Kepler Discovers First Earth Sized Planets inside Habitable Zone

Keplers 1200 Planet candidates by size. Finding exoplanets is getting easier, LUVOIR will helps us find signs of life, if any, on them. Credit: NASA/Wendy Stenzel


With the startling new finding of dozens of Earth-sized extrasolar planets, NASA’s Kepler planet hunting space telescope has just revolutionized our understanding of Earths place in the Universe and the search for Extraterrestrial Life. And the historic science discovery is based on data collected in just the first few months of operation of the powerful telescope as it scans only a tiny portion of the sky.

The discovery of 1235 new extrasolar planet candidates was announced today (Feb.2) by NASA and Kepler scientists at a media briefing. 68 of these planet candidates are Earth-sized. Another 288 are Super-Earth-size, 662 are Neptune-size and 165 are Jupiter-size. Most of these candidates orbit stars like our sun.

Even more significant is that 54 of the planet candidates are located within the ‘habitable zone’ of their host stars and 5 of those are Earth-sized. Before today we knew of exactly ZERO Earth-sized planets within the habitable zone. Now there are 5.

Finding a ‘Pale Blue Dot’ or ‘Second Earth’ inside a habitable zone that harbors water and environmental conditions that can support life is the ‘Holy Grail’ of science.

Are We Alone ?

“We went from zero to 68 Earth-sized planet candidates and zero to 54 candidates in the habitable zone – a region where liquid water could exist on a planet’s surface. Some candidates could even have moons with liquid water,” said William Borucki of NASA’s Ames Research Center, Moffett Field, Calif.. Borucki is the science principal investigator for NASA’s Kepler mission.

“Five of the planetary candidates are both near Earth-size and orbit in the habitable zone of their parent stars.”

Earth-sized water worlds are the most conducive to the formation and evolution of alien life forms. Water is an essential prerequisite for life as we know it.

“Kepler’s blown the lid off everything we know about extrasolar planets,” said Debra Fischer, professor of Astronomy at Yale University, New Haven, Conn

Kepler's over 1200 planet candidates as of Feb. 1, 2011. Credit: NASA/Wendy Stenzel

Kepler is the first NASA mission capable of finding Earth-size planets in or near the habitable zones around their parent stars. The mission uses the transit method to detect the tell tale signatures of planets. The goal is to determine how common are planets the size of Earth orbiting inside the habitable zone of stars like our sun.

Kepler measures the miniscule decreases in the brightness of stars caused by planets crossing in front of them and blocking the starlight. Imagine calculating the difference in light transmission caused by a flea sitting on a cars headlight.

Follow up observations over a period of several years will be required to confirm these results, the scientists explained. Astronomers expect that over 80% of the candidate planets will be positively confirmed as real planets by utilizing ground based observatories and the Spitzer Space Telescope.

For an Earth-sized planet orbiting a sun-like star inside the habitable zone, transits occur about once per year. Since three transits are required to verify a planets status, it will therefore take about three years to reach a definitive conclusion.

These remarkable new planet discoveries are based on observations from only the first four months of Kepler’s telescopic operations – May 12, 2009 to Sept. 17, 2009. The space based observatory continuously monitors more than 156,000 stars using 42 CCD detectors with a field of view that covers only 1/400 of the sky.

“Kepler is making good progress towards its goals,” said Borucki

“We have found over twelve hundred candidate planets – that’s more than all the people have found so far in history.”

“Imagine if we could look wider. Kepler looks at one 400th of the sky. If we had 400 of these fields of view, we’d see 400 times that number of candidates. We would see 400,000 candidate planets.”

Keplers over 1200 Planet candidates sorted by size

“The fact that we’ve found so many planet candidates in such a tiny fraction of the sky suggests there are countless planets orbiting stars like our sun in our galaxy,” Borucki amplified. “Our results indicate there must be millions of planets orbiting the stars that surround our sun.”

“If we find that Earth’s are common in the habitable zones of stars, very likely that means life is common around these stars.”

“Kepler has shown that planetary systems like our own are common,” said Debra Fischer.

Planets in Keplers Field of View.
Before and after the discovery of over 1200 planet candidates by NASA’s Kepler Space Telescope.

“The search for planets is motivated by the search for life,” Fischer added.

“We have allowed the public to participate though the website,” she added. “And now we have over 16,000 dedicated users. The public is excited to be a part of research and history.”

“Thanks to Kepler for this treasure chest of data!” Fisher concluded.

Kepler is just the first step in finding Earth sized and Earth like planets. “We are building the foundation for future generations of explorers,” said Borucki.

“Future missions will be developed to study the composition of planetary atmospheres to determine if they are compatible with the presence of life. The design for these missions depends on Kepler finding whether Earth-size planets in the habitable zone are common or rare.”

The first planets beyond our solar system were discovered in 1995. Up to today there were just over 500 known extrasolar planets.

Kepler now has 15 confirmed extrasolar planet discoveries and over 1200 possible candidates.

