SpaceX Dragon Splashes Down in Pacific with 2 Tons of NASA Space Station Science

The SpaceX Dragon (far right) begins its departure from the International Space Station after being released from the grips of the Canadarm2 robotic arm on Sept. 17, 2017. Credit: NASA TV

KENNEDY SPACE CENTER, FL – Concluding a month long stay at the International Space Station (ISS) a SpaceX Dragon cargo freighter loaded with some two tons of NASA research samples, hardware and micestonauts returned home to make a successful splashdown in the Pacific on Sunday, Sept. 17.

The SpaceX Dragon CRS-12 resupply ship successfully splashed down in the Pacific Ocean at approximately 10:14 a.m. EDT, 7:14 a.m. PDT, 1414 GMT Sunday, southwest of Long Beach, California, under a trio of main parachutes.

The parachute assisted splashdown marked the end of the company’s twelfth contracted cargo resupply mission to the orbiting outpost for NASA.

The capsule returned with more than 3,800 pounds (1,700 kg) of cargo and research and 20 live mice.

“Good splashdown of Dragon confirmed, completing its 12th mission to and from the @Space_Station,” SpaceX confirmed via twitter.

The SpaceX Dragon CRS-12 spacecraft begins its departure from the International Space Station after being released from the grips of the Canadarm2 robotic arm on Sept. 17, 2017. Credit: NASA TV

Liftoff of the SpaceX Falcon 9 carrying Dragon CRS-12 to orbit took place from seaside pad 39A at NASA’s Kennedy Space Center in Florida on Aug. 14 at 12:31 p.m. EDT (1631 GMT).

After a two day orbital chase Dragon had been berthed at the station since arriving on Aug. 16.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

Dragon’s departure began early Sunday morning when Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) and ISS Commander Randy Bresnik of NASA released the Dragon spacecraft from the grips of the Canadarm2 robotic arm at 4:40 a.m. EDT, 1:40 a.m. PDT, 840 GMT.

The departure events were carried live on NASA TV. There was no live broadcast of the Pacific Ocean landing.

Working from a robotics work station inside the seven windowed domed Cupola module Nespoli and Bresnik used the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm to detach Dragon from the Earth-facing port of the Harmony module and release it into space.

“We would like to give a big thanks to all the operational teams around the world that keep our presence in space possible – to the scientists and engineers that provide the outstanding research and equipment that we have in space, to NASA and all the space agencies that contribute to the space station. And to SpaceX for giving us this outstanding vehicle,” Nespoli radioed.

Dragon then backed away slowly via a trio of thruster firings.

“The three departure burns to move Dragon away from the @Space_Station are complete,” SpaceX confirmed.

The departure of the SpaceX Dragon Sunday morning, Sept. 17, 2017 leaves three spaceships parked at the space station including the Progress 67 resupply ship and the Soyuz MS-05 and MS-06 crew ships. Credit: NASA

The final de-orbit burn took place as planned around 9 a.m. EDT some four and a half hours after leaving the station and setting Dragon up for the scorching reentry into the Earth’s atmosphere.

“Dragon’s de-orbit burn is complete and trunk has been jettisoned. Pacific Ocean splashdown in ~30 minutes,” said SpaceX.

All the drogue and main parachutes deployed as planned during the descent to Earth.

“Dragon’s three main parachutes have been deployed.”

SpaceX commercial naval ships were on standby to retrieve the spacecraft from the ocean and sail it back to port in Long Beach, California.

Some time critical research specimens will be removed immediately for return to NASA. The remainder will be transported back with Dragon to SpaceX’s test facility in McGregor, Texas, for final post flight processing and handover to NASA.

“A variety of technological and biological studies are returning in Dragon. NASA and the Center for the Advancement of Science in Space (CASIS), the non-profit organization that manages research aboard the U.S. national laboratory portion of the space station, will receive time-sensitive samples and begin working with researchers to process and distribute them within 48 hours,” said NASA in a statement.

The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

SpaceX holds a NASA commercial resupply services (CRS) contract that includes up to 20 missions under the original CRS-1 contract.

The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel carried more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex when it launched Aug. 14 from KSC pad 39A.

20 mice were also onboard and were returned alive on the round trip flight.

This mission supported dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members – including NASA’s space endurance record breaking astronaut Peggy Whitson.

The Cosmic-Ray Energetics and Mass investigation (CREAM) instrument from the University of Maryland, College Park involves placing a balloon-borne instrument aboard the International Space Station to measure the charges of cosmic rays over a period of three years. CREAM will be attached to the Japanese Experiment Module Exposed Facility. Existing CREAM hardware used for balloon flights. Credit: NASA

Whitson returned to Earth in a Soyuz capsule earlier this month following a 10 month mission and carried out research included in the samples returned by Dragon CRS-12.

Visiting vehicle configuration at the International Space Station (ISS) after arrival of the Soyuz MS-06 spacecraft on Sept. 12, 2017. Credit: NASA

Here’s a NASA science summary:

The Lung Tissue experiment used the microgravity environment of space to test strategies for growing new lung tissue. The ultimate goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.

Samples from the CASIS PCG 7 study used the orbiting laboratory’s microgravity environment to grow larger versions of an important protein implicated in Parkinson’s disease. Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, researchers will look to take advantage of the station’s microgravity environment which allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and aid in the development of therapies against this target.

Mice from NASA’s Rodent Research-9 study also will return live to Earth for additional study. The investigation combined three studies into one mission, with two looking at how microgravity affects blood vessels in the brain and in the eyes and the third looking at cartilage loss in hip and knee joints. For humans on Earth, research related to limited mobility and degrading joints can help scientists understand how arthritis develops, and a better understanding of the visual impairments experienced by astronauts can help identify causes and treatments for eye disorders.

The next SpaceX Dragon is due to blastoff around December from KSC.

An Orbital ATK Cygnus cargo ship is slated to launch in November from NASA Wallops in Virginia.

Watch for Ken’s continuing onsite NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com
The Soyuz MS-06 rocket blasts off with the Expedition 53-54 crew towards the International Space Station from the Baikonur Cosmodrome in Kazakhstan, Tuesday, Sept. 12, 2017 (Wednesday, Sept. 13, Kazakh time). Credit: NASA/Bill Ingalls

Secret X-37B Military Mini-Shuttle Set for SpaceX Blastoff/Landing Sept. 7 as Cat 5 Hurricane Irma Forces Florida State of Emergency – Watch Live

SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – Although its far from sunny in the so called ‘Sunshine State’ the secret X-37B military mini-shuttle is set for a SpaceX blastoff and booster landing combo Thursday, Sept. 7 – even as the looming threat from Cat 5 Hurricane Irma forced Florida’s Governor to declare a statewide ‘State of Emergency.’

Launch preparations were in full swing today on Florida’s Space Coast for liftoff of the hi tech USAF X-37B reusable spaceplane- hoping to escape to orbit for the first time atop a SpaceX Falcon 9 rocket and just in the nick of time tomorrow, before the impending threat of monster storm Irma potentially lashes the launch pad at NASA’s Kennedy Space Center in the center of the states long peninsula.

Hurricane Irma Cone forecast on Sept 7, 2017 from the National Hurricane Center. Credit: NHC

Irma is packing winds of 185 mph and one of the strongest Atlantic storms ever. It is being closely tracked in incredibly high resolution by the new NASA/NOAA GOES-16 (GOES-R) satellite launched late last year on a ULA Atlas V in Nov 2016.

I witnessed the entire SpaceX Falcon 9 rocket and payload stack being rolled horizontally up the incline to the top of Launch Complex 39A late this afternoon, Sept. 6, during our media visit for up-close camera setup.

Up close head on view of SpaceX Falcon 9 rocket rolling horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017. The rocket is being processed for liftoff of the X-37B OTV-5 mini-shuttle mission scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Rather remarkably the relatively dismal weather forecast has brightened considerably in the final hours leading to Thursday’s scheduled launch and the forecast heavy rain showers and thunder have dissipated in the time remaining between now and liftoff.

The X-37B reusable mini-shuttle is a secretive technology testing spaceplane flying on its fifth mission overall.

Up close side view of SpaceX Falcon 9 rocket and nose cone housing the X-37B OTV-5 spaceplane slated for liftoff from Launch Complex 39A at the Kennedy Space Center on Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

The path to launch was cleared following the successful engine test firing of the Falcon 9 first stage I witnessed late last week, Thursday afternoon, Aug. 30.

During the hold down static fire test all nine Merlin 9 stage engine were ignited and fired up to full throttle for several seconds. See my static fire story here.

SpaceX conducts successful static fire test of the Falcon 9 first stage rocket at 4:30 p.m. EDT on Aug. 31, 2017 on Launch Complex 39A on NASA’s Kennedy Space Center, Fl., as seen from nearby Playalinda causeway. Liftoff of the USAF X-37B OTV-5 mini-shuttle mission is scheduled for Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

Although the exact launch time remains a closely guarded U.S. Air Force secret, liftoff of the X-37B is slated to occur sometime during a 5 hour long window.

