This Jupiter-Sized Exoplanet is Unusual for Several Reasons

Artist illustration of a warm Jupiter gas-giant exoplanet (right) orbiting its parent star, along with several smaller exoplanets. (Credit: Detlev Van Ravenswaay/Science Photo Library)

In a recent study published in the Monthly Notices of the Royal Astronomical Society, a team of international researchers examined exoplanet TOI-4860 b, which is located approximately 80 parsecs (261 light-years) from Earth and has an orbital period of approximately 1.52 days around a low-mass star, or a star smaller than our Sun. Exoplanets orbiting so close to their parent stars aren’t uncommon and commonly known as “hot Jupiters”.

However, TOI-4860 b is unique due its relative size compared to its parent star, along with its lower surface temperatures compared to “hot Jupiters” and possessing large amounts of heavy elements. These attributes are why researchers are classifying TOI-4680 b as a “warm Jupiter”, and could challenge traditional planetary systems formation models while offering new insights into such processes, as well.

Continue reading “This Jupiter-Sized Exoplanet is Unusual for Several Reasons”

A Direct Image of a Planet That’s Just Like Jupiter, Only Younger

Direct images of the extrasolar planet, AF Lep b (white spot around 10 o’clock), orbiting its host star (center) taken in Dec. 2021 and Feb. 2023 using the W. M. Keck Observatory’s 10-meter telescope in Hawai?i. (Credit: Kyle Franson, University of Texas at Austin/W. M. Keck Observatory)

In a recent study published in The Astrophysical Journal Letters, a team of astronomers used the W. M. Keck Observatory on Maunakea, Hawai?i Island to identify exoplanet, AF Lep b, which is three times the mass of Jupiter orbiting a Sun-sized star located approximately 87.5 light-years from Earth. What makes this discovery unique is AF Lep b is the first exoplanet discovered using a method called astrometry, which involves measuring unexpected, miniscule changes in the position of a star relative to nearby stars, which could indicate another object, an exoplanet, is causing gravitational tugs on its parent star.

Continue reading “A Direct Image of a Planet That’s Just Like Jupiter, Only Younger”

Astronomers still scratching their heads over population of ocean-world exoplanets

Artist rendition of a potential water-world exoplanet that might support advanced civilizations. Such life could advertise its existence via technosignatures from industrial or other activities. (Credit: ESA / Hubble / M. Kornmesser)
Artist rendition of a potential water-world exoplanet that might support life. Scientists could determine whether to explore this world based on its planetary entropy production. (Credit: ESA / Hubble / M. Kornmesser)

In a recent study submitted to The Astrophysical Journal Letters, an international team of researchers led by the University of California, Los Angeles (UCLA) examine the potential for water-worlds around M-dwarf stars. Water-worlds, also known as ocean worlds, are planets that possess bodies of liquid water either directly on its surface, such as Earth, or somewhere beneath it, such as Jupiter’s moon, Europa and Saturn’s moon, Enceladus.

Continue reading “Astronomers still scratching their heads over population of ocean-world exoplanets”

Do Exoplanet Scientists Have Favorite Exoplanets?

Artist rendition of the PSR B1257+12. (Credit: NASA/JPL-Caltech/R. Hurt)

Exoplanets have become quite the sensation over the last decade-plus, with scientists confirming new exoplanets on a regular basis thanks to NASA’s Kepler and TESS missions, along with the James Webb Space Telescope recently examining exoplanet atmospheres, as well. It’s because of these discoveries that exoplanet science has turned into an exciting field of intrigue and wonder, but do the very same scientists who study these wonderful and mysterious worlds have their own favorite exoplanets? As it turns out, four such exoplanet scientists, sometimes referred to as “exoplaneteers”, were kind enough to share their favorites with Universe Today!

Continue reading “Do Exoplanet Scientists Have Favorite Exoplanets?”

Radio Emissions Have Been Detected from an Exoplanet

Concept art for the discovery of radio emission coming from the exoplanet Tau Boötis b, a possible first detection of its kind. c. Jack Madden / Cornell

Invisible Glow

Finding planets out in the Universe is pretty hard. I say this despite the fact that two planets in Earth’s skies are aligning tomorrow to form one of the brightest objects seen in hundreds of years. But while the brilliant Jupiter and Saturn are always visible to the naked eye, Neptune wasn’t directly observed until 1846 despite being in our own solar system. We didn’t start discovering planets outside the solar system until 150 years after Neptune. Like Neptune, we find them (though indirectly), through visible light. However an international team of researchers may have just made the first detection of an exoplanet through radio emissions created by the planet’s aurora.

A simulation of Gas giant “Hot Jupiter” Tau Boötis Ab which orbits its parent star at one seventh the distance Mercury orbits our Sun. It’s atmosphere and the corona of its star are possibly touching eachother. – c SpaceEngine Pro by Author
Continue reading “Radio Emissions Have Been Detected from an Exoplanet”

In Order to Reveal Planets Around Another star, a Starshade Needs to Fly 40,000 km Away from a Telescope, Aligned Within Only 1 Meter

Artist's concept of the prototype starshade, a giant structure designed to block the glare of stars so that future space telescopes can take pictures of planets. Credit: NASA/JPL
Artist's concept of the prototype starshade, a giant structure designed to block the glare of stars so that future space telescopes can take pictures of planets. Credit: NASA/JPL

To assist with future efforts to locate and study exoplanets, engineers with NASA’s Jet Propulsion Laboratory – in conjunction with the Exoplanet Exploration Program (ExEP) – are working to create Starshade. Once deployed, this revolutionary spacecraft will help next-generation telescopes by blocking out the obscuring light coming from distant stars so exoplanets can be imaged directly.