In January 2011, Kepler confirmed the discovery of its first rocky planet, named Kepler-10b. The molten world measures just 1.4 times the size of Earth and is the smallest planet ever discovered outside our solar system.

NASA’s Kepler spacecraft was launched on March 6, 2009 from Launch Complex 17-B atop a Delta II rocket at Cape Canaveral Air Force Station in Florida. See spacecraft and launch photos below

Kepler’s science operations are currently funded for three and one half years of operations until November 2012. The mission’s lifetime – and its goal of discovering multitudes of new planets as small as Earth – can be extended if NASA funding is approved by Congress and the President.

William Borucki – Explains Keplers Discovery of Earth Sized Planets
Science principal investigator for NASA’s Kepler mission, NASA’s Ames Research Center

Video Caption: NASA’s Kepler mission has discovered its first Earth-size planet candidates and its first candidates in the habitable zone, a region where liquid water could exist on a planet’s surface. Five of the potential planets are near Earth-size and orbit in the habitable zone of smaller, cooler stars than our sun.

Kepler also found six confirmed planets orbiting a sun-like star, Kepler-11. This is the largest group of transiting planets orbiting a single star yet discovered outside our solar system. Located approximately 2,000 light years from Earth, Kepler-11 is the most tightly packed planetary system yet discovered. All six of its confirmed planets have orbits smaller than Venus, and five of the six have orbits smaller than Mercury’s.

What is an Earth like planet ? Explantion here

David Charbonneau, an exoplanet researcher at Harvard University, explains what scientists mean when they say “earthlike planet” and “super Earth.” This interview was recorded at NASA’s Goddard Space Flight Center on December 10, 2010, by NASA science writer Daniel Pendick.

Kepler Mission Star Field
An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer will be pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square.
Credit: Carter Roberts / Eastbay Astronomical Society.
Kepler's target region in the Milky Way. Credit: Jon Lomberg
Kepler being prepared in the clean room at Astrotech
prior to launch on March 6, 2009. Credit:

More Kepler photos courtesy of here

Delta 2 rocket streaks to the heavens.
Launch of NASA’s Kepler planet hunting space telescope from Cape Canaveral Air Force Station, FL, Complex 17, on March 6, 2009 at 10:49 p.m. Credit: Ben Cooper
Ben Cooper Featured on Astronomy Picture of the Day (APOD); March 9, 2009

Launch Pad 17 B and a Delta II rocket
from my perch on the 8th floor of Launch Pad 17 A as rocket is encased in launch tower. Credit: Ken Kremer
View of Launch Complex 17 B and cryogenic storage tanks by Ken Kremer

NASA’s Kepler Media Briefing on Feb. 2, 2011

Kepler Discovers Its Smallest and First Rocky Planet


NASA’s Kepler planet hunting space telescope has made an historic discovery by finding its first rocky planet – and it’s simultaneously the smallest planet ever found beyond our solar system. The exoplanet, dubbed Kepler-10b, measures barely 1.4 times the diameter of Earth and orbits its star in less than one earth day. Therefore the planet is located well outside the habitable zone and is far too close to the star for liquid water to exist. It is Earth-sized but not Earth-like with respect to the search for life. The finding of such a small and rocky world marks a major milestone for Keplers scientific capabilities in finding another world like our own.

Indeed the scorching hot planet orbits so close to its parent star – once every 0.84 days – that the surface is molten and temperatures exceed 2,500 degrees Fahrenheit, hotter than lava flows here on Earth. Kepler-10b is 20 times closer to its star than Mercury is to our sun. Its density is similar to that of an iron dumbbell.

Check out the amazing video below narrated by Natalie Batalha, Kepler’s deputy science team lead from NASA’s Ames Research Center which describes Kepler’s exciting discovery of the smallest exoplanet known to date – some 560 light years from Erath.

The discovery is based on data that was collected from May 2009 to early January 2010 and was independently confirmed with the W.M. Keck Observatory in Hawaii. A peer reviewed paper has been accepted for publication in the Astrophysical Journal. The spacecraft was launched in March 2009 by a Delta II rocket.

Over 500 exoplanets have been discovered up to now. Kepler uses the transit method to detect exoplanets and monitors 150,000 stars by aiming 42 detectors between the constellations of Cygnus and Lyra.

Kepler Mission Star Field.
An image by Carter Roberts of the Eastbay Astronomical Society in Oakland, CA, showing the Milky Way region of the sky where the Kepler spacecraft/photometer will be pointing. Each rectangle indicates the specific region of the sky covered by each CCD element of the Kepler photometer. There are a total of 42 CCD elements in pairs, each pair comprising a square. Credit: Carter Roberts / Eastbay Astronomical Society.

Read more at this NASA Press release

NASA’s Kepler mission confirmed the discovery of its first rocky planet, named Kepler-10b. Measuring 1.4 times the size of Earth, it is the smallest planet ever discovered outside our solar system.