The launch window for the X-37B on the OTV-5 mission opens at 9:50 a.m. EDT (13:50 UTC) and spans until 2:55 p.m. EDT (18:55 UTC) Sept. 7 from seaside Launch Complex 39A on NASA’s Kennedy Space Center.

SpaceX will offer their own live webcast beginning approximately 15 minutes before launch starting at about 9:35 a.m. EDT.

You can watch the launch live at NASA TV at the SpaceX hosted Webcast at – spacex.com/webcast

In the event of delay for any reason, the next launch opportunity is Friday, Sept 8 at approximately the same time and window.

However amidst the heavy duty Hurricane Irma preparations all around, nothing is certain. Local area schools in Brevard County have closed and local residents are preparing their homes and apartments to hunker down, buying food and essentials putting up storm shutters, topping off gas and energy supplies and more.

“If for any reason we cannot launch tomorrow we will reevaluate whether or not we can still support another attempt on Friday, said Wayne R. Monteith, Brig Gen, USAF, Commander, 45th Space Wing.

The weather forecast overall is about 50% chance of favorable conditions at launch time according to U.S. Air Force meteorologists with the 45th Space Wing Weather Squadron at Patrick Air Force Base. But the opportunity varies within the long window and the exact launch time is currently classified.

“Hurricane Irma is forecast to be approximately 900 miles southeast of the Spaceport during Thursday’s launch attempt, so while Irma certainly bears watching, the stalled boundary will be the main factor in Thursday’s weather,” noted the 45th Space Wing Weather Squadron.

The primary concerns on Sept. 7 are for cumulus clouds and for thick clouds in the flight path.

The odds drop to 40% favorable for the 24 hour scrub turnaround day on Friday, Sept 8

The USAF X-37B Orbital Test Vehicle is set for blastoff on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle from Launch Complex 39A (LC-39A) at Kennedy Space Center in Florida. Photo: Boeing/USAF

Everything is currently on track for Thursday’s launch of the 230 foot tall SpaceX Falcon 9 on the X-37B OTV-5 mission.

“The Air Force Rapid Capabilities Office is undergoing final launch preparations for the fifth mission of the X-37B Orbital Test Vehicle [OTV],” the Secretary of the Air Force Public Affairs announced. “The OTV is scheduled to launch on Sept. 7, 2017, onboard a SpaceX Falcon 9 launch vehicle.

SpaceX Falcon 9 rocket rolls horizontally up incline at Launch Complex 39A at the Kennedy Space Center on 6 Sept. 2017 ahead of liftoff of the X-37B OTV-5 spaceplane mission on Sept. 7, 2017. Credit: Julian Leek

The X-37B will be launched for the fifth time on the OTV-5 mission atop a SpaceX Falcon 9 on Sept. 7 from Launch Complex 39A on the Kennedy Space Center Florida into low Earth orbit.

The Boeing-built X-37B is processed for flight at KSC using refurbished NASA space shuttle processing facilities now dedicated to the reusable mini-shuttle, also known as the Orbital Test Vehicle (OTV). It launches vertically like a satellite but lands horizontally like an airplane and functions as a reliable and reusable space test platform for the U.S. Air Force.

The OTV-5 mission marks the first launch of an X-37B spaceplane by SpaceX.

All four prior OTV missions launched on the United Launch Alliance Atlas V and ended with runway landings in either California or Florida.

“The many firsts on this mission make the upcoming OTV launch a milestone for the program,” said Randy Walden, the director of the Air Force Rapid Capabilities Office.

“It is our goal to continue advancing the X-37B OTV so it can more fully support the growing space community.”

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

SpaceX will also attempt another land landing of the 156-foot-tall Falcon 9 first stage back at Landing Zone-1 (LZ-1) at the Cape.

The Falcon 9 first stage is equipped with a quartet of landing legs and grid fins to enable the rocket recycling plan.

Up close view of SpaceX Falcon 9 landing legs for the X-37B OTV-5 spaceplane slated for liftoff from Launch Complex 39A at the Kennedy Space Center on Sept. 7, 2017. Credit: Ken Kremer/kenkremer.com

This marks the 7th time SpaceX attempts a ground landing at the Cape.

The booster will touch down about 8 minutes after launch and generate multiple sonic booms screaming loudly across the surrounding region and beyond.

“The fifth OTV mission will also be launched into, and landed from, a higher inclination orbit than prior missions to further expand the X-37B’s orbital envelope.”

The daylight first stage precision guided landing should offer spectators a thrilling up close view of the rocket reusability technology envisioned by SpaceX’s billionaire CEO Elon Musk to drastically slash the high costs of launching to space.

Technicians work on the Air Force X-37B Orbital Test Vehicle 4, which landed at NASA’s Kennedy Space Center Shuttle Landing Facility in Florida May 7, 2017. Credit: Secretary of the Air Force Public Affairs.

The 11,000 pound (4990 kg) state-of -the art reusable OTV space plane is about a quarter the size of a NASA space shuttle. The vehicle measures 29 ft 3 in (8.9 m) in length with a wingspan of 14 ft 11 in (4.5 m).

The X-37B was originally developed by NASA but was transferred to the Defense Advanced Research Projects Agency (DARPA) in 2004.

Since then most but not all of the spaceplane’s goals have been shrouded in secrecy.

Watch for Ken’s continuing onsite X-37B OTV-5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Station Crew Grapples SpaceX Dragon Delivering Tons of Science After Thunderous Liftoff: Launch & Landing Gallery

The SpaceX Dragon CRS-12 cargo craft is now attached to the International Space Station after arriving on Aug. 16, 2017. It delivered over 3 tons of science and supplies to the six person Expedition 52 crew. Credit: NASA TV

KENNEDY SPACE CENTER, FL – Following a two day orbital chase and ballet of carefully choreographed thruster firings, the SpaceX Dragon cargo capsule launched at lunchtime on Monday Aug. 14 with tons of science and supplies arrived in the vicinity of the International Space Station (ISS) this morning, Wednesday, Aug 16.

While Dragon maneuvered in ever so slowly guided by lasers, NASA astronaut Jack Fischer and ESA (European Space Agency) astronaut Paolo Nespoli carefully extended the stations robotic arm to reach out and grapple the gumdrop shaped capsule.

They deftly captured the Dragon CRS-12 resupply spacecraft slightly ahead of schedule at 6:52 a.m. EDT with the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm while working at a robotics work station in the seven windowed domed Cupola module.

The SpaceX Dragon cargo craft is pictured approaching the International Space Station on Wednesday morning Aug. 16, 2017. Credit: NASA

The million pound orbiting outpost was traveling over the Pacific Ocean north of New Zealand at the time of capture.

Liftoff of the SpaceX Falcon 9 took place precisely on time 2 days earlier with ignition of the 9 Merlin 1D first stage engines from seaside pad 39A at NASA’s Kennedy Space Center in Florida today (Aug. 14) at 12:31 p.m. EDT (1631 GMT).

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

The two stage Falcon 9 stands 213-foot-tall (65-meter-tall). The combined output of the 9 Merlin 1D first stage engines generates 1.7 million pounds of liftoff thrust, fueled by liquid oxygen and RP-1 propellants.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

See an exciting gallery of launch imagery and videos including the thrilling ground landing of the 156 foot tall first stage booster back at Cape Canaveral at Landing Zone-1 – from this author and several space colleagues.

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

Monday’s picture perfect lunchtime liftoff of the unmanned SpaceX CRS-12 Dragon cargo freighter bound for the ISS and loaded with over 3 tons of science, research hardware and supplies including a hefty cosmic ray detector named ISS-CREAM, medical research experiments dealing with Parkinson’s disease, lung and heart tissue, vegetable seeds, dozens of mice and much more – came off without a hitch.

Ground controllers then carried out the remainder of the work to berth the SpaceX Dragon cargo spacecraft at the Earth facing port on the Harmony module of the International Space Station at 9:07 a.m. EDT.

This illustration of the International Space Station shows the current configuration with four visiting vehicle spaceships parked at the space station including the SpaceX Dragon CRS-12 cargo craft that arrived Aug. 16, 2017, the Progress 67 resupply ship and two Soyuz crew ships. Credit: NASA

The crew was perhaps especially eager for this Dragons arrival because tucked inside the more than 3 tons of cargo was a stash of delicious ice cream treats.

“The small cups of chocolate, vanilla and birthday cake-flavored ice cream are arriving in freezers that will be reloaded with research samples for return to Earth when the Dragon spacecraft departs the station mid-September,” said NASA.

Indeed the crew did indeed open the hatches today, early than planned, a few hours after arrival and completion of the requisite safety and leak checks.

The SpaceX Dragon cargo craft is pictured approaching the International Space Station on Wednesday morning Aug. 16, 2017. Credit: NASA TV

The whole sequence was broadcast on NASA TV that began live arrival coverage at 5:30 a.m showing numerous stunning video sequences of the rendezvous and grappling often backdropped by our precious Home Planet.

