astronomical Journal. They may be the first of many submissions for Kunimoto, as she is returning to UBC next year to earn a Master’s Degree in physics and astronomy, when she will hunt for more planets and investigate their habitability.

The fun didn’t end with her exoplanet discovery, however. As a Star Trek fan (who isn’t one?) she was lucky enough to meet William Shatner at an event at the University, and to share her discovery with Captain James Tiberius Kirk.

It makes you wonder what other surprises might lie hidden in the Kepler data, and what else might be uncovered. Might a life-bearing planet or moon, maybe the only one, be found in Kepler’s data at some future time?

You can read Kunimoto’s paper here.

Re-engined’ Antares Rocket Completes Crucial Engine Test Firing

Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A.  Credit: NASA/Orbital ATK
Orbital ATK conducted a full-power test of the upgraded first stage propulsion system of its Antares rocket on May 31, 2016 at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A. Credit: NASA/Orbital ATK

Orbital ATK announced late Tuesday that the company’s Antares medium-class commercial rocket outfitted with new first stage RD-181 engines has successfully completed a test firing of the powerplants.

The 30-second long static test firing took place at 5:30 p.m. Tuesday evening, May 31, at Virginia Space’s Mid-Atlantic Regional Spaceport (MARS) Pad 0A.

The now revamped launch vehicle – dubbed Antares 230 – has been ‘re-engined’ and upgraded with a pair of modern and more powerful first stage engines – the Russian-built RD-181 fueled by LOX/kerosene.

The engine test was conducted using only the first stage of Antares at the MARS Pad 0A at NASA’s Wallops Flight Facility.

“Early indications show the upgraded propulsion system, core stage and launch complex all worked together as planned,” said Mike Pinkston, Orbital ATK General Manager and Vice President, Antares Program.

“Congratulations to the combined NASA, Orbital ATK and Virginia Space team on a successful test.”

Orbital ATK engineers will now “review test data over the next several days to confirm that all test parameters were met”

Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit:  Ken Kremer/kenkremer.com
Orbital ATK’s Antares first stage with the new RD-181 engines stands erect at Virginia Space’s Mid-Atlantic Regional Spaceport Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming stage test on May 31. Credit: Ken Kremer/kenkremer.com

If all goes well with the intensive data review, the company could launch Antares as soon as July on its next NASA contracted mission – known as OA-5 – to resupply the International Space Station (ISS).

The test involved firing up Antares dual first stage RD-181 engines at full 100% power (thrust) for a scheduled duration of approximately 30 seconds. Hold down restraints kept the rocket firmly anchored at the pad during the test.

The RD-181 replaces the previously used AJ26 which failed moments after liftoff during the last launch on Oct. 28, 2014 resulting in a catastrophic failure of the rocket and the Cygnus cargo freighter.

The RD-181 flight engines are built by Energomash in Russia and had to be tested via the static hot fire test to ensure their readiness.

“They are a good drop in replacement for the AJ26. And they offer 13% higher thrust compared to the AJ26,” said Kurt Eberly, Orbital ATK Antares deputy program manager, in an interview with Universe Today.

First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit:  Ken Kremer/kenkremer.com
First stage of Orbital ATK Antares rocket outfitted with new RD-181 engines stands erect at Launch Pad-0A on NASA Wallops Flight Facility on May 24, 2016 in preparation for the upcoming May 31 hot fire engine test. Credit: Ken Kremer/kenkremer.com

As a result of switching to the new RD-181 engines, the first stage also had to be modified to incorporate new thrust adapter structures, actuators, and propellant feed lines between the engines and core stage structure.

So the primary goal was to confirm the effectiveness of the new engines and all the changes in the integrated rocket stage.

“The successful stage test, along with the extensive testing of each new RD-181, gives us further confidence in the first stage propulsion and in moving forward to launch,” said Pinkston.

“We are now focused on the OA-5 mission and launching the enhanced Cygnus spacecraft to the International Space Station on our upgraded, higher-performing Antares rocket.”
The test used the first stage core planned to launch the OA-7 mission from Wallops late this year.

With the engine test is completed, the OA-7 stage will be rolled back to the HIF and a new stage fully integrated with the Cygnus cargo freighter will be rolled out to the pad for the OA-5 ‘Return to Flight’ mission as soon as July.

“Each of the new flight RD-181 engines has undergone hot fire acceptance testing at the manufacturer’s facility prior to being shipped to Orbital ATK. A certification test series was successfully completed in the spring of 2015 where a single engine was test fired seven times, accumulating 1,650 seconds of test time and replicating the Antares flight profile, before being disassembled for inspection,” said Orbital ATK officials.

Bird takes flight over Orbital ATK Antares set to sail skyward again in summer 2016 from NASA Wallops Flight Facility, VA. Credit:  Ken Kremer/kenkremer.com
Bird takes flight over Orbital ATK Antares set to sail skyward again in summer 2016 from NASA Wallops Flight Facility, VA. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Work Efficiency Declines 75% On ISS As Facebook Arrives On Station

The International Space Station. As if you didn't recognize it. Image: NASA

Have you heard of Facebook? And it’s young billionaire leader? It’s a groovy computer thing where people share pictures of what they had for breakfast, their cats, and where they argue with strangers.