The discovery of this so-called exoplanet is based on more than eight months of data collected by the spacecraft from May 2009 to early January 2010.

“All of Kepler’s best capabilities have converged to yield the first solid evidence of a rocky planet orbiting a star other than our sun,” said Natalie Batalha, Kepler’s deputy science team lead at NASA’s Ames Research Center in Moffett Field, Calif., and primary author of a paper on the discovery accepted by the Astrophysical Journal. “The Kepler team made a commitment in 2010 about finding the telltale signatures of small planets in the data, and it’s beginning to pay off.”

Kepler’s ultra-precise photometer measures the tiny decrease in a star’s brightness that occurs when a planet crosses in front of it. The size of the planet can be derived from these periodic dips in brightness. The distance between the planet and the star is calculated by measuring the time between successive dips as the planet orbits the star.

Kepler is the first NASA mission capable of finding Earth-size planets in or near the habitable zone, the region in a planetary system where liquid water can exist on the planet’s surface. However, since it orbits once every 0.84 days, Kepler-10b is more than 20 times closer to its star than Mercury is to our sun and not in the habitable zone.

Kepler-10b orbits one of the 150,000 stars that the spacecraft is monitoring between the constellations of Cygnus and Lyra.
We aim our mosaic of 42 detectors there, under the swan’s wing, just above the plane of the Milky Way galaxy. The star itself is very similar to our own sun in temperature, mass and size, but older with an age of over 8 billion years, compared to the 4-and-1/2 billion years of our own sun. It’s a quiet star, slowly spinning with a weak magnetic field and few of the sun spots that characterize our own sun. The star’s about 560 light years from our solar system and one of the brighter stars that Kepler is monitoring. It was the first we identified as potentially harboring a very small transiting planet. The transits of the planet were first seen in July of 2009.

The diameter of Kepler-10b is only about 1.4 times the diameter of Earth and it's mass is about 4.5 times that of Earth. It is the best example of a rocky planet to date.

Kepler-10 was the first star identified that could potentially harbor a small transiting planet, placing it at the top of the list for ground-based observations with the W.M. Keck Observatory 10-meter telescope in Hawaii.

Scientists waiting for a signal to confirm Kepler-10b as a planet were not disappointed. Keck was able to measure tiny changes in the star’s spectrum, called Doppler shifts, caused by the telltale tug exerted by the orbiting planet on the star.

“The discovery of Kepler-10b, a bone-fide rocky world, is a significant milestone in the search for planets similar to our own,” said Douglas Hudgins, Kepler program scientist at NASA Headquarters in Washington. “Although this planet is not in the habitable zone, the exciting find showcases the kinds of discoveries made possible by the mission and the promise of many more to come,” he said.

“Our knowledge of the planet is only as good as the knowledge of the star it orbits,” said Batalha. Because Kepler-10 is one of the brighter stars being targeted by Kepler, scientists were able to detect high frequency variations in the star’s brightness generated by stellar oscillations, or starquakes. “This is the analysis that really allowed us to pin down Kepler-10b’s properties.,” she added.

“We have a clear signal in the data arising from light waves that travel within the interior of the star,” said Hans Keldsen, an astronomer at the Kepler Asteroseismic Science Consortium at Aarhus University in Denmark. Kepler Asteroseismic Science Consortium scientists use the information to better understand the star, just as earthquakes are used to learn about Earth’s interior structure. “As a result of this analysis, Kepler-10 is one of the most well characterized planet-hosting stars in the universe next to our sun,” Kjeldsen said.

Kepler from the high-gain antenna side in the clean room at Astrotech. Credit:

That’s good news for the team studying Kepler-10b. Accurate stellar properties yield accurate planet properties. In the case of Kepler-10b, the picture that emerges is of a rocky planet with a mass 4.6 times that of Earth and with an average density of 8.8 grams per cubic centimeter — similar to that of an iron dumbbell.

“This planet is unequivocally rocky, with a surface you could stand on,” commented team member Dimitar Sasselov, of the Harvard-Smithsonian Center for Astrophysics in Cambridge and a Kepler co-investigator.

“All of Kepler’s best capabilities have converged for this discovery,” Batalha said, “yielding the first solid evidence of a rocky planet orbiting a star other than our sun.”

Ames manages Kepler’s ground system development, mission operations and science data analysis. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., managed Kepler mission development.

Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. The Space Telescope Science Institute in Baltimore archives, hosts and distributes the Kepler science data.

Click here to view a hi res 360 degree panorama of Kepler inside the cleanroom. Credit:

Catching Planets in the Womb


Awhile ago I wrote on the difficulty of finding young planets. There, I mentioned one team announcing the potential discovery of a planet a mere 1-5 million years old. But what are astronomers to do if they want to find even younger planets?