The current multinational Expedition 52 crew serving aboard the ISS comprises of Flight Engineers Paolo Nespoli from ESA, Jack Fischer, Peggy Whitson and Randy Bresnik of NASA and Sergey Ryazanskiy and Commander Fyodor Yurchikhin of Roscosmos.

Launch of SpaceX Falcon on Dragon CRS-12 mission to the ISS from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Julian Leek

The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

SpaceX holds a NASA commercial resupply services (CRS) contract that includes up to 20 missions under the original CRS-1 contract.

The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds ( 2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. 20 mice are also onboard. This will support dozens of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

The Expedition 52 crew poses for a unique portrait. Pictured clockwise from top right are, Flight Engineers Paolo Nespoli, Jack Fischer, Peggy Whitson, Sergey Ryazanskiy, Randy Bresnik and Commander Fyodor Yurchikhin. Credit: NASA/Roscosmos/ESA

Video Caption: CRS-12 launch from Pad 39A on a Falcon 9 rocket. Pad camera views from the launch of the CRS-12 mission carrying 6415 pounds of supplies and equipment to the International Space Station on August 14, 2017. Credit: Jeff Seibert


The SpaceX Falcon 9/Dragon CRS-12 launch was the first of a rapid fire sequence of a triad of launches along the Florida Space Coast over the next 11 days of manmade wonder – Plus a Total Solar ‘Eclipse Across America’ natural wonder sandwiched in between !!

Launch of SpaceX Falcon on Dragon CRS-12 mission to the ISS from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Julian Leek

Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

………….

Learn more about the upcoming ULA Atlas TDRS-M NASA comsat on Aug. 18, 2017 , SpaceX Dragon CRS-12 resupply launch to ISS on Aug. 14, Solar Eclipse, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

Aug 17-18: “TDRS-M NASA comsat, SpaceX CRS-12 resupply launches to the ISS, Intelsat35e, BulgariaSat 1 and NRO Spysat, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity and Opportunity explore Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com
Blastoff of SpaceX Dragon CRS12 on its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017 as seen from the VAB roof. Credit: Ken Kremer/Kenkremer.com

Stunning SpaceX Space Station Cargo Blastoff and Cape Landing Kicks Off Sunshine State Liftoff Trio

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

KENNEDY SPACE CENTER, FL – Todays (Aug. 14) stunning SpaceX Space Station cargo delivery blastoff to the International Space Station (ISS) and flawless first stage landing from the Kennedy Space Center and Cape Canaveral Air Force Station in the Sunshine State kicked off a rapid fire sequence of liftoffs planned for mid August.

All 9 SpaceX Falcon 9 Merlin 1D first stage engines ignited precisely on time from seaside pad 39A at NASA’s Kennedy Space Center in Florida today (Aug. 14) at 12:31 p.m. EDT (1631 GMT).

“It was a gorgeous day and a specular launch,” said Dan Hartman, NASA deputy manager of the International Space Station Program, at the post launch briefing at the Kennedy Space Center press site.

The 9 Merlin 1D’s of the two stage 213-foot-tall (65-meter-tall) Falcon 9 generate 1.7 million pounds of liftoff thrust fueled by liquid oxygen and RP-1 propellants.

“Just greatness to report about the launch,” said Hans Koenigsmann, SpaceX vice president of Flight and Build Reliability at the post launch briefing.

“The second stage deployed Dragon to a near perfect orbit. The first stage was successful and made a perfect landing. From what I’ve heard, it’s right on the bullseye and made a very soft touchdown, so it’s a great pre-flown booster ready to go for the next time.”

So its 1 down and 2 launches to go along the Florida Space Coast over the next 11 days of manmade wonder – Plus a Total Solar ‘Eclipse Across America’ natural wonder sandwiched in between !!

SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

Monday’s picture perfect lunchtime liftoff of the unmanned SpaceX CRS-12 Dragon cargo freighter bound for the ISS and loaded with over 3 tons of science, research hardware and supplies including a hefty cosmic ray detector named ISS-CREAM, medical research experiments dealing with Parkinson’s disease, lung and heart tissue, vegetable seeds, dozens of mice and much more – came off without a hitch.

“We’re excited that about three quarters of the payload aboard is science,” noted Hartman. “With the internal and external payloads that we have going up, it sets a new bar for the amount of research that we’ve been able to get on this flight.”

And all 6 astronauts and cosmonauts serving aboard the station are especially looking forward to unpacking and serving up a specially cooled and hefty stash of delicious ice cream!

The ice cream, medical experiments and mice were all part of the late load items added the evening before liftoff – work that was delayed due to thunderstorms and completed just in time to avoid a launch delay.

Launch of SpaceX Falcon on Dragon CRS-12 mission to the ISS from NASA’s Kennedy Space Center in Florida at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Julian Leek

A huge crowd of delighted locals, tourists and folks flocking in from around the globe, packed local beaches, causeways and parks and the Kennedy Space Center and witnessed a space launch and landing spectacular they will long remember.

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

The Dragon resupply ship dubbed Dragon CRS-12 counts as SpaceX’s twelfth contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

The launch and landing of the SpaceX Falcon 9 booster took place just minutes apart under near perfect weather conditions, as the Dragon capsule sped to the heavens on a mission to the High Frontier of Space.

Ground landing of SpaceX Falcon 9 first stage at Landing Zone-1 (LZ-1) after SpaceX launched its 12th resupply mission to the International Space Station from NASA’s Kennedy Space Center in Florida from pad 39A at 12:31 p.m. EDT on Monday, Aug. 14, 2017. Credit: Ken Kremer/Kenkremer.com

The 22 story Falcon 9 roared off pad 39A on a stream of flames and exhaust into blue skies decorated with artfully spaced wispy clouds that enhanced the viewing experience as the rocket accelerated to orbit and on its way to the 6 person multinational crew.

The triple headed sunshine state space spectacular marches forward in barely 4 days with liftoff of NASA’s amazingly insectoid-looking TDRS-M science relay comsat slated for Friday morning Aug. 18 atop a United Launch Alliance (ULA) Atlas V rocket.

Lastly, a week after TDRS-M and just 11 days after the SpaceX Dragon an Orbital ATK Minotaur 4 rocket is due to blastoff just before midnight Aug. 25 and carry the ORS 5 mission to orbit for the U.S. military’s Operationally Responsive Space program. The Minotaur IV utilizes three stages from decommissioned Peacekeeper ICBMs formerly aimed at the Russians and perhaps the North Koreans.

The Total Solar ‘Eclipse Across America’ takes place on Monday, Aug. 21. It’s the first solar eclipse in 99 years that space the continent from coast to coast and will be at least partially visible in all 48 contiguous states!

The 20-foot high, 12-foot-diameter Dragon CRS-12 vessel is carrying more than 6,400 pounds (2,900 kg) of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex.

20 mice are also onboard from NASA for the Rodent Research 9 (RR-9) experiment and another dozen from Japanese researchers. This will support more than 80 of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

Dragon reached its preliminary orbit about 10 minutes later and successfully deployed its life giving solar arrays.

Dragon CRS-12 now begins a 2 day orbital chase of the station via a carefully choreographed series of thruster firings that bring the commercial spacecraft to rendezvous with the space station on Aug. 16.

Dragon will be grappled with the station’s 57.7-foot-long (17.6 meter-long) Canadian-built robotic arm at approximately 7 a.m. EDT on Aug. 16 by astronauts Jack Fischer of NASA and Paolo Nespoli of ESA (European Space Agency). It then will be installed on the Harmony module.

The Dragon spacecraft will spend approximately 35 days attached to the space station, returning to Earth in mid-September with over 3000 pounds of science samples and results gathered over many months from earlier experiments by the station crews.

Dragon CRS-12 is SpaceX’s third contracted resupply mission to launch this year for NASA.

The prior SpaceX cargo ships launched on Feb 19 and June 3, 2017 on the CRS-10 and CRS-11 missions to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

A fourth cargo Dragon is likely to launch this year in December on the CRS-13 resupply mission under NASA’s current plans.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

Cargo Manifest for CRS-12:

TOTAL CARGO: 6415.4 lbs. / 2910 kg
TOTAL PRESSURIZED CARGO WITH PACKAGING: 3642 lbs. / 1652 kg
• Science Investigations 2019.4 lbs. / 916 kg
• Crew Supplies 485 lbs. / 220 kg
• Vehicle Hardware 747.4 lbs. / 339 kg
• Spacewalk Equipment 66.1 lbs. / 30 kg
• Computer Resources 116.8 lbs. / 53 kg

UNPRESSURIZED 2773.4 lbs. / 1258 kg
• Cosmic-Ray Energetics and Mass (CREAM) 2773.4 lbs. / 1258 kg

The CREAM instrument from the University of Maryland will be stowed for launch inside the Dragon’s unpressurized trunk. Astronauts will use the stations robotic arm to pluck it from the trunk and attach it to a US port on the exposed porch of the Japanese Experiment Module (JEM).