Today, Facebook will actually serve some purpose other than stranger-arguing and whatnot. Today, at 12:55 PM ET (9:55 AM PT), Mark Zuckerberg, Facebook’s fearless leader, will conduct a live video call with astronauts aboard the ISS. The entire 20 minute event will be streamed live at NASA’s Facebook page, here.

The best part about it, is that Zuckerberg will be asking the astronauts questions submitted by people who post them on NASA’s Facebook page. So check out NASA on Facebook and submit an interesting question.

Don't read this caption, read his sign. Image: NASA
Don’t read this caption, read his sign. Image: NASA

The three astronauts involved are Tim Kopra and Jeff Williams, of NASA, and the ESA’s Tim Peake. I’m sure they’re hoping for some interesting questions, so don’t disappoint them, Universe Today readers.

As a publicity stunt, this one’s a doozy. I wonder who courted who for this one? I suppose it doesn’t really matter; it’s a fun idea for everyone involved, and who knows what will come of it.

So go ahead and visit https://www.facebook.com/NASA/?fref=nf and check out other people’s questions and ask one of your own. Get their quick before the loonies and the conspiracy theorists clog it up. Seriously.

This is an example of the kind of thing being asked so far:

“The ISS is fake. NASA is fake and this Zionist puppet Zuckerberg is fake. My question: Why does NASA keep lying to the public about EVERYTHiNG since they were formed in 1958?”

So please, we’re begging you. Ask something intelligent. Just please don’t ask them to post pictures of their breakfast.

This Friday: The Moon Meets Mercury in the Dawn Sky

So, have you been following the path of the waning Moon through the dawn sky this week? The slender Moon visits some interesting environs over the coming weekend, and heralds the start of Ramadan across the Islamic world next week.

First up, the planet Mercury rises an hour before the Sun in the dawn this week. Mercury reaches greatest elongation west of the Sun on Sunday, June 5th at 9:00 Universal Time (UT).

Image credit
The Moon meets Mercury on the morning of June 3rd. Image credit: Stellarium.

The slender waning crescent Moon passes less than one degree from +0.8 magnitude Mercury (both 24 degrees from the Sun) on the morning of Friday, June 3rd at 10:00 UT. While this is a close shave worldwide, the Moon will actually occult (pass in front of) Mercury for a very few observers fortunate enough to be based on the Falkland Islands in the southern Atlantic.

Image credit
The occultation footprint of the June 3rd event. Image credit Occult 4.0.

The Moon is 5.2% illuminated and 41 hours from New during the occultation. Meanwhile, Mercury shines at magnitude +0.8 and displays an 8.6” 33.5% illuminated disk during the event. Also, watch for ashen light or Earthshine faintly lighting up the nighttime side of the Moon. You’re seeing sunlight, bounced off of the land, sea and (mostly) cloud tops of the fat waxing gibbous Earth back on to the lunar surface, one light-second away. The Big Bear Solar Observatory has a project known as Project Earthshine which seeks to measure and understand the changes in albedo (known as global dimming) and its effects on climate change.

The Moon occults Mercury three times in 2016. Occultations of the innermost planet are especially elusive, as they nearly always occur close to the Sun under a daytime sky. This week’s occultation occurs less than 48 hours from greatest elongation; the last time one was closer time-wise was March 5th, 2008, and this won’t be topped until February 18th, 2026, with an occultation of Mercury by the Moon just 18 hours prior to greatest elongation. And speaking of which, can you spy +0.8 magnitude Mercury near the crescent Moon on Friday… during the daytime? Use binocs, note where Mercury was in relation to the Moon before sunrise, but be sure to physically block that blinding Sun behind a building or hill!

Mercury reaches greatest elongation six times in 2016: three in the dusk (western), and three in the dawn (eastern).

The Moon also passes less than five degrees from the planet Venus on June 5th at 2:00 UT, though both are only 2 degrees from the Sun. Fun fact: the bulk of the Sun actually occults Venus for 47 hours as seen from the Earth from June 6th through June 8th.

Image credit
Venus in SOHO’s view. Image credit: SOHO/NASA

You can observe the passage of Venus through the 15 degree wide field of view of SOHO’s LASCO C3 camera over the next few weeks until July 5th.

Venus reaches superior conjunction on the far side of the Sun 1.74 astronomical units (AU) from the Earth at 21:00 UT on Monday, June 6th.

New Moon occurs at 4:00 UT on Sunday, June 5th, marking the start of lunation 1156.

The Moon and Ramadan

The first sighting of the slim crescent Moon also marks the start of the month of Ramadan (Ramazan in Turkey) on the Islamic calendar. Unlike the western Gregorian calendar, which is strictly solar-based, and the Jewish calendar, which seeks to reconcile lunar and solar cycles, the Islamic is solely based on the 29.5 synodic period of the Moon. This means that it moves forward on average 11 days per Gregorian year. The hallmark of Ramadan is fasting from dawn to dusk, and Ramadan 2016 is an especially harsh one, falling across the northern hemisphere summer solstice (and the longest day of the year) on June 20th. The earliest sunrise occurs on June 14th, and latest sunset on June 27th for latitude 40 degrees north. Finally, the Earth reaches aphelion or its farthest point from the Sun on July 4th at 1.01675 AU or 157.5 million kilometers distant.