The chief difficulty in this instance is that such planets would still be hidden in the circumstellar disks from which they formed, hiding them from direct observation. Additionally, depending on how far along the process had advanced, they may not yet have accreted sufficient mass to show up in radial velocity surveys, if such surveys could even been conducted with interference from the disc.

One way astronomers have proposed to detect forming planets is to observe their effects on the disc itself. This could come in a number of ways. One would be for the planet to carve out grooves in the disc, clearing its orbit as it sweeps up matter. Another possibility is to look for the “shadows” caused by the local overdensity an accreting planet would cause.

But recently, another new method caught my eye. In this one, proposed by astronomers at the Crimean National Observatory in the Ukraine, astronomers could potentially look for again turns to the characteristics of the parent star. Earlier, astronomers had made a link between the properties of the disc around classes of protostars (such as T Tauri and Herbig Ae stars) and the variable luminosity of the star itself.

The authors suggest that, “[t]wo different mechanisms can be involved in interpretation of these results: 1) circumstellar extinction and 2) accretion.” In either scenario, a body present in the disc itself concentrating the material would be necessary to explain these results. In the first case, a protoplanet would draw a swarm of material around it again creating a local overdensity in the disc which would be dragged around with the planet, creating a dimming of the star as it passed near the line of sight. In the second, the planet would draw out tidal structures in the disc in much the same way tidal interactions can draw out spiral structure in galaxies. As these veins of matter fall onto the star, it feeds the star, temporarily causing an outburst and increasing the brightness.

The team conducted an analysis of periodicity in several protostellar systems and found several instances in which the periods were similar to those of planetary systems discovered around mature stars. Around one star, V866 Sco, they discovered, “two distinct periods in light variations, 6.78 and 24.78 days, that persist over several years.” They note that the shorter period is likely “due to axial rotation of the star” but could not offer an explanation for the longer period which leaves it open to the possibility of being a forming planet and they suggest that spectral observations may be possible. Other systems the team analyzed had periods ranging from 25 – 120 days also hinting at the possibility for young planetary systems.

The advantage to this method is that finding candidate systems can be done relatively easily using photometric systems which can survey great numbers of stars at once whereas radial velocity measurements generally require dedicated observations on a single object. This would allow astronomers to discriminate against candidates unlikely to harbor forming planets. Ultimately, finding young systems with forming planets will help astronomers understand how these systems form and evolve and why our own system is so different than many others found thus far.

The Strange Warm Spot of upsilon Andromedae b


If you set a big black rock outside in the Sun for a few hours, then go and touch it, you’d expect the warmest part of the rock to be that which was facing the Sun, right? Well, when it comes to exoplanets, your expectations will be defied. A new analysis of a well-studied exoplanetary system reveals that one of the planets – which is not a big black rock, but a Jupiter-like ball of gas – has its warmest part opposite that of its star.

The system of Upsilon Andromedae, which lies 44 light years away from the Earth in the constellation Andromeda, is a much studied system of planets that orbit around a star a little more massive and slightly hotter than our Sun.

The closest planet to the star, upsilon Andromeda b, was the first exoplanet to have its temperature taken by The Spitzer Space Telescope. As we reported back in 2006, upsilon Andromeda b was thought to be tidally locked to the star and show corresponding temperature changes at it went around its host star. That is, as it went behind the star from our perspective, the face was warmer than when it was in front of the star from our perspective. Simple enough, right? These original results were published in a paper in Science on October 27th, 2006, available here.

As it turns out, this temperature change scenario is not the case. UCLA Professor of Physics and Astronomy Brad Hansen, who is a co-author on both the 2006 paper and updated results, explains, “The original report was based on just a few hours of data, taken early in the mission, to see whether such a measurement was even possible (it is close to the limit of the expected performance of the instrument). Since the observations suggested it was possible to detect, we were awarded a larger amount of time to do it in more detail.”

Observations of upsilon Andromedae b were taken with the Spitzer again in February of 2009. Once the astronomers were able to study the planet more, they discovered something odd – just how warm the planet was when it passed in front of the star from our perspective was a lot warmer than when it passed behind, just the opposite of what one would expect, and opposite of the results they originally published. Here’s a link to an animation that helps explain this strange feature of the planet.

What the astronomers discovered – and have yet to explain fully – is that there is a “warm spot” about 80 degrees opposite of the face of the planet that is pointed towards the star. In other words, the warmest spot on the planet is not on the side of the planet that is receiving the most radiation from the star.

This in itself is not a novelty. Hansen said, “There are several exoplanets observed with warm spots, including some whose spots are shifted relative to the location facing the star (an example is the very well studied system HD189733b). The principal difference in this case is that the shift we observe is the largest known.”

Upsilon Andromedae b does not transit in front of its star from our vantage point on the Earth. Its orbit is inclined by about 30 degrees, so it appears to be passing “below” the star as it comes around the front. This means that astronomers cannot use the transit method of exoplanetary study to get a handle on its orbit, but rather measure the tug that the planet exerts on the star. It has been determined that upsilon Andromedae b orbits about every 4.6 days, has a mass 0.69 that of Jupiter and is about 1.3 Jupiter radii in diameter. To get a better idea of the whole system of upsilon Andromedae, see this story we ran earlier this year.