CREAM alone comprises almost half the payload weight.

The Cosmic-Ray Energetics and Mass investigation (CREAM) instrument from the University of Maryland, College Park involves placing a balloon-borne instrument aboard the International Space Station to measure the charges of cosmic rays over a period of three years. CREAM will be attached to the Japanese Experiment Module Exposed Facility. Existing CREAM hardware used for balloon flights. Credit: NASA

Here is a NASA description of CREAM:

The Cosmic Ray Energetics and Mass (CREAM) instrument will be attached to the Japanese Experiment Module Exposed Facility on the space station, and measure the charges of cosmic rays. The data collected from its three-year mission will address fundamental questions about the origins and histories of cosmic rays, building a stronger understanding of the basic structure of the universe.

The LRRK2 experiment seeks to grow larger crystals of the protein to investigate Parkinson’s disease and help develop new therapies:

Here is a NASA description of LRRK2:

The Dragon’s pressurized area includes an experiment to grow large crystals of leucine-rich repeat kinase 2 (LRRK2), a protein believed to be the greatest genetic contributor to Parkinson’s disease. Gravity keeps Earth-grown versions of this protein too small and too compact to study. This experiment, developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, will exploit the benefits of microgravity to grow larger, more perfectly-shaped LRRK2 crystals for analysis on Earth. Results from this study could help scientists better understand Parkinson’s and aid in the development of therapies.

Watch this Michael J. Fox video describing the LRRK2 crystallization experiment:

Watch for Ken’s continuing onsite CRS-12, TRDS-M, and ORS 5 and NASA mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.
Ken Kremer

SpaceX Falcon 9 rocket rests horizontally at Launch Complex 39A at the Kennedy Space Center on 13 Aug. 2017 while being processed for liftoff of the Dragon CRS-12 resupply mission to the International Space Station (ISS) slated for 14 Aug. 2017. Credit: Ken Kremer/Kenkremer.com

Musk Says Maiden Falcon Heavy to Launch in November, Acknowledges High Risk and Releases New Animation

SpaceX Falcon Heavy rocket poised for launch from the Kennedy Space Center in Florida in this artists concept. Credit: SpaceX

Before the year is out, the long awaited debut launch of the triple barreled Falcon Heavy rocket may at last be in sight says SpaceX CEO and founder Elon Musk, as he forthrightly acknowledges it comes with high risk and released a stunning launch and landing animation earlier today, Aug. 4.

After years of painstaking development and delays, the inaugural blastoff of the SpaceX Falcon Heavy is currently slated for November 2017 from NASA’s Kennedy Space Center in Florida, according to Musk.

“Falcon Heavy maiden launch this November,” SpaceX CEO and billionaire founder Elon Musk tweeted last week.

“Lot that can go wrong in the November launch …,” Musk said today on Instagram, downplaying the chances of complete success.

And to whet the appetites of space enthusiasts worldwide, just today Musk also published a one minute long draft animation illustrating the Falcon Heavy triple booster launch and how the individual landings of the trio of first stage booster cores will take place – nearly simultaneously.

Video Caption: SpaceX Falcon Heavy launch from KSC pad 39A pad and first stage booster landings. Credit: SpaceX

“Side booster rockets return to Cape Canaveral,” explains Musk on twitter. “Center lands on droneship.”

The two side boosters will be recycled from prior Falcon 9 launches and make precision guided propulsive, upright ground soft landings back at Cape Canaveral Air Force Station, Florida. Each booster is outfitted with a quartet of grid fins and landing legs. The center core is newly built and heavily modified.

“Sides run high thrust, center is lower thrust until sides separate & fly back. Center then throttles up, keeps burning & lands on droneship. If we’re lucky!” Musk elaborated.

The center booster will touch down on an ocean going droneship prepositioned in the Atlantic Ocean some 400 miles (600 km) off of Florida’s east coast.

To date SpaceX first stages from KSC launches have touched down either on land at Landing Zone-1 (LZ-1) at the Cape or at sea on the “Of Course I Still Love You” droneship barge (OCISLY).

The launch of the extremely complicated Falcon Heavy booster with 27 first stage Merlin 1D engines also comes associated with a huge risk – and he hopes that it at least rises far enough off the ground to minimize the chances of damage to the historic pad 39A at the Kennedy Space Center.

“There’s a lot of risk associated with Falcon Heavy, a real good chance that that vehicle does not make it to orbit,” Musk said recently while speaking at the International Space Station Research and Development Conference in Washington, D.C. on July 19.

“I want to make sure to set expectations accordingly. I hope it makes it far enough beyond the pad so that it does not cause pad damage. I would consider even that a win, to be honest.”

Musk originally proposed the Falcon Heavy in 2011 and targeted a maiden mission in 2013.

Whenever it does launch, the Falcon Heavy will become the world’s most powerful rocket.

“I think Falcon Heavy is going to be a great vehicle,” Musk stated. “There’s just so much that’s really impossible to test on the ground, and we’ll do our best.

“Falcon Heavy requires the simultaneous ignition of 27 orbit-class engines. There’s a lot that can go wrong there.”

Designing and building Falcon Heavy has proven to be far more difficult than Musk ever imagined, and the center booster had to be significantly redesigned.

“It actually ended up being way harder to do Falcon Heavy than we thought,” Musk explained.

“At first it sounds real easy! You just stick two first stages on as strap-on boosters. How hard can that be?” But then everything changes. All the loads change, aerodynamics totally change. You’ve tripled the vibration and acoustics. You sort of break the qualification levels on so much of the hardware.”

“The amount of load you’re putting through that center core is crazy because you’ve got two super-powerful boosters also shoving that center core. So we had to redesign the whole center core airframe,” Musk added. “It’s not like the Falcon 9 – because it’s got to take so much load. Then you’ve got separation systems.”

Due to the high risk, there will be no payload from a paying customer housed inside the nose cone atop the center core. Only a dummy payload will be installed on the maiden mission.

However future Falcon Heavy missions have been manifested with commercial and science payloads.

Musk also hopes to launch a pair of paying private astronauts on a trip around the Moon and back as soon as 2018 while journeying inside a Crew Dragon spacecraft with the Falcon Heavy – similar to what his company is developing for NASA for commercial ferry missions to low Earth orbit (LEO) and the International Space Station (ISS).

Falcon Heavy will blast off with about twice the thrust of the Delta IV Heavy, currently the worlds most powerful rocket. The United Launch Alliance (ULA) Delta IV Heavy (D4H) has been the world’s mightiest rocket since the retirement of NASA’s Space Shuttles in 2011.

The Falcon Heavy sports about 2/3 the liftoff thrust of NASA’s Saturn V manned moon landing rockets – last launched in the 1970s.

SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The Falcon Heavy is comprised of three Falcon 9 cores. The Delta IV Heavy is comprised of three Delta Common Core Boosters.

The combined trio of Falcon 9 cores will generate about 5.1 million pounds of liftoff thrust upon ignition from Launch Complex 39A at the Kennedy Space Center in Florida.

“With the ability to lift into orbit over 54 metric tons (119,000 lb)–a mass equivalent to a 737 jetliner loaded with passengers, crew, luggage and fuel–Falcon Heavy can lift more than twice the payload of the next closest operational vehicle, the Delta IV Heavy, at one-third the cost,” according to the SpaceX website.

“The nice thing is when you fully optimize it, it’s about two-and-a-half times the payload capability of a Falcon 9,” Musk notes. “It’s well over 100,000 pounds to LEO of payload capability, 50 tons. It can even get up a little higher than that if optimized.”

ULA Delta 4 Heavy rocket delivers NROL-37 spy satellite to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

The two stage Falcon Heavy stands more than 229.6 feet (70 meters) tall and is 39.9 feet wide (12.2 meters).

It weighs more than 3.1 million pounds (1.4 million kilograms).

Like the Falcon 9 it will be fueled with liquid oxygen and RP-1 kerosene propellants.

The thunder, power and roar of over 5 million pounds of liftoff thrust from the Falcon Heavy’s 27 engines is absolutely certain to be a thrilling, earth-shaking space spectacular !! Thus placing it in a class of its own unlike any US launch since NASA’s Saturn V and Space Shuttles rocketed to the high frontier from the same pad.

“I encourage people to come down to the Cape to see the first Falcon Heavy mission,” Musk said. “It’s guaranteed to be exciting.”

But before the Falcon Heavy can actually be rolled up to launch position at pad 39A, SpaceX must first complete repairs and refurbishment to nearby pad 40.

That Cape pad was heavily damaged nearly a year ago during a catastrophic launch pad explosion that took place in Sept. 2016 during a routine prelaunch fueling and static fire engine test of a Falcon 9 rocket with the Amos-6 commercial comsat payload bolted on top.

Pad 40 must achieve operational launch status again before SpaceX can commit to the Falcon Heavy launches at Pad 39A. Workers will also need to finish construction work at pad 39A to support the Heavy launches.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

To date SpaceX has successfully demonstrated the recovery of thirteen boosters by land and sea.