While this may sound pretty straightforward, the Starshade will also need to engage in some serious formation flying in order to do its job effectively. That was the conclusion of the reached by the Starshade Technology Development team (aka. S5) Milestone 4 report – which is available through the ExEP website. As the report stated, Starshade will need to be perfectly aligned with space telescopes, even at extreme distances.

Continue reading “In Order to Reveal Planets Around Another star, a Starshade Needs to Fly 40,000 km Away from a Telescope, Aligned Within Only 1 Meter”

Upcoming Telescopes Should be Able to Detect Mountains and Other Landscapes on Extrasolar Planets

Using the microlensing metthod, a team of astrophysicists have found the first extra-galactic planets! Credit: NASA/Tim Pyle

The study of exoplanets has advanced by leaps and bounds in the past few decades. Between ground-based observatories and spacecraft like the Kepler mission, a total of 3,726 exoplanets have been confirmed in 2,792 systems, with 622 systems having more than one planet (as of Jan. 1st, 2018). And in the coming years, scientists expect that many more discoveries will be possible thanks to the deployment of next-generation missions.

These include NASA’s James Webb Space Telescope (JWST) and several next-generation ground based observatories. With their advanced instruments, these and other observatories are not only expected to find many more exoplanets, but to reveal new and fascinating things about them. For instance, a recent study from Columbia University indicated that it will be possible, using the Transit Method, to study surface elevations on exoplanets.

The study, which recently appeared online under the title “Finding Mountains with Molehills: The Detectability of Exotopography“, was conducted by Moiya McTier and David Kipping – and graduate student and an Assistant Professor of Astronomy at Columbia University, respectively. Based on models they created using bodies in our Solar System, the team considered whether transit surveys might be able to reveal topographical data on exoplanets.

Artist’s impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research Center

To recap, the Transit Method (aka. Transit Photometry) is currently the most popular and reliable means for detecting exoplanets. It consists of astronomers measuring the light curve of distant stars over time and looking for periodic dips in brightness. These dips are the result of exoplanets passing in front of the star (i.e. transiting) relative to the observer.

By measuring the rate at which the star’s light dips, and the period with which the dimming occurs, astronomer are not only able to determine the presence of exoplanets, but also place accurate constraints on their size and orbital periods. According to McTier and Kipping, this same method could also reveal the presence of geographical features – for instance, mountain ranges, volcanoes, trenches, and craters.

As they indicate in their study, in lieu of direct imaging, indirect methods are the only means astronomers have for revealing data on an exoplanet’s surface. Unfortunately, there is no conceivable way that the radial velocity, microlensing, astrometry, and timing methods could reveal exotopography. This leaves the transit method, which has some potential in this respect. As they state:

“The transit method directly measures the sky-projected area of a planet’s silhouette relative to that of a star, under the assumption that the planet is not luminous itself… This fact implies that there is indeed some potential for transits to reveal surface features, since the planet’s silhouette is certainly distorted from a circular profile due to the presence of topography.”

Satellite image of the Himalayan mountain chain, as imaged by NASA’sLandsat-7 imagery of Himalayas. Credit: NASA

In other words, as a planet transits in front of its host star, the light passing around the planet itself could be measured for small variations. These could indicate the presence of mountain ranges and other large-scale features like massive chasms. To test this theory, they considered planets in the Solar System as templates for how the scattering of light during a transit could reveal large-scale features.

As an example, they consider what an Earth analog planet would reveal if the Himalayan mountain range ran from north to south and was wide enough to span 1° in longitude:

“Now assume that the planet completes half of one rotation as it transits its parent star from our point of view, which is all that is necessary to see all of the planet’s features appear on its silhouette without repeating. As our hypothetical planet rotates and the Himalayan block moves into and out of view, the change in silhouette will result in different transit depths…”

Ultimately, they consider that Mars would be the ideal test case due to its combination of small size, low surface gravity, and active internal volcanism, which has caused it become what they describe as the “bumpiest body in the Solar System”. When paired with a white dwarf star, this presents the optimal case for using light curves to determine exotopography.

Color Mosaic of Olympus Mons on Mars
Color mosaic of Mars’ greatest mountain, Olympus Mons, viewed from orbit. Credit NASA/JPL

At a distance of about 0.01 AU (which would be within a white dwarf’s habitable zone), they calculate that a Mars-sized planet would have an orbital period of 11.3 hours. This would allow for many transits to be observed in a relatively short viewing period, thus ensuring a greater degree of accuracy. At the same time, the team admits that their proposed methods suffers from drawbacks.

For instance, due to the presence of astrophysical and instrumental noise, they determined that their method would be unproductive when it comes to studying exoplanets around Sun-like stars and M-type (red dwarf) stars. But for Mars-like