So what, exactly, could be causing this bizarrely placed warm spot on the planet? The paper authors suggest that equatorial winds – much like those on Jupiter – could be transferring heat around the planet.

A graph and visual representation of the hot spot as the planet orbits the star upsilon Andromedae. Image credit: NASA/JPL-Caltech/UCLA

Hansen explained, “At the sub-stellar point (the one closest to the star) the amount of radiation being absorbed from the star is highest, so the gas there is heated more. It will therefore have a tendency to flow away from the hot region towards cold regions. This, combined with rotation will give a “trade wind”-like structure to the gas flow on the planet… The big uncertainty is how that energy is eventually dissipated. The fact that we observe a hot spot at roughly 90 degrees suggests that this occurs somewhere near the “terminator” (the day/night edge). Somehow the winds are flowing around from the sub-stellar point and then dissipating as they approach the night side. We speculate that this may be from the formation of some kind of shock front.”

Hansen said that they are unsure just how large this warm spot is. “We have only a very crude measure of this, so we have modeled as basically two hemispheres – one hotter than the other. One could make the spot smaller and make it correspondingly hotter and you would get the same effect. So, one can trade off spot size versus temperature contrast while still matching the observations.”

The most recent paper, which is co-authored by members from the United States and the UK, will appear in the Astrophysical Journal. If you’d like to go outside and see the star upsilon Andromedae,here’s a star chart.

Source: JPL Press Release, Arxiv here and here , email interview with Professor Brad Hansen.

Comet Hartley 2 Scouted by WISE, Hubble for Upcoming Encounter


In a little less than a month, NASA’s Deep Impact spacecraft (its current mission is called EPOXI) will fly by the comet Hartley 2 to image the comet’s nucleus and take other measurements. In preparation for this event, both the Wide-field Infrared Survey Explorer (WISE) and the Hubble Space Telescope have imaged the comet, scouting out the destination for Deep Impact.

On November 4th of this year, Deep Impact will come within 435 miles (700 km) of the comet Hartley 2, close enough to take images of the comet’s nucleus.

The name of the mission is EPOXI, which is a combination of the names for the two separate missions the spacecraft has been most recently tasked with: the extrasolar planet observations, called Extrasolar Planet Observations and Characterization (EPOCh), and the flyby of comet Hartley 2, called the Deep Impact Extended Investigation (DIXI). The spacecraft itself is still referred to as Deep Impact, though, despite the changes and extensions of its mission.

NASA’s Deep Impact mission to slam a copper weight into comet Tempel 1 was a wonderful success, sending back data that greatly improved our understanding of the composition of comets. After the encounter, though, there was still a lot of life left in the spacecraft, so it was tasked with another cometary confrontation: take images of the comet Hartley 2.

Deep Impact is an example of NASA using a single spacecraft to perform multiple, disparate missions. In addition to impacting and imaging Tempel 1 and performing a flyby of Hartley 2, the spacecraft took observations of 5 different stars outside of our Solar System during the period between January and August of 2008 (8 were scheduled, but some observations were missed due to technical difficulties).

It looked at stars with known exoplanets to observe transits of those planets in front of the star, giving astronomers a better idea of the orbital period, albedo – or reflectivity – and size of the planets.

Click here for a list of the various stars and transits it observed, as listed on the mission page.

Deep Impact also took data on both the Earth and Mars as they passed in front of our own Sun, to help characterize what exoplanets with a similar size and composition the Earth and Mars would look like passing in front of a star.

NASA's WISE infrared observatory took this image of Hartley 2, showing the extent of its tail, on May 10th, 2010. Image Credit: NASA/JPL-Caltech/UCLA

As of September 29th, Deep Impact was about 23 million miles (37 million km) away from Hartley 2. It is approaching at roughly 607,000 miles a day (976,000 km), so that puts it at about 18 million miles (29 million km) away from the comet today. As it approaches, Deep Impact will speed up, to over 620,000 miles (1,000,000 km) per day.

The path of Comet Hartley 2. Image courtesy Sky & Telescope.

You won’t have to depend on NASA’s observatories and the spacecraft to see a view of Hartley 2, though – you should be able to see it with the naked eye or binoculars near the constellation Perseus throughout the month of October. On October 20th, it will make its closest approach to Earth at a distance of 11 million miles (17.7 million km). The comet is officially designated 103P Hartley, and for viewing information you can go to Heavens Above.

As always, check this space regularly for updates on the upcoming flyby.

Sources: JPL here, here and here, Hubblesite, Heavens Above

Does Tidal Evolution Cause Stars to Eat Planets?