Furthermore SpaceX engineers have advanced to the next step and successfully recycled, reflown and relaunched two ‘flight-proven first stages this year in March and June of 2017 from the Kennedy Space Center in Florida involving the SES-10 and BulgariaSat-1 launches respectively.

SpaceX CEO and Chief Designer Elon Musk and SES CTO Martin Halliwell exuberantly shake hands of congratulation following the successful delivery of SES-10 TV comsat to orbit using the first reflown and flight proven booster in world history at the March 30, 2017 post launch media briefing at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/Kenkremer.com

The next SpaceX Falcon 9 launch is slated for Aug. 13 on the NASA contracted CRS-12 resupply mission to the ISS.

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com
Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida- as seen from the crawlerway. Credit: Ken Kremer/kenkremer.com

SpaceX Dragon Returns Science Cargo to Earth, Falcon 9 Delivers Massive ‘Epic’ Intelsat Comsat to Orbit – Photo/Video Galley

SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – July has begun with SpaceX maintaining a blistering pace of blasting rockets and spaceships flying to space and returning to Earth for a host of multipronged missions furthering NASA science both on the International Space Station (ISS) and beyond, commercial space endeavors in the US and overseas and fulfilling billionaire founder Elon Musk’s dreams of creating reusable rocketry to slash launch costs and advance humanity’s push to the stars.

On July 2, SpaceX conducted the first launch attempt of the Intelsat 35e telecomsat that ultimately culminated with a spectacularly successful launch on the third try on July 5 at dusk that lit up the Florida Space Coast skies.

A Falcon 9 roared off SpaceX’s seaside launch pad 39A at NASA’s Kennedy Space Center in Florida precisely on time at 7:38 p.m. EDT, or 2338 UTC July 5 carrying the massive Intelsat 35e communications satellite for commercial high speed broadband provider Intelsat.

SpaceX Falcon 9 launch of with ‘Epic’ comsat for Intelsat at 7:38 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

Check out the expanding gallery of eyepopping photos and videos from several space journalist colleagues and friends and myself – for views you won’t see elsewhere.

Click back as the gallery grows !

SpaceX Falcon 9 streaks to geostationary orbit after blast off with advanced Intelsat 35e ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

On July 3, the first reflown SpaceX Dragon cargo freighter returned to Earth with a splashdown in the Pacific Ocean after a month-long stay at the International Space Station.

SpaceX contracted ships recovered Dragon from the ocean and hauled it onto deck for return to Port and handover of the science experiments to NASA and teams of research investigators.

SpaceX Dragon returned to Earth July 3, 2017 with a splashdown in the Pacific Ocean after a month-long stay at the International Space Station, completing the first re-flight mission of a commercial spacecraft to and from the orbiting laboratory. Credit: SpaceX

The Dragon CRS-11 spacecraft completed the first re-flight mission of a commercial spacecraft to and from the orbiting laboratory.

The gumdrop shaped Dragon spacecrft brought back more than 4,100 pounds of cargo and research samples gathered by members of the stations multinational crews.

Meanwhile, the doubly ‘flight-proven’ SpaceX Falcon 9 booster from the BulgariaSat-1 launch that propulsoively soft landed upright and intact on the sea going OCISLY drone ship hundreds of mile (km) offshore in the Atlantic Ocean sailed back into Port Canaveral.

After berthing in port, technicians removed its quartet of landing legs and lowered it horizontally for transport back to KSC for refurbishment operations.

SpaceX Falcon 9 booster from BulgariaSat-1 craned from OCISLY droneship to ground based platform on Port Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Watch these launch videos:

Video Caption: Falcon 9 launch of the fourth Intelsat EpicNG high throughput satellite built by Boeing on July 5, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida. Credit: Jeff Seibert

Video Caption: Time lapse of SpaceX launch of the Intelsat 35e satellite on a legless Falcon 9 rocket from Pad 39A on July 5, 2017 at NASA’s Kennedy Space Center in Florida. Credit: Jeff Seibert

The first stage was not recovered for this launch because the massive 6800 kg (13000 lb) Intelsat 35e comsat requires every drop of fuel to get to the desired orbit.

SpaceX Falcon 9 accelerates downrange to Africa and beyond streaking to geostationary orbit after liftoff blast off carrying massive Intelsat 35e ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Intelsat 35e marks the tenth SpaceX launch of 2017 – establishing a new single year launch record for SpaceX.

The recent BulgariaSat-1 and Iridium-2 missions counted as the eighth and ninth SpaceX launches of 2017.

Including those last two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Watch for Ken’s onsite Intelsat 35e and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ TV and mobile broadband comsat for Intelsat – on July 5, 2017 at 7:38 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 blasts off with Intelsat 35e – 4th next gen ‘Epic’ comsat for Intelsat – on July 5, 2017 at 7:37 p.m. EDT from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Credit: Ken Kremer/kenkremer.com
Launch of expendable SpaceX Falcon 9 with 4th next gen ‘Epic’ DTH comsat for Intelsat at 7:37 p.m. EDT on July 5, 2017 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com
Expendable SpaceX Falcon 9 is seen rising to launch position in this up close view of payload fairing encapsulating Intelsat 35e comsat and is now erected to launch position and poised for liftoff on July 5, 2017 at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Ramps Up; Reused SpaceX BulgariaSat-1 Booster Arrives in Port as Next Falcon 9 Test Fires for July 2 Intelsat Launch – Gallery

What a magnificent space sight to behold ! Cruise Ships and Recycled Rockets float side by side in Port Canaveral after recycled SpaceX Falcon 9 1st stage from BulgariaSat-1 launch from KSC on 23 June floats into port atop droneship on 29 June 2017. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL/KENNEDY SPACE CENTER, FL – The launch cadence at Elon Musk’s SpaceX is truly ramping up with Falcon 9 boosters rapidly coming and going in all directions from ground to space as the firm audaciously sets its sight on a third commercial payload orbital launch on July 2 in the span of just 9 days from its East and West Coast launch bases.

It was a magnificent sight to behold !! Seeing commercial passenger carrying cruise ships and commercial recycled rockets that will one day carry paying passenger to space, floating side by side in the busy channel of narrow Port Canaveral, basking in the suns glow from the sunshine state.

The doubly ‘flight-proven’ SpaceX Falcon 9 booster portends a promising future for spaceflight that Elon Musk hopes and plans will drastically slash the high cost of rocket launches and institute economic savings that would eventually lead to his dream of a ‘City on Mars!’ – sooner rather than later.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Thursday, June 29, serves as a perfect example of how SpaceX is rocking the space industry worldwide.

First, the reused first stage Falcon 9 booster from last Friday’s (June 23) SpaceX launch of the BulgariaSat-1 HD television broadcast satellite floated magnificently into Port Canaveral early Thursday morning atop the diminutive oceangoing droneship upon which it safely touched down upright on a quartet of landing legs some eight minutes after launch.

SpaceX Falcon 9 Booster leaning atop OCISLY droneship upon which it landed after 23 June launch from KSC floats into Port Canaveral, FL, on 29 June 2017, hauled by tugboat as seen from Jetty Park Pier. Credit: Ken Kremer/kenkremer.com

Second, SpaceX engineers then successfully conducted a late in the day static hot fire test of the Falcon 9 first stage engines and core that will power the next launch of the Intelsat 35e commercial comsat to orbit this Sunday, July 2.

So the day was just chock full of nonstop SpaceX rocketry action seeing a full day of rocket activities from dawn to dusk.

SpaceX Falcon 9 Booster and Canaveral Lighthouse together- Twice used SpaceX Falcon 9 which launched BulgariaSat-1 into orbit from KSC on 23 June floats into Port Canaveral with Cape Canaveral LIghthouse seen between landing legs in the distance as OCISLY drone ship crew on which she landed are working on deck on June 29, 2017. Credit: Ken Kremer/kenkremer.com

Thursday’s nonstop Space Coast action spanning from the north at the Kennedy Space Center and further south to Cape Canaveral Air Force Station and Port Canaveral was the culmination of space launch flow events that actually began days, weeks and months earlier.

The 156 foot- tall Falcon 9 booster had successfully landed on the tiny rectangular shaped “Of Course I Still Love You” or OCISLY droneship less than nine minutes after liftoff on Friday, June 23 on the BulgariaSat-1 flight.

That mission began with the picture perfect liftoff of the BulgariaSat-1 communications satellite for East European commercial broadband provider BulgariaSat at 3:10 p.m. EDT, or 19:10 UTC, June 23, with ignition of all nine of the ‘flight-proven’ Falcon 9 first stage engines on SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider.

The 15 story tall first stage touched down with a slight tilt of roughly eight degrees as a direct result of the extremely demanding landing regime.

Then after spending several post landing and launch days at sea due to stormy weather along the Florida Space Coast and to accommodate local shipping traffic and SpaceX planning needs, the booster at last neared shore from the south off the coast of Melbourne, FL.