Image credit
The Moon meets Mercury (arrowed) in 2012. Image credit: Dave Dickinson

In 2016, the Moon will first likely be spotted from the west coast of South America on Sunday night June 5th, though many locales worldwide may not see the Moon until June 6th. There can be some disparity as to just when Ramadan starts based on the first sighting of the crescent Moon. The Islamic calendar is also unique in that it still relies on direct observation of the waxing crescent Moon. Other calendars often use an estimated approximation in a bid to keep their timekeeping in sync with the heavens. The computus estimation (not a supervillain, though it certainly sounds like one!) used by the Catholic Church to predict the future date of Easter, for example, fixes the vernal equinox on March 21st, though it actually falls on March 20th until 2048, when it actually slips to March 19th.

Ramadan has been observed on occasion in space by Muslim astronauts, and NASA even has guidelines stipulating that observant astros will follow the same protocols as their departure point from the Earth (in the foreseeable future, that’s the Baikonur Cosmodrome in Kazakhstan.

Can you see the open cluster M35, just six degrees north (right) of the thin crescent Moon on the evening of Monday, June 6th?

Image credit
Looking west on the evening of Monday, June 6th. Image credit: Starry Night Education Software.

We think its great to see direct astronomical observation still having a hand in everyday human affairs. This also holds a special significance to us, as we’re currently traveling in Morocco.

Don’t miss the meeting of Mercury and the Moon on Friday morning, and the return of the Moon to the dusk skies next week.

Webb Telescope Gets its Science Instruments Installed

In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure.  Credits: NASA/Chris Gunn
In this rare view, the James Webb Space Telescope team crane lifted the science instrument package for installation into the telescope structure. Credits: NASA/Chris Gunn

The package of powerful science instruments at the heart of NASA’s mammoth James Webb Space Telescope (JWST) have been successfully installed into the telescopes structure.

A team of two dozen engineers and technicians working with “surgical precision” inside the world’s largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, meticulously guided the instrument package known as the ISIM (Integrated Science Instrument Module) into the telescope truss structure.

ISIM is located right behind the 6.5 meter diameter golden primary mirror – as seen in NASA’s and my photos herein.

The ISIM holds the observatory’s international quartet of state-of-the-art research instruments, funded, built and provided by research teams in the US, Canada and Europe.

“This is a tremendous accomplishment for our worldwide team,” said John Mather, James Webb Space Telescope Project Scientist and Nobel Laureate, in a statement.

“There are vital instruments in this package from Europe and Canada as well as the US and we are so proud that everything is working so beautifully, 20 years after we started designing our observatory.”

This side shot shows a glimpse inside a massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland where the James Webb Space Telescope team worked meticulously to complete the science instrument package installation.  Credits: NASA/Desiree Stover
This side shot shows a glimpse inside a massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland where the James Webb Space Telescope team worked meticulously to complete the science instrument package installation. Credits: NASA/Desiree Stover

Just as with the mirrors installation and other assembly tasks, the technicians practiced the crucial ISIM installation procedure numerous times via test runs, computer modeling and a mock-up of the instrument package.

To accomplish the ISIM installation, the telescope structure had to be flipped over and placed into the giant work gantry in the clean room to enable access by the technicians.

“The telescope structure has to be turned over and put into the gantry system [in the clean room],” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center.

“Then we take ISIM and install in the back of the telescope.”

The team used an overhead crane to lift and maneuver the heavy ISIM science instrument package in the clean room. Then they lowered it into the enclosure behind the mirrors on the telescopes backside and secured it to the structure.

“Our personnel were navigating a very tight space with very valuable hardware,” said Jamie Dunn, ISIM Manager.

“We needed the room to be quiet so if someone said something we would be able to hear them. You listen not only for what other people say, but to hear if something doesn’t sound right.”

Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  ISIM science instrument module will be installed inside truss structure below.  Credit: Ken Kremer/kenkremer.com
Up close view shows cone shaped Aft Optics Subsystem (AOS) standing at center of Webb telescopes 18 segment primary mirror at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. ISIM science instrument module will be installed inside truss structure below. Credit: Ken Kremer/kenkremer.com

The ISIM installation continues the excellently executed final assembly phase of Webb at Goddard this year. And comes just weeks after workers finished installing the entire mirror system.

This author has witnessed and reported on the assembly progress at Goddard on numerous occasions, including after the mirrors were recently uncovered and unveiled in all their golden glory.

“The entire mirror system is checked out. The system has been integrated and the alignment has been checked,” said John Durning, Webb Telescope Deputy Project Manager, in an exclusive interview with Universe Today at NASA’s Goddard Space Flight Center.

Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of  NASA’s James Webb Space Telescope inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.   Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms.  Credit: Ken Kremer/kenkremer.com
Up close side-view of newly exposed gold coated primary mirrors installed onto mirror backplane holding structure of NASA’s James Webb Space Telescope inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. Aft optics subsystem stands upright at center of 18 mirror segments between stowed secondary mirror mount booms. Credit: Ken Kremer/kenkremer.com

ISIM is a collection of cameras and spectrographs that will record the light collected by Webb’s giant golden primary mirror.

“It will take us a few months to install ISIM and align it and make sure everything is where it needs to be,” Durning told me.

The primary mirror is comprised of 18 hexagonal segments.