With the success of the Kepler mission, the viability of looking for planets via transits has reached maturity. However, Kepler is not the first intensive study. Previously, other observatories have employed transit searches. To increase the chances of discovery, studies often concentrated on large clusters in which thousands of stars could be observed simultaneously. Based on the percentage of stars with super Jovian planets in the Sun’s vicinity, a Hubble observation run on the globular cluster 47 Tuc expected to find roughly 17 “hot Jupiters”. Yet not a single one was found. Follow-up studies on other regions of 47 Tuc, published in 2005, also reported a similar lack of signals.

Could the subtle effect of tidal forces have caused the planets to be consumed by their parent stars?

Within our solar system, the effects of tidal influences are more subtle than planetary destruction. But on stars with massive planets in tight orbits, the effects can be very different. As a planet would orbit its parent star, its gravitational pull would pull the star’s photosphere towards it. In a frictionless environment, the raised bulge would remain directly under the planet. Since the real world has real friction, the bulge will be displaced.

If the star rotates slower than the planet orbits (a likely scenario for close in planets since stars slow themselves via magnetic breaking during formation), the bulge will trail behind the planet since the pull has to compete against the photospheric material through which its pulling. This is the same effect that happens between the Earth-Moon system and is why we don’t have tides whenever the moon is overhead, but rather, the tides occur some time later. This lagging bulge creates a component of the gravitational force opposed to the direction of motion of the planet, slowing it down. As time goes on, the planet gets dragged closer to the star by this torque which increases the gravitational force and accelerating the process until the planet eventually enters the star’s photosphere.

Since transit discoveries rely on the planets orbital plane being exactly in line with its parent star and our planet, this favors planets in a very tight orbit since planets further out are more likely to pass above or below their parent star when viewed from Earth. The result of this is that planets that could potentially be discovered by this method are especially prone to this tidal slowing and destruction. This effect with the combination of the old age of 47 Tuc, may explain the dearth of discoveries.

Using a Monte-Carlo simulation, a recent paper explores this possibility and finds that, with the tidal effects, the non-detection in 47 Tuc is completely accounted for without the need to include additional reasons (such as metal deficiency in the cluster). However, to go beyond simply explaining a null result, the team made several predictions that would serve to confirm the destruction of such planets. If a planet were wholly consumed, the heavier elements should be present in the atmospheres of their parent star and thus be detectable via their spectra in contrast with the overall chemical composition of the cluster. Planets that were tidally stripped of atmospheres by filling their Roche Lobes could still be detected as an excess of rocky, super Earths.

Another test could inolve comparison between several of the open clusters visible in the Kepler study. Should astronomers find a decrease in the probability of finding hot Jupiters corresponding with a decrease with cluster age, this would also confirm the hypothesis. Since several such clusters exist within the area planned for the Kepler survey, this option is the most readily accessible. Ultimately, this result make sit clear that, should astronomers rely on methods that are best suited for short period planets, they may need to expand their observation window sufficiently since planets with a sufficiently short period may be prone to being consumed.

Extrasolar Volcanoes May Soon be Detectable


We’ve all seen pictures of erupting terrestrial volcanoes from space, and even eruptions on Jupiter’s moon Io in the outer solar system, but would it be possible to detect an erupting volcano on an exoplanet? Astronomers say the answer is yes! (with a few caveats)

It’s going to be decades before telescopes will be able to resolve even the crudest surface features of rocky extrasolar planets, so don’t hold your breath for stunning photos of alien volcanoes outside our solar system. But astronomers have already been able to use spectroscopy to detect the composition of exoplanet atmospheres, and a group of theorists at the Harvard-Smithsonian Center for Astrophysics think a similar technique could detect the atmospheric signature of exo-eruptions.

By collecting spectra right before and right after the planet goes behind its star, astronomers can subtract out the star’s spectrum and isolate the signal from the planet’s atmosphere. Once this is done, they can look for evidence of molecules common in volcanic eruptions. Models suggest that sulfur dioxide is the best candidate for detection because volcanoes produce it in huge quantities and it lasts in a planet’s atmosphere for a long time.

Still, it won’t be easy.

“You would need something truly earthshaking, an eruption that dumped a lot of gases into the atmosphere,” said Smithsonian astronomer Lisa Kaltenegger. “Using the James Webb Space Telescope, we could spot an eruption 10 to 100 times the size of Pinatubo for the closest stars,” she added.

To be detected, exoplanet eruptions would have to be 10 to 100 times larger than the 1991 eruption of Mt. Pinatubo shown here. Image source: USGS

In 1991 Mount Pinatubo in the Philippines belched 17 million tons of sulfur dioxide into the stratosphere. Volcanic eruptions are ranked using the Volcanic Explosivity Index (VEI). Pinatubo ranked ‘colossal’ (VEI of 6) and the largest eruption in recorded history was the ‘super-colossal’ Tambora event in 1815. With a VEI of 7 it was about 10 times as large as Pinatubo. Even larger eruptions (more than 100 times larger than Pinatubo) on Earth are not unheard of: geologic evidence suggests that there have been 47 such eruptions in the past 36 million years, including the eruption of the Yellowstone caldera about 600,000 years ago.