Accompanied by a small armada of support vessels it was slowly towed to port by the Elsbeth III.

The SpaceX flotilla arrived at last at the mouth of Port Canaveral and Jetty Park Pier jutting into the Atlantic Ocean at about 830 a.m. EDT – offering a spectacular view at to a flock of space enthusiasts and photographers including this author.

SpaceX Booster arrival on 30 June 2017. Credit: Dawn Leek Taylor

I highly recommend you try and see a droneship arrival if all possible.

The leaning boosters – of which this is only the second – are even more dramatic!

Because the Falcon 9 barely survived the highest ever reentry force and landing heat to date, Musk reported.

The rectangularly shaped OCISLY droneship is tiny – barely the size of a moderately sized apartment complex parking lot.

Credit: Ken Kremer/kenkremer.com

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year.

Some two minutes and 40 seconds after liftoff the first and second stages separated.

As the second stage continued to orbit, the recycled first stage began the daunting trip back to Earth on a very high energy trajectory that tested the limits of the boosters landing capability.

“Falcon 9 will experience its highest ever reentry force and heat in today’s launch. Good chance rocket booster doesn’t make it back,” SpaceX founder and CEO Elon Musk wrote in a prelaunch tweet.

Following stage separation, Falcon 9’s first stage carried out two burns, the entry burn and the landing burn using a trio of the Merlin 1D engines.

Ultimately the 15 story tall booster successfully landed on the “Of Course I Still Love You” or OCISLY droneship, stationed in the Atlantic Ocean about 400 miles (600 km) offshore and east of Cape Canaveral.

“Rocket is extra toasty and hit the deck hard (used almost all of the emergency crush core), but otherwise good,” Musk tweeted shortly after the recycled booster successfully launched and landed for its second time.

Up close view of blackened Aluminum grid fins on twice used SpaceX Falcon 9 1st stage which just sailed into Port Canaveral on 29 June after launching BulgariaSat-1 23 June 2017 from pad 39A on NASA’s Kennedy Space Center. The fins are being replaced by more resilient units made of Titanium as demonstrated 1st during the recent Iridium 2 launch. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 and Iridium-2 counted as the eighth and ninth SpaceX launches of 2017.

Including those two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Both landing droneships are now back into their respective coastal ports.

It’s a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by Musk.

Watch my BulgariaSat-1 launch video from KSC pad 39A

Video Caption: Launch of SpaceX Falcon 9 on June 23, 2017 from pad 39A at the Kennedy Space Center carrying BulgariaSat-1 TV broadband satellite to geosynchronous orbit for BulgariaSat, which is Bulgaria’s 1st GeoComSat – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX Accomplishes Double Headed American Space Spectacular – 2 Launches and 2 Landings in 2 Days from 2 Coasts: Gallery

Liftoff of SpaceX Falcon 9 on June 25 at 1:25 p.m. PDT (4:25 p.m. EDT) carrying ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from Vandenberg Air Force Base in California. Credit: SpaceX

KENNEDY SPACE CENTER, FL – With Sunday’s successful Falcon 9 blastoff for Iridium Communications joining rocketry’s history books, Elon Musk’s SpaceX accomplished a double headed American space spectacular this weekend with 2 launches and 2 booster landings in 2 days from 2 coasts for 2 commercial customers – in a remarkably rapid turnaround feat that set a new record for minimum time between launches for SpaceX.

On Sunday, June 25 at 1:25 p.m. PDT (4:25 p.m. EDT; 2025 UTC) a SpaceX Falcon 9 rocket successfully launched a second set of ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from SLC-4E on Vandenberg Air Force Base in California.

“All sats healthy and talking,” tweeted Matt Desch, Iridium Communications CEO, soon after launch and confirmation that all 10 Iridium NEXT satellites were successfully deployed from their second stage satellite dispensers. Iridium is a global leader in mobile voice and data satellite communications.

“It was a great day!”

The US West Coast Falcon 9 liftoff of the Iridium-2 mission from California on Sunday, June 25 took place barely 48 hours after the US East Coast Falcon 9 liftoff of the BulgariaSat-1 mission from Florida on Friday, June 23.

Without a doubt, Musk’s dream of rocket reusability as a here and now means to slash the high costs of launching to space and thereby broaden access to space for more players is rapidly taking shape.

Following separation of the first and second stages, the Falcon 9’s 15 story tall first stage successfully landed on the “Just Read the Instructions” droneship ocean going platform stationed several hundred miles out in the Pacific Ocean off the coast of California, despite challenging weather conditions.

Indeed the droneships position was changed in the final minutes before launch due to the poor weather.

“Droneship repositioned due to extreme weather. Will be tight,” tweeted Musk minutes before liftoff.

The 156 foot tall booster touched down about 8 and ½ minutes after liftoff from Vandenberg AFB.

Liftoff of SpaceX Falcon 9 on June 25 at 1:25 p.m. PDT (4:25 p.m. EDT) carrying ten Iridium Next mobile voice and data relay communications satellites to low Earth orbit on the Iridium-2 mission from Vandenberg Air Force Base in California. Credit: SpaceX

The launch, landing and deployment of the 10 Iridium Next satellites was all broadcast live on a SpaceX webcast.

The perfectly executed Iridium-2 and BulgariaSat-1 launch and landing duo clearly demonstrates the daunting capability of SpaceX’s privately owned and operated engineering team to pull off such a remarkable feat in nimble fashion.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The stage was set for the unprecedented Falcon 9 launch doubleheader just a week ago when SpaceX CEO and billionaire founder Elon Musk tweeted out the daring space goal after all went well with the Florida Space Coast’s static hotfire test for the first in line BulgariaSat-1 flight.

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Check out the expanding gallery of Bulgariasat-1 eyepopping photos and videos from several space journalist colleagues and friends and myself.

Click back as the gallery grows !

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Dawn Leek Taylor

Sunday’s Iridium 2 flight was Iridium Communications second contracted launch with SpaceX.

“This payload of 10 satellites was deployed into low-Earth orbit, approximately one hour after a SpaceX Falcon 9 rocket lifted off from Vandenberg,” Iridium said in a statement.

The Mini Cooper sized Iridium NEXT satellites each weigh 1,900 pounds, totaling approximately 19,000 pounds placed into space. That is the weight of a semi tractor trailer truck!

The inaugural Iridium 1 launch with the first ten Iridium Next satellites took place successfully at the start of this year on Jan. 14, 2017.

IridiumNEXT satellites being fueled, pressurized & stacked on dispenser tiers at Vandenberg AFB for Falcon 9 launch. Credit: Iridium

The new set of ten Iridium Next mobile relay satellites were delivered into a circular orbit at an altitude of 625 kilometers (388 miles) above Earth.

They were released one at a time from a pair of specially designed satellite dispensers at approximately 100 second intervals.

“Since the successful January 14, 2017 launch, Iridium NEXT satellites have already been integrated into the operational constellation and are providing service. The first eight operational Iridium NEXT satellites are already providing superior call quality and faster data speeds with increased capacity to Iridium customers. The two additional satellites from the first launch are continuing to drift to their operational orbital plane, where upon arrival they will begin providing service.”

Iridium 2 is the second of eight planned Falcon 9 launches to establish the Iridium NEXT constellation which will eventually consist of 81 advanced satellites.

At least 75 will be launched by SpaceX to low-Earth orbit, with 66 making up the operational constellation.

The inaugural launch of the advanced Iridium NEXT satellites in January 2017 started the process of replacing an aging Iridium fleet in orbit for nearly two decades.

Nine of the 81 will serve as on-orbit spares and six as ground spares.

“Now, and for approximately the next 45 days, these newly launched satellites will undergo a series of testing and validation procedures, ensuring they are ready for integration with the operational constellation,” said Iridium.

“We are thrilled with yesterday’s success. These new satellites are functioning well, and we are pressing forward with the testing process,” said Scott Smith, chief operating officer at Iridium.

“Since the last launch, the team at our Satellite Network Operations Center (SNOC) has been anxiously awaiting this new batch of satellites. There is a lot of work to do, and we are up for the challenge.”

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 and Iridium-2 count as the eighth and ninth SpaceX launches of 2017.

Including these two ocean platform landings, SpaceX has now successfully recovered 13 boosters; 5 by land and 8 by sea, over the past 18 months.

Both landing droneships are now headed back into their respective coastal ports.

It’s a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by Musk.