Each of the 18 hexagonal-shaped primary mirror segments measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). They are made of beryllium, gold coated and about the size of a coffee table.

Webb’s golden mirror structure was tilted up for a very brief period on May 4 as seen in this NASA time-lapse video:

The 18-segment primary mirror of NASA’s James Webb Space Telescope was raised into vertical alignment in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4, 2016. Credit: NASA

The gargantuan observatory will significantly exceed the light gathering power of NASA’s Hubble Space Telescope (HST) – currently the most powerful space telescope ever sent to space.

With the mirror structure complete, the next step was the ISIM science module installation.

To accomplish that installation, technicians carefully moved the Webb mirror structure into the clean room gantry structure.

As shown in this time-lapse video we created from Webbcam images, they tilted the structure vertically, flipped it around, lowered it back down horizontally and then transported it via an overhead crane into the work platform.

Time-lapse showing the uncovered 18-segment primary mirror of NASA’s James Webb Space Telescope being raised into vertical position, flipped and lowered upside down to horizontal position and then moved to processing gantry in the largest clean room at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, on May 4/5, 2016. Images: NASA Webbcam. Time-lapse by Ken Kremer/kenkremer.com/Alex Polimeni

The telescope will launch on an Ariane V booster from the Guiana Space Center in Kourou, French Guiana in 2018.

The Webb Telescope is a joint international collaborative project between NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA).

Webb is designed to look at the first light of the Universe and will be able to peer back in time to when the first stars and first galaxies were forming. It will also study the history of our universe and the formation of our solar system as well as other solar systems and exoplanets, some of which may be capable of supporting life on planets similar to Earth.

All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA's Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016.  The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com
All 18 gold coated primary mirrors of NASA’s James Webb Space Telescope are seen fully unveiled after removal of protective covers installed onto the backplane structure, as technicians work inside the massive clean room at NASA’s Goddard Space Flight Center in Greenbelt, Maryland on May 3, 2016. The secondary mirror mount booms are folded down into stowed for launch configuration. Credit: Ken Kremer/kenkremer.com

More about ISIM and upcoming testing in the next story.

Watch this space for my ongoing reports on JWST mirrors, science, construction and testing.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Launch Of World’s Largest Rocket Postponed

Mission art for NROL-37. The Delta-IV Heavy kind of looks like three cigarettes. Credit: United Launch Alliance

Next weekend’s launch of the Delta-4 Heavy has been postponed. The launch, which was to take place at Cape Canaveral, has been delayed due to unspecified payload issues. The launch is for the National Reconnaissance Office, a fairly secretive branch of the U.S. Government that’s in charge of the nation’s spy satellites. As such, they aren’t revealing too many details about the launch, or the postponement.

The Delta-4 Heavy rocket is a combination of three booster cores from the Delta Medium. Each one of these cores is a liquid hydrogen-fuelled engine that forms the Delta-4 Medium’s first stage. They’re mounted together to make a trio of engines, capped with a cryogenic upper stage.

The Delta-4 Heavy weighs 725000 kg (1.6 million lbs.) when it’s fully fuelled. It’s 71.6 meters (235 ft.) tall, and when it’s ignited it unleashes a whopping 2.1 million lbs. of thrust.

A Delta-4 Heavy blasting off in 2013.
A Delta-4 Heavy blasting off in 2013.

This configuration makes it the USA’s largest rocket, and it carries critical payloads for the government. These include not only spy satellites, but also an un-crewed test flight of the Orion Multi-Purpose Crew Vehicle.

The cancelled mission, named NROL-37, was supposed to lift an Orion 9 satellite into orbit. Orion satellites are signal interception satellites, and are placed in geo-stationary orbits to collect radio emissions. One of the Orion satellites is believed to be “… the largest satellite in the world,” according to Bruce Carlson, NRO Director. This probably refers to the size of the satellites antenna, which is over 100m (330ft.) in diameter.

The Delta-4 Heavy (D4H) is considered the largest rocket in the world. The D4H can lift a whopping 28,790 kg into Low Earth Orbit (LEO.) Contemporaries like the Ariane 5 (ECA & ES versions) can lift 21,000 kg into LEO.

It won’t be the most powerful rocket for much longer though. The upcoming Falcon Heavy from SpaceX will lift an enormous 54,400 kg into LEO. Also being developed is the US Space Launch System (SLS), which, in its Block2 configuration, will lift 130,700 kg. The Chinese are in on the most powerful rocket game too, with their Long March 9 rocket. Under development now, it is projected to lift 130,000 kg into LEO, just a shade less than the SLS.

Oddly enough, the old Saturn V could lift 140,000 kg, putting all its successors to shame. The Saturn V was developed for the Apollo Program, and was also used to launch Skylab. Saturn V was in use from 1967 to 1973. To date, the Saturn V is the only rocket capable of transporting human beings beyond LEO.

A Saturn IV launching the historic Apollo 11 mission. Image: NASA/Michael Vuijlsteke. Public Domain image.
A Saturn IV launching the historic Apollo 11 mission. Image: NASA/Michael Vuijlsteke. Public Domain image.

As for the cancelled launch, no date has been set yet for the next launch. Once it is launched, it will mark the 9th D4H configuration to fly, and the 32nd Delta 4 launch since 2002. It will also be the 6th time the D4H has launched for the NRO.