The best candidates for detecting extrasolar volcanoes are super-earths orbiting nearby, dim stars, but the Kaltenegger and her colleagues found that volcanic gases on any earth-like planet up to 30 light years away might be detectable. Now they just have to wait until the James Webb Space Telescope is launched 2014 to test their prediction.

The Origin of Exoplanets


We truly live in an amazing time for exoplanet research. It was only 18 years ago the first planet outside our solar system was discovered. Fifteen since the first confirmation of one around a main sequence star. Even more recently, direct images have begun to sprout up, as well as the first spectra of the atmospheres of such planets. So much data is becoming available, astronomers have even begun to be able to make inferences as to how these extra solar planets could have formed.

In general, there are two methods by which planets can form. The first is via coaccretion in which the star and the planet would form from gravitational collapse independently of one another, but in close enough proximity that their mutual gravity binds them together in orbit. The second, the method through which our solar system formed, is the disk method. In this, material from a thin disk around a proto-star collapses to form a planet. Each of these processes has a different set of parameters that may leave traces which could allow astronomers to uncover which method is dominant. A new paper from Helmut Abt of Kitt Peak National Observatory, looks at these characteristics and determines that, from our current sampling of exoplanets, our solar system may be an oddity.

The first parameter that distinguishes the two formation methods is that of eccentricity. To establish a baseline for comparison, Abt first plotted the distribution of eccentricities for 188 main-sequence binary stars and compared that to the same type of plot for the only known system to have formed via the disk method (our Solar System). This revealed that, while the majority of stars have orbits with low eccentricity, this percentage falls off slowly as the eccentricity increases. In our solar system, in which only one planet (Mercury) has an eccentricity greater than 0.2, the distribution falls off much more steeply. When Abt constructed the distribution for the 379 planets with known eccentricity, it was nearly identical to that for binary stars.

A similar plot was created for the semi major axis of binary stars and our solar system. Again, when this was plotted for the known extra solar planets the distribution was similar to that of binary star systems.

Abt also inspected the configuration of the systems. Star systems containing three stars generally contained a pair of stars in a tight binary orbit with a third in a much larger orbit. By comparing the ratios of such orbits, Abt quantified the orbital spacing. However, instead of simply comparing to the solar system, he considered the analogous situation of formation of stars around the central mass of the galaxy and built a similar distribution in this manner. In this case, the results were ambiguous; Both modes of formation produced similar results.

Lastly, Abt considered the amount of heavy elements in the more massive body. It is widely known that most extra-solar planets are found around metal-rich stars. While there’s no reason planets forming in a disk couldn’t be formed around high mass stars, having a metal-rich cloud from which to form stars and planets is a requirement for the coaccretion model because it tends to accelerate the collapse process, allowing giant planets to fully form before the cloud was dissipated as the star became active. Thus, the fact that the vast majority of extra-solar planets exist around metal-rich stars favors the coaccretion hypothesis.

Taken together, this provides four tests for formation models. In every case, current observations suggest that the majority of planets discovered thus far formed from coaccretion and not in a disc. However, Abt notes that this is most likely due to statistical biases imposed by the sensitivity limits of current instruments. As he notes, astronomers “do not yet have the radial velocity sensitivity to detect disk systems like the solar system, except for single large planets, like Jupiter at 5 AU.” As such, this view will likely change as new generations of instruments become available. Indeed, as instruments improve to the point that three dimensional mapping becomes available, and orbital inclinations can be directly observed, astronomers will be able to add another test to determine the modes of formation.

EDIT: Following some confusion and discussion in the comments, I wanted to add one further note. Keep in mind this is only the average of all systems currently known that looks like coaccreted systems. While there are undoubtedly some in there that did form from disks, their rarity in the current data makes them not stand out. Certainly, we know of at least one system that fits a strong test for the disk method. This recent discovery by Kepler, in which three planets have been observed transiting their host star demonstrates that all of these planets must lie in a disk which does not conform to expectations of independent condensation. As more systems like this are discovered, we expect that the distributions of the tests described above will become bimodal, having components that match each formation hypothesis.

Did Kepler Scientist Leak Data? Um, Not Really


Mainstream media (MSM) is funny. Well, maybe funny isn’t the right word, especially when they hose things up and create a story when there really isn’t one. Or when they miss the real story. MSM recently succeeded in spades on both accounts in regards to the Kepler mission. Just last month, the Kepler team announced they had found over 750 candidates for extrasolar planets, and 706 of these candidates potentially are planets from as small as Earth to around the size of Jupiter, with the majority having radii less than half that of Jupiter. This is such incredible news, especially when you factor in that the data was from just 43 days of observations! But MSM seemed to miss all this and instead focused on the fact that the Kepler team got approval from NASA to keep over half of their data for an additional six months to verify and confirm their findings, rather than releasing all of it, as per NASA’s standard policy which requires astronomers to release their data from publicly funded instruments in one year. Then over this past weekend, from a TED talk by Kepler co-investigator Dimitar Sasselov, MSM finally realized that Kepler has found a boat-load of potential Earth-sized exoplanets. Well, yes. That’s what they said in June.