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

Watch this BulgariaSat-1 launch video from KSC pad 39A

Video Caption: Launch of SpaceX Falcon 9 on June 23, 2017 from pad 39A at the Kennedy Space Center carrying BulgariaSat-1 TV broadband satellite to geosynchronous orbit for BulgariaSat, which is Bulgaria’s 1st GeoComSat – as seen in this remote video taken at the pad. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

BulgariaSat-1 streaks to orbit after June 23, 2017 liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
BulgariaSat-1 arcs over eastwards to Africa as it streaks to orbit after June 23, 2017 liftoff from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida- as seen from the crawlerway. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com
BulgariaSat-1 liftoff atop SpaceX Falcon 9 on June 23, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Ashley Carrillo
BulgariaSat-1 liftoff atop SpaceX Falcon 9 on June 23, 2017 from pad 39A at NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Ashley Carrillo
BulgariaSat-1 launches June 23, 2017 on SpaceX Falcon 9 from NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Wesley Baskin
BulgariaSat-1 launches June 23, 2017 on SpaceX Falcon 9 from NASA’s Kennedy Space Center in Florida, as seen from Titusville, FL residential area. Credit: Wesley Baskin
Launch 2nd recycled SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com

BulgariaSat-1 Blazes to Orbit on Used SpaceX Falcon 9 Rocket as Breakthrough Booster Lands 2nd Time on Oceanic Platform

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – In another breakthrough milestone aimed at slashing the high cost of rocketry, the innovators at billionaire entrepreneur Elon Musk’s SpaceX successfully launched a ‘used’ rocket for only the second time in history – that blazed a path to orbit with its BulgariaSat-1 commercial television comsat payload Friday afternoon, June 23, from the Kennedy Space Center and just minutes later landed upright and intact on an oceanic platform waiting offshore in the vast currents of the Atlantic ocean.

“This is really a great day for us,” Maxim Zayakov, CEO of BulgariaSat and Bulsatcom told Universe Today during pre and post launch interview’s onsite at NASA’s Kennedy Space Center in Florida.

“Everything is seeming to be a good success so far.”

To top that, SpaceX is targeting a bicoastal weekend doubleheader of launches signaling a remarkably rapid turnaround capability. Another Falcon 9 is scheduled for blastoff on Sunday, June 25 at 1:25 p.m. PDT (4:25 p.m. EDT; 2025 UTC) from Vandenberg Air Force Base in California on the Iridium-2 mission, less than 48 hours apart – which would set a new launch turnaround record for SpaceX.

The picture perfect liftoff of the BulgariaSat-1 communications satellite for East European commercial broadband provider BulgariaSat began at 3:10 p.m. EDT, or 19:10 UTC, June 23, with ignition of all nine of the ‘flight-proven’ Falcon 9 first stage engines on SpaceX’s seaside Launch Complex 39A at NASA’s Kennedy Space Center in Florida.

Launch 2nd recycled SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida – as seen from the countdown clock. Credit: Ken Kremer/kenkremer.com

BulgariaSat is an affiliate of Bulsatcom, Bulgaria’s largest digital television provider.

“Everything went down just as we expected,” BulgariaSat CEO Zayakov told me. “Of course there was a lot of excitement. And there are a lot of excited and scared feelings [with launches].”

“At the end of the day it not only worked out just as expected with the launch but the satellite also already reported in telemetry that she is doing fine,” Zayakov elaborated.

BulgariaSat-1 is the first geostationary communications satellite orbited for the nation of Bulgaria.

“We will start using it as soon as we can, in about one and a half months.”

Liftoff of used SpaceX Falcon 9 at 3:10 p.m. EDT on June 23, 2017 delivering BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Julian Leek

The used 229-foot-tall (70-meter) SpaceX Falcon 9 carrying BulgariaSat-1 soared off historic pad 39A into brilliant mid-afternoon blue skies drenching the Florida Space Coast with beloved sunshine to the delight of hordes of spectators gathered from across the globe – including a Bulgarian TV crew witnessing their first launch.

History’s first ‘flight-proven’ Falcon 9 booster was successfully launched by SpaceX this past March for Luxembourg based telecommunications giant SES on the SES-10 mission – likewise from pad 39A.

Some 35 minutes after blastoff, BulgariaSat-1 was successfully separated as planned from the Falcon 9 second stage and deployed to its targeted initial geostationary transfer orbit (GTO).

“So now she is on her way to the orbital position. The solar arrays deployed about 30 minutes after spacecraft separation from the second stage.”

Blastoff of 2nd flight-proven SpaceX Falcon 9 with 1st geostationary communications for Bulgaria at 3:10 p.m. EDT on June 23, 2017, carrying BulgariaSat-1 to orbit from Launch Complex 39A at NASA’s Kennedy Space Center in Florida- as seen from the crawlerway. Credit: Ken Kremer/kenkremer.com

Would you launch with Space X again?

“Yes looking to the future we would be happy to use SpaceX again in the future, certainly why not. SpaceX is definitely up there,” Zayakov replied.

BulgariaSat-1 will be located at the Bulgarian orbital position at 1.9 degrees East longitude and will provide reliable satellite communications solutions to broadcast, telecom, corporate and government customers.

How many customers will be served? I asked Zayakov.

“BulgariaSat-1 will serve about 800,000 customers in Bulgaria and about another million subscribers elsewhere in eastern Europe and the Balkans,” Zayakov elaborated.

The BulgariaSat-1 geostationary comsat will provide direct-to-home television (DTH) and data communications services to Southeastern Europe, including Serbia, the Balkans and other European regions.

You could not have asked for better weather as the recycled Falcon 9 roared to life for the second time with a paying customer and put on a long and exciting space spectacle for those lucky and fortunate enough to witness history with their own eyeballs first hand and follow along for several minutes as the rocket accelerated magnificently to orbit and arched over to the African continent in the nearly cloudless sky.

Falcon 9’s first stage for the BulgariaSat-1 mission previously supported the Iridium-1 mission from Vandenberg Air Force Base in January of this year.

Some two minutes and 40 seconds after liftoff the first and second stages separated.

As the second stage continued to orbit, the recycled first stage began the daunting trip back to Earth on a very high energy trajectory that tested the limits of the boosters landing capability.

“Falcon 9 will experience its highest ever reentry force and heat in today’s launch. Good chance rocket booster doesn’t make it back,” SpaceX founder and CEO Elon Musk wrote in a prelaunch tweet.

Following stage separation, Falcon 9’s first stage carried out two burns, the entry burn and the landing burn using a trio of the Merlin 1D engines.

Ultimately the 15 story tall booster successfully landed on the “Of Course I Still Love You” or OCISLY droneship, stationed in the Atlantic Ocean about 400 miles (600 km) offshore and east of Cape Canaveral.

“Rocket is extra toasty and hit the deck hard (used almost all of the emergency crush core), but otherwise good,” Musk tweeted shortly after the recycled booster successfully launched and landed for its second time.

The 156 foot tall first stage may have touched down with a slight tilt.

The OCISLY droneship is expected back into Port Canaveral in a few days.

The 8,100 pounds (3,700 kilograms) BulgariaSat-1 satellite was built by SSL in Palo Alto, Calif. It has a design lifetime for a 15-year mission.

BulgariaSat-1 is equipped with 2 Ku-band FSS transponders and 30 Ku-band BSS transponders for fixed satellite services and advanced television services such as high definition television.

With BulgariaSat-1 now safely in orbit, a period of critical testing and checkout is on tap next.

“It takes about ten days to arrive and stabilize at the final orbital slot,” Zayakov stated. “Then after those 10 days it takes about another 20 to 30 days to actually do all the orbital checkouts and orbital tests required to make sure that the satellite is performing fine and that we can start using it for broadcasts.”

“So in about one and a half months we will be ready to start using BulgariaSat-1.”

“We will start using it as soon as we can!”

2 enthusiastic ‘Thumbs Up’ from Maxim Zayakov, CEO of BulgariaSat, during interview with Universe Today at KSC countdown clock following June 23, 2017 launch of BulgariaSat-1 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

The BulgariaSat-1 launch had originally been slated for this past Monday, June 19 but was delayed four days to fix a valve in the payload fairing.

“Postponing launch to replace fairing pneumatic valve,” Musk tweeted last Sunday. “It is dual redundant, but not worth taking a chance.”

And everything went off without a hitch!

BulgariaSat-1 counts as the eighth SpaceX launch of 2017.

Payload fairing encapsulating BulgariaSat-1 comsat launching atop used SpaceX Falcon 9 booster at Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite BulgariaSat-1 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Photo of BulgariaSat-1 undergoing launch processing. Credit: SpaceX
SpaceX Falcon 9 BulgariaSat-1 mission patch logo. Credit: SpaceX/BulgariaSat

1st Recycled SpaceX Dragon Blasts Off for Space Station on 100th Flight from Pad 39A with Science Rich Cargo and Bonus Booster Landing: Gallery

Blastoff of SpaceX Falcon 9 rocket from Launch Complex 39A at the Kennedy Space Center) at 5:07 p.m. EDT on June 3, 2017, on Dragon CRS-11 resupply mission to the International Space Station (ISS) for NASA. Credit: Ken Kremer/kenkremer.com

KENNEDY SPACE CENTER, FL – After threatening stormy skies over the Florida Space Coast miraculously parted just in the nick of time, the first ever recycled SpaceX Dragon cargo freighter blasted off on the 100th flight from historic pad 39A on the Kennedy Space Center (KSC) late Saturday afternoon June 3 – bound for the International Space Station (ISS) loaded with a science rich cargo from NASA for the multinational crew.

Nearly simultaneously the first stage booster accomplished another heart stopping and stupendous ground landing back at the Cape accompanied by multiple shockingly loud sonic booms screeching out dozens of miles (km) in all directions across the space coast region.

SpaceX Falcon 9 booster deploys quartet of landing legs moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely nine minutes after liftoff from Launch Complex 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

Liftoff of the SpaceX Falcon 9 rocket carrying the unmanned Dragon cargo freighter from seaside Launch Complex 39A at KSC in Florida took place during an instantaneous launch window at 5:07 p.m. EDT Saturday, June 3, after a predicted downpour held off just long enough for the SpaceX launch team to get the rocket safely off the ground.

The launch took place after a 48 hour scrub from Thursday June 1 forced by stormy weather and lightning strikes came within 10 miles of pad 39A less than 30 minutes from the planned liftoff time.

The backup crew of 40 new micestonauts are also aboard for a first of its kind osteoporosis science study – that seeks to stem the loss of bone density afflicting millions of people on Earth and astronauts crews in space by testing an experimental drug called NELL-1. The 40 originally designated mice lost their coveted slot and were swapped out Friday due to the scrub.

The 213-foot-tall (65-meter-tall) SpaceX Falcon 9 roared to life off pad 39A upon ignition of the 9 Merlin 1 D first stage engines generating 1.7 million pounds of liftoff thrust and successfully delivered the Dragon bolted on top to low Earth orbit on course for the space station and jam packed with three tons of essential cargo.

Loading of the densified liquid oxygen and RP-1 propellants into the Falcon 9 first and second stages starting about 70 minutes prior to ignition. Everything went off without a hitch.

Final descent of the SpaceX Falcon 9 1st stage landing as seen from the NASA Causeway under heavily overcast skies after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. The booster successfully soft landed upright at Landing Zone-1 (LZ-1) accompanied by multiple sonic booms at Cape Canaveral Air Force Station, Florida, about 8 minutes after launch to the International Space Station (ISS). Note SpaceX logo lettering visible on booster skin. Credit: Ken Kremer/kenkremer.com

Dragon reached its preliminary orbit 10 minutes after launch and deployed its power generating solar arrays. It now set out on a carefully choreographed series of thruster firings to reach the space station Monday morning.

Following stage separation at 2 min 25 sec after liftoff, the first stage began a series of three burns (boostback, entry and landing) to carry out a precision propulsive ground landing back at Cape Canaveral Air Force Station, FL at Landing Zone-1 (LZ-1).

SpaceX Falcon 9 booster starts landing leg deployment moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely eight minutes after liftoff from pad 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com

The 156-foot-tall (47-meter-tall) first stage successfully touched down upright at LZ-1 some 8 minutes after liftoff as I witnessed from the NASA Causeway and seen in photos from myself and colleagues herein.

LZ-1 is located about 9 miles (14 kilometers) south of the starting point at pad 39A.

Descent of SpaceX Falcon 9 1st stage towards Landing Zone-1 at Cape Canaveral after Jun 3, 2017 launch from pad 39A at the Kennedy Space Center. Credit: Julian Leek

Thus overall SpaceX has now successfully recovered 11 boosters; 5 by land and 6 by sea, over the past 18 months – in a feat straight out of science fiction but aimed at drastically slashing the cost of access to space as envisioned by SpaceX billionaire CEO and founder Elon Musk.

Another significant milestone for this flight is that it features the first reuse of a previously launched Dragon. It previously launched on the CRS-4 resupply mission.

The recycled Dragon has undergone some refurbishments to requalify it for flight but most of the structure is intact, according to SpaceX VP for Mission Assurance Hans Koenigsmann.

The 20-foot high, 12-foot-diameter Dragon is carrying almost 5,970 pounds of science experiments and research instruments, crew supplies, food water, clothing, hardware, gear and spare parts to the million pound orbiting laboratory complex. This will support over 62 of the 250 research investigations and experiments being conducted by Expedition 52 and 53 crew members.

See detailed CRS-11 cargo mission cargo below.

Blastoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Julian Leek

Dragon CRS-11 marks SpaceX’s eleventh contracted commercial resupply services (CRS) mission to the International Space Station for NASA since 2012.

Falcon 9 streaked to orbit in spectacular fashion darting in and out of clouds for the hordes of onlookers and spectators who had gathered from around the globe to witness the spectacle of a rocket launch and booster landing first hand.

Recycled SpaceX Dragon CRS-11 cargo craft lifted off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 carrying 3 tons of research equipment, cargo and supplies to Earth orbit and the International Space Station. Credit: Ken Kremer/kenkremer.com

Dragon is loaded with “major experiments that will look into the human body and out into the galaxy.”

The flight will deliver investigations and facilities that study neutron stars, osteoporosis, solar panels, tools for Earth-observation, and more.

The unpressurized trunk of the spacecraft also will transport 3 payloads for science and technology experiments and demonstrations.

The truck payloads include the Roll-Out Solar Array (ROSA) solar panels, the Multiple User System for Earth Sensing (MUSES) facility which hosts Earth-viewing instruments and tools for Earth-observation and equipment to study neutron stars with the Neutron Star Interior Composition Explorer (NICER) payload.

NICER is the first ever space mission to study the rapidly spinning neutron stars – the densest objects in the universe. The launch coincidentally comes nearly 50 years after they were discovered by British astrophysicist Jocelyn Bell.

A second objective of NICER involves the first space test attempting to use pulsars as navigation beacons through technology called Station Explorer for X-Ray Timing and Navigation (SEXTANT).

Roll Out Solar Array (ROSA) is among the science investigations launching on the next SpaceX commercial resupply flight to the International Space Station, targeted for June 1, 2017.
Credits: Deployable Space Systems, Inc.

If all goes well, Dragon will arrive at the ISS 2 days after launch and be grappled by Expedition 52 astronauts Peggy Whitson and Jack Fischer using the 57.7 foot long (17.6 meter long) Canadian-built robotic arm.

They will berth Dragon at the Earth-facing port of the Harmony module.

NASA TV will begin covering the Dragon rendezvous and grappling activities starting at 8:30 a.m. Monday.

Dragon CRS-11 is SpaceX’s second contracted resupply mission to launch this year for NASA.

The prior SpaceX cargo ship launched on Feb 19, 2017 on the CRS-10 mission to the space station. CRS-10 is further noteworthy as being the first SpaceX launch of a Falcon 9 from NASA’s historic pad 39A.

Overall CRS-11 marks the 100th launch from pad 39A and the sixth SpaceX launch from this pad.

SpaceX leased pad 39A from NASA in 2014 and after refurbishments placed the pad back in service this year for the first time since the retirement of the space shuttles in 2011. To date this is the sixth SpaceX launch from this pad.

Previous launches include 11 Apollo flights, the launch of the unmanned Skylab in 1973, 82 shuttle flights and five SpaceX launches.

June 3, 2017 liftoff of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017. Credit: Jeff Seibert

Cargo Manifest for CRS-11:

TOTAL CARGO: 5970.1 lbs. / 2708 kg

TOTAL PRESSURIZED CARGO WITH PACKAGING: 3761.1 lbs. / 1665 kg
• Science Investigations 2356.7 lbs. / 1069 kg
• Crew Supplies 533.5 lbs. / 242 kg
• Vehicle Hardware 438.7 lbs. / 199 kg
• Spacewalk Equipment 123.4 lbs. / 56 kg
• Computer Resources 59.4 lbs. / 27 kg

UNPRESSURIZED 2209.0 lbs. / 1002 kg
• Roll-Out Solar Array (ROSA) 716.5 lbs. / 325 kg
• Neutron Star Interior Composition Explorer (NICER) 820.1 lbs. / 372 kg
• Multiple User System for Earth Sensing (MUSES) 672.4 lbs. / 305 kg

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 booster starts landing leg deployment moments before precision propulsive ground touchdown at Landing Zone 1 on Canaveral Air Force Station barely eight minutes after liftoff from pad 39A on 3 June 2017 from the Kennedy Space Center in Florida on the Dragon CRS-11 resupply mission to the International Space Station for NASA. Credit: Ken Kremer/Kenkremer.com
Launch of SpaceX Falcon 9 with reused Dragon CRS-11 cargo craft from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. on June 3, 2017 as seen from the Countdown clock at the KSC Press Site. Credit: Jean Wright
Up close view of SpaceX Dragon CRS-11 resupply vessel atop Falcon 9 rocket and delivering 3 tons of science and supplies to the International Space Station (ISS) for NASA. Liftoff occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com
SpaceX Falcon 9 rocket goes erect to launch position atop Launch Complex 39A at the Kennedy Space Center on 1 Jun 2017 as seen the morning before later afternoon launch from inside from the pad perimeter. Liftoff of the CRS-11 resupply mission to the International Space Station (ISS) occurred 3 June 2017. Credit: Ken Kremer/Kenkremer.com