Universe Today’s Ken Kremer is at Cape Canaveral for this launch, and will report on it, and no doubt provide some stunning photos. Check back with us to see Ken’s coverage.

Alien Minds Part II: Do Aliens Think Big Brains are Sexy Too?

peahen and peacock

“Nothing in biology makes sense”, wrote the evolutionary biologist Theodosius Dobzhansky, “except in the light of evolution”. If we want to assess whether it is likely that technological civilizations have evolved on alien planets or moons, and what they might be like, the theory of evolution is our best guide. On May 18, 2016 the newly founded METI (Messaging to ExtraTerrestrial Intelligence) International hosted a workshop entitled ‘The Intelligence of SETI: Cognition and Communication in Extraterrestrial Intelligence’. The workshop was held in San Juan, Puerto Rico on the first day of the National Space Society’s International Space Development Conference. It included nine talks by scientists and scholars in evolutionary biology, psychology, cognitive science, and linguistics.

METI International
METI International

In the first instalment of this series, we saw that intelligence, of various sorts, is widespread across the animal kingdom. Workshop presenter Anna Dornhaus, who studies collective decision-making in insects as an associate professor at the University of Arizona, showed that even insects, with their diminutive brains, exhibit a surprising cognitive sophistication. Intelligence, of various sorts, is a likely and probable evolutionary product.

Animals evolve the cognitive abilities that they need to meet the demands of their own particular environments and lifestyles. Sophisticated brains and cognition have evolved many times on Earth, in many separate evolutionary lineages. But, of the millions of evolutionary lineages that have arisen on Earth in the 600 million years since complex life appeared, only one, that which led to human beings, produced the peculiar combination of cognitive traits that led to a technological civilization. What this tells us is that technological civilization is not the inevitable product of a long term evolutionary trend, it is rather the quirky and contingent product of particular circumstances. But what might those circumstances have been, and just how special and improbable were they?

Geoffrey Miller
Dr. Geoffery Miller is an associate professor of psychology at the University of New Mexico, and is the author of a 2001 book, The Mating Mind, where he explains his theory that human intelligence evolved by sexual selection to a general audience. He presented at the METI Institute conference in Puerto Rico, in May 2016. Picture used with permission.

Workshop presenter Geoffrey Miller is an associate professor of psychology at the University of New Mexico. Miller thinks he has an answer to the question of what the special circumstances that produced human evolution were. Our protohuman ancestors inhabited the African savanna. But so do many other mammals that don’t need enormous brains to survive there. The evolutionary forces driving the production of our large brains, Miller surmises, can’t be due to the challenges of survival. He thinks instead that human evolution was guided by an intelligence. But Miller is no creationist, nor does he have the alien monolith from the 1960’s science fiction classic 2001: A Space Odyssey in mind. Miller’s guiding intelligence is the intelligence that our ancestors themselves used when they selected their mates.

Miller’s theory harkens back to the ideas of the founder of modern evolutionary theory, the nineteenth century British naturalist Charles Darwin. Darwin proposed that evolution works through a process of natural selection. Animal offspring vary one from another, and are produced in too great of numbers for all of them to survive. Some starve, some are eaten by predators, others fall prey to the numerous other hazards of the natural world. A few survive to produce offspring, thereby passing on the traits that allowed them to survive. Down the generations, traits that aided survival become more elaborate and useful and traits that did not, vanished.

Charles Darwin
Charles Darwin published his theory of evolution, in his book, The Origin of Species, in 1859. The theory was inspired, in part, by observations he made during his five year voyage as a naturalist on board the HMS Beagle and has become the central principle of much of modern biology. Picture by George Richmond (1830’s) public domain.

But Darwin was troubled by a serious problem with his theory. He knew that many animals have prominent traits that don’t seem to contribute to their survival, and are even counterproductive to it. The bright colors of many insects, the colors, elaborate plumage, and songs of birds, the huge antlers of elk, were all prominent and costly traits that couldn’t be explained by his theory of natural selection. Peacocks, with their elaborate tail feathers were everywhere in English gardens, and came to torment him.

At last, Darwin found the solution. To produce offspring, an animal must do more than just survive, it must find a partner to mate with. All the traits which worried Darwin could be explained if they served to make their bearers sexier and more beautiful to prospective mates than other competing members of their own gender. If peahens like elaborate plumage, then in each generation, they will choose to mate with the males with the most elaborate tail feathers, and reject the rest. Through the competition for mates, peacock tails will become more and more elaborate down the generations. Darwin called his new theory sexual selection.

Many subsequent evolutionary biologists regarded sexual selection as of limited importance, and lumped it in with natural selection, which was said to favor traits conducive to survival and reproductive success. However, in recent decades evolutionary biologists have come to view sexual selection in a much more favorable light. Geoffrey Miller proposed that the human brain evolved through sexual selection. Human beings, he supposes, are sapiosexual; that is, they are sexually attracted by intelligence and its products. The preference for selecting intelligent mates produced greater intelligence, which in turn allowed our ancestors to become more discerning in selecting more intelligent mates, producing a kind of amplifying feedback loop, and an explosion of intelligence.

On this account, language, music, dancing, humor, art, literature, and perhaps even morality and ethics exist because those who were good at them were deemed sexier, or more trustworthy and reliable, and were thus more successful in securing mates than those who weren’t. The elaborate human brain is like the elaborate peacock’s tail. It exists for wooing mates and not for survival. There are some important ways in which protohumans were different from peafowl. Both males and females are choosy and both have large brains. Protohumans, unlike peafowl, probably formed monogamous pair bonds. Miller’s theory has complexities that space won’t permit us to explore here. To show that his theory can work, Miller needed to develop a computer model.

Human evolution
The evolution of protohuman intelligence through geography and time. Homo egaster lived in the early Pleistocene between 1.9 and 1.4 million years ago and had a brain about half the size of modern Homo sapiens. It developed advanced stone tools, and may have domesticated fire. It was closely related to Homo erectus. Homo antecessor lived from 1.2 million to 800,000 years ago and spread from Africa into Europe. It’s brain was also about half as large as that of ours. Homo rhodesiensis lived about 120,000 to 300,000 years ago. Our species, Homo sapiens, arose in Africa about 200,000 years ago and spread throughout much of the world. Homo neanderthalensis had a brain capacity somewhat larger than that of modern humans, and its larger eye sockets suggest keener vision. They disappeared about 30,000 years ago, and may have died out, in part, through competition with Homo sapiens and cooling of the climate. Public Library of Science 2003.

If Miller is right, then just how probable is the evolution of a technological civilization, and how likely is it that we will find them elsewhere in the galaxy? Miller thinks that if complex life exists on other planets or moons, it is likely to evolve reproduction through sex, just as has happened here on Earth. For complex organisms that depend on a large and complicated body of genetic information, most mutations will be neutral or harmful. In sexual reproduction half the genes of one’s offspring come from each parent. Without this mixing of genes from other individuals, asexual lineages are likely to falter and go extinct due to an accumulation of harmful mutations. Unless sexually reproducing creatures choose their mates purely at random, sexual selection is an inevitability. So, the basic conditions for runaway sexual selection to produce a brain suited to language and technology probably exists on other worlds with complex life.

One problem, though, that Anna Dornhaus pointed out, is that in sexual selection, the trait that gets exaggerated is essentially arbitrary. There are many bird species with elaborate plumage, but none exactly like the peacock. There are many species where brains and cognitive traits matter for mating success, like the singing ability of nightingales and many other birds, or gibbons, or whales. Male bower birds build complicated structures, called bowers, out of found items, like sticks and leaves and stones and shells, to attract a female. Chimpanzees engage in complex power struggles that involve negotiation, grooming, and fighting their way to the top.

But despite the selective success of cognition and braininess in many species, our specific human sort of intelligence, with language and technology, has happened only once on Earth, and therefore might be rare in the universe. If our ancestors had found big noses rather than big brains sexy, then we might now have enormous noses rather than enormous radio telescopes capable of signaling to other worlds.

Miller is more optimistic. “It’s a rare accident” he writes, in the sense that mate preferences only rarely turn ‘sapiosexual’, focused so heavily on conspicuous displays of general intelligence… On the other hand, I think it’s likely that in any biosphere, sexual selection would eventually stumble into sapiosexual mate preferences, and then you’d get human-level intelligence and language of some sort. It might only arise in 1 out of every 100 million species though,…I suspect that in any biosphere with sexually reproducing complex organisms and a wide variety of species, you’d quite likely get at least one lineage stumbling into the sapiosexual niche within a billion years”.

A planet or moon is currently deemed potentially habitable if it orbits its parent star within the right distance range for liquid water to exist on its surface. This distance range is called the habitable zone. Since stars evolve with time, the duration of habitability is limited. Such matters can be explored through climate modeling, informed by what we know of the climates of Earth and other worlds within our solar system, and about the evolution of stars.

Current thinking is that Earth’s total duration of habitability is 6.3 to 7.8 billion years, and that our world may remain habitable for another 1.75 billion years. Since complex life has already existed on Earth for 600 million years, this seems a generous amount of time for complex life on a similar planet to stumble upon Miller’s sapiosexual niche. Stars of smaller mass than the sun are stable on longer timescales, some perhaps capable of sustaining worlds with liquid water for a hundred billion years. If Miller’s estimates are reasonable, then there may be worlds enough and time for an abundance of sapiosexual alien civilizations in our galaxy.

A central message of the METI Institute workshop is that, animals evolve whatever sort of intelligence is necessary for them to survive and reproduce under the circumstances in which they find themselves. Human-style intelligence, with language and technology, is a peculiar quirk of particular and improbable evolutionary circumstances. But we don’t know just how improbable. Given the vastness of time and number of worlds potentially available for the roll of the evolutionary dice, alien civilizations might be reasonably abundant, or they might be once-in-a-billion galaxies rare. We just don’t know. Better knowledge of the evolution of life and intelligence here on Earth might allow us to improve our estimates.

If alien civilizations do exist, what can life on Earth tell us about what their minds and senses are likely to be like? Are they, like us, visually oriented creatures, or might they rely on other senses? Can we expect that their minds might be similar enough to ours to make meaningful communication possible? These intriguing questions will be the subject of the third and final installment of this series.

For further reading:

Hooper, P. L. (2008) Mutual mate choice can drive costly signalling even under perfect monogamy. Adaptive Behavior, 16: p. 53-70.

Marris, E. (2013) Earth’s days are numbered. Nature News.

Miller, G. F. (2000) The Mating Mind: How Sexual Choice Shaped the Evolution of Human Nature. Random House, New York.

Miller, G. F. (2007) Sexual selection for moral virtues, The Quarterly Review of Biology, 82(2): p. 97-125.

Patton, P. E. (2016) Alien Minds I: Are Extraterrestrial Civilizations Likely to Evolve? Universe Today.

P. Patton (2014) Communicating across the cosmos, Part 1: Shouting into the darkness, Part 2: Petabytes from the Stars, Part 3: Bridging the Vast Gulf, Part 4: Quest for a Rosetta Stone, Universe Today.

Rushby, A. J., Claire, M. W., Osborn, H., Watson, A. J. (2013) Habitable zone lifetimes of exoplanets around main sequence stars. Astrobiology, 13(9), p. 833-849.

Yirka, B. (2016) Yeast study offers evidence of the superiority of sexual reproduction versus cloning in speed of adaptation. Phys.org.

Spectacular Imagery Showcases SpaceX Thaicom Blastoff as Sea Landed Booster Sails Back to Port: Photo/Video Gallery

Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

CAPE CANAVERAL AIR FORCE STATION, FL – Spectacular imagery showcasing SpaceX’s Thaicom blastoff on May 27 keeps rolling in as the firms newest sea landed booster sails merrily along back to its home port atop a ‘droneship’ landing platform.

Formally known as an Autonomous Spaceport Drone Ship (ASDS) the small flat platform is eclectically named “Of Course I Still Love You” or “OCISLY” by SpaceX Founder and CEO Elon Musk and is expected back at Port Canaveral this week.

Check out this expanding launch gallery of up close photos and videos captured by local space photojournalist colleagues and myself of Friday afternoons stunning SpaceX Falcon 9 liftoff.

The imagery shows Falcon roaring to life with 1.5 million pounds of thrust from the first stage Merlin 1 D engines and propelling a 7000 pound (3,100 kilograms) commercial Thai communications satellite to a Geostationary Transfer Orbit (GTO).

The recently upgraded Falcon 9 launched into sky blue sunshine state skies at 5:39 p.m. EDT from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, accelerating to orbital velocity and arcing eastward over the Atlantic Ocean towards the African continent and beyond.

Relive the launch via these exciting videos recorded around the pad 40 perimeter affording a “You Are There” perspective!

They show up close and wide angle views and audio recording the building crescendo of the nine mighty Merlin 1 D engines.

Video caption: Compilation of videos of SpaceX Falcon 9 launch of Thaicom 8 on 5/27/2016 from Pad 40 on CCAFS, FL as seen from multiple cameras ringing pad and media viewing site on AF base. Credit: Jeff Seibert

Watch from the ground level weeds and a zoomed in view of the umbilicals breaking away at the moment of liftoff.

Video caption: SpaceX Falcon 9 lifts off with Thaicom-8 communications satellite on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl, as seen in this up close video from Mobius remote camera positioned at pad. Credit: Ken Kremer/kenkremer.com

After the first and second stages separated as planned at about 2 minutes and 39 seconds after liftoff, the nosecone was deployed, separating into two halves at about T plus 3 minutes and 37 seconds.

Finally a pair of second stage firings delivered Thaicom-8 to orbit.

Onboard cameras captured all the exciting space action in real time.

When the Thai satellite was successfully deployed at T plus 31 minutes and 56 seconds exhuberant cheers instantly erupted from SpaceX mission control – as seen worldwide on the live webcast.

“Satellite deployed to 91,000 km apogee,” tweeted SpaceX CEO and founder Elon Musk.

Video caption: SpaceX – “Falcon In” “Falcon Out” – 05-27-2016 – Thaicom 8. The brand new SpaceX Falcon 9 for next launch comes thru main gate Cape Canaveral, just a few hours before Thaicom 8 launched and landed. Awesome ! Credit: USLaunchReport

Both stages of the 229-foot-tall (70-meter) Falcon 9 are fueled by liquid oxygen and RP-1 kerosene which burn in the Merlin engines.

Less than nine minutes after the crackling thunder and billowing plume of smoke and fire sent the Falcon 9 and Thaicom 8 telecommunications satellite skyward, the first stage booster successfully soft landed on a platform at sea.

Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus

Having survived the utterly harsh and unforgiving rigors of demanding launch environments and a daring high velocity reentry, SpaceX engineers meticulously targeted the tiny ocean going ASDS vessel.

The diminutive ocean landing platform measures only about 170 ft × 300 ft (52 m × 91 m).

“Of Course I Still Love You” is named after a starship from a novel written by Iain M. Banks.

OCISLY was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida surrounded by the vastness of the Atlantic Ocean.

Because the launch was target Thaicom-8 to GTO, the first stage was traveling at some 6000 kph at the time of separation from the second stage.

Thus the booster was subject to extreme velocities and re-entry heating and a successful landing would be extremely difficult – but not impossible.

Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 communications satellite to orbit on May 27, 2016 at 5:39 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Just 3 weeks ago SpaceX accomplished the same sea landing feat from the same type trajectory following the launch of the Japanese JCSAT-14 on May 6.

The May 6 landing was the first fully successful sea landing from a GTO launch, brilliantly accomplished by SpaceX engineers.

With a total of 4 recovered boosters, SpaceX is laying the path to rocket reusability and Musk’s dream of slashing launch costs – by 30% initially and much much more down the road.

Thaicom-8 was built by aerospace competitor Orbital ATK, based in Dulles, VA. It will support Thailand’s growing broadcast industry and will provide broadcast and data services to customers in South Asia, Southeast Asia and Africa.

Thaicom-8 is the fifth operational satellite for Thaicom.

It now enters a 30-day testing phase, says Orbital ATK.

Launch of SpaceX Falcon 9 carrying Thaicom-8 to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
Launch of SpaceX Falcon 9 carrying Thaicom-8 to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

The Falcon 9 launch is the 5th this year for SpaceX.

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Liftoff of SpaceX Falcon 9 with Thaicom-8 on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus
SpaceX Falcon 9 awaits launch to deliver Thaicom-8 communications satellite to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Julian Leek
SpaceX Falcon 9 awaits launch to deliver Thaicom-8 communications satellite to orbit on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Julian Leek
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 aloft with Thaicom-8 communications satellite after afternoon liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL on May 27, 2016. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 streaks to orbit after launch on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 streaks to orbit after launch on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Lane Hermann
Prelaunch view of SpaceX Falcon 9 awaiting launch on May 27, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Lane Hermann
Streak shot of SpaceX Falcon 9 launching JCSAT-14 from 1st fully successful droneship landing on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl.  Credit: John Kraus
Streak shot of SpaceX Falcon 9 launching JCSAT-14 from 1st fully successful droneship landing from GTO on May 6, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, Fl. Credit: John Kraus
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
 SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL.  Credit: Melissa Bayles

SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL. Credit: Melissa Bayles
 SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL.  Credit: Melissa Bayles

SpaceX Falcon 9 of Thaicom 8 on May 27, 2016 from Melbourne, FL. Credit: Melissa Bayles

Mars At Closest Point To Earth in 11 Years May 30, 2016

Mars in all its red-hued glory. Image: NASA, ESA, the Hubble Heritage Team (STScI/AURA), J. Bell (ASU), and M. Wolff (Space Science Institute)

If you have a telescope, (What?! You don’t have one?) you’re in for a visual treat tonight. Mars will be at its closest point to Earth in 11 years on May 30. This event is worth checking out, whether with a telescope, astronomy binoculars, or online.

While today is when Mars is at its closest, you actually have a couple weeks to check this out, as the distance between Mars and Earth gradually becomes greater and greater. Today, Mars is 76 million kilometers (47.2 million miles) away, but up until June 12th it will still be no further than 77 million kilometers (48 million miles) away.

The furthest Mars can be from Earth is 401 million kilometers (249 million miles), when the two planets are on the opposite side of the Sun from each other.

For most of us with backyard ‘scopes, it’s difficult to make out much detail. You can see Mars, and at the most you can make out a polar cap. But it’s still fascinating knowing you’re looking at another planet, one that was totally unknowable for most humans who preceded us. A planet that we have rovers on, and that we have several craft in orbit around.

If you don’t have a scope, have no fear. There will be a flood of great astro-photos of Mars in the next few days. There are also options for live streaming feeds from powerful Earth-based telescopes.

The last time Mars was this close to Earth was 2005. A couple years before, the distance shrank to 55.7 million km (34.6 million miles.) That was the closest Mars and Earth have been in several thousand years. In 2018, the two planets will be nearly that close again.

This event is often called “opposition”, but it’s actually more correctly called “closest approach.” Opposition occurs a couple weeks before closest approach, when Mars is directly opposite the Sun.

A top-down image of the orbits of Earth and Mars. Image: NASA
A top-down image of the orbits of Earth and Mars. Image: NASA

But whether you call it opposition, or closest approach, the event itself is significant for more than just looking at it. Missions to Mars are planned when the two planets are close to each other. This reduces mission times drastically.

Mars Express, the mission being conducted by the European Space Agency (ESA) was launched in 2003, when the two planets were as close to each other as they’ve been in thousands of years. All missions to Mars can’t be so lucky, but they all strive to take advantage of the orbital cycles of the two planets, by nailing launch dates that work in our favour.

As for finding Mars in the night sky, it’s not that difficult. If you have clear skies where you are, Mars will appear as a bright, fire-yellow star.
“Just look southeast after the end of twilight, and you can’t miss it,” says Alan MacRobert, a senior editor of Sky & Telescope magazine, in a statement. “Mars looks almost scary now, compared to how it normally looks in the sky.”

This image shows how Mars appears at different times of the year in a typical backyard telescope. Image: NASA/JPL-Caltech
This image shows how Mars appears at different times of the year in a typical backyard telescope. Image: NASA/JPL-Caltech

Although Mars is the closest thing in the sky to Earth right now, other than the Moon, it isn’t the brightest thing in the night sky. That honour is reserved for Jupiter, even though it’s ten times further away. Jupiter is twenty times larger in diameter than Mars, so it reflects much more sunlight and appears much brighter. (Obviously, everything in the night sky pales in comparison to the Moon.)

The reason for such a variation in distances between the planets lies in their elliptical orbits around the Sun. There’s a great video showing how their orbits change the distance between the two planets, here.

If you don’t have a telescope, you can still check Mars out. Go to slooh.com to check out live feeds from a proper telescope.