But then MSM took things out of context and exaggerated just a tad.

Even though in his talk, Sasselov used the words “potential” and “candidates” and said the planets are “like Earth, that is, having a radius smaller than twice Earth’s radius,” MSM reported news that NASA has found rocky planets with land and water.

And now some people are saying that Sasselov “leaked” the proprietary Kepler data, and some say he is in trouble for doing so. Today, the Kepler team said via Twitter that they are “working hard to thoughtfully respond to the media flurry surrounding the TEDGlobal talk.”

Let me use one of my mother’s favorite admonitions: For Pete’s sakes!

Watch the TED talk. In my opinion, Sasselov does a good job of getting people excited about exoplanets and he doesn’t say we have actually found another Earth. He also does a good job of presenting what the Kepler team has found without revealing any really huge proprietary data, even though he used this graph:

Screenshot from Sasselov's TED talk.

But really, this is pretty much what the Kepler team said in June, that they expected half of the 750 planet candidates would turn out not to be planets, and a fair number of those might be Earth-sized. The graph takes into account the amount of potential planets that Kepler found, plus the planets found previously by other telescopes and missions.

While it is exciting to think about the potential of finding Earth-sized and maybe even Earth-like planets, we’re likely a long way off from actually finding and then actually confirming another Earth. Additionally, right now, we’re only capable of finding planets that orbit relatively close to their parent star, which most likely wouldn’t put them in the “Goldilocks Zone” of being habitable.

You can read our original article from June here, where the Kepler team announced their findings. There’s also an explanation there of why the team requested to keep part of their data for an extra six months.

UPDATE: 10 pm Tuesday: Sasselov has written an blog post at the Kepler website, bascially saying that there is a big difference between Earth-sized and Earth-like. You can read it here.

Dropping a Bomb About Exoplanets

Not all exoplanets are created equal, and new discoveries about the orbits of newly found extra solar planets could challenge the current theories of planet formation. The discoveries also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. “This is a real bomb we are dropping into the field of exoplanets,” said Amaury Triaud, a PhD student at the Geneva Observatory who led an observational campaign from several observatories.

Six exoplanets out of twenty-seven were found to be orbiting in the opposite direction to the rotation of their host star — the exact reverse of what is seen in our own Solar System. The team announced the discovery of nine new planets orbiting other stars, and combined their results with earlier observations. Besides the surprising abundance of retrograde orbits, the astronomers also found that more than half of all the so-called “hot Jupiters” in their survey have orbits that are misaligned with the rotation axis of their parent stars.

Hot Jupiters are planets orbiting other stars that have masses similar to or greater than Jupiter, but which orbit their parent stars much more closely.

Planets are thought to form in the disc of gas and dust encircling a young star, and since this proto-planetary disc rotates in the same direction as the star itself, it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star’s rotation.

“The new results really challenge the conventional wisdom that planets should always orbit in the same direction as their stars spin,” said Andrew Cameron of the University of St Andrews, who presented the new results at the RAS National Astronomy Meeting (NAM2010) in Glasgow, Scotland this week.

Artist’s impression of an exoplanet in a retrograde orbit. Credit: ESO

At this writing, 454 planets have been found orbiting other stars, and in the 15 years since the first hot Jupiters were discovered, astronomers have been puzzled by their origin. The cores of giant planets are thought to form from a mix of rock and ice particles found only in the cold outer reaches of planetary systems. Hot Jupiters must therefore form far from their star and subsequently migrate inwards to orbits much closer to the parent star. Many astronomers believed this was due to gravitational interactions with the disc of dust from which they formed. This scenario takes place over a few million years and results in an orbit aligned with the rotation axis of the parent star. It would also allow Earth-like rocky planets to form subsequently, but unfortunately it cannot account for the new observations.

To account for the new retrograde exoplanets an alternative migration theory suggests that the proximity of hot Jupiters to their stars is not due to interactions with the dust disc at all, but to a slower evolution process involving a gravitational tug-of-war with more distant planetary or stellar companions over hundreds of millions of years. After these disturbances have bounced a giant exoplanet into a tilted and elongated orbit it would suffer tidal friction, losing energy every time it swung close to the star. It would eventually become parked in a near circular, but randomly tilted, orbit close to the star. “A dramatic side-effect of this process is that it would wipe out any other smaller Earth-like planet in these systems,” says Didier Queloz of Geneva Observatory.

The observatories for this survey included the Wide Angle Search for Planets (WASP), the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, and the Swiss Euler telescope, also at La Silla. Data from other telescopes to confirm the discoveries.

Source: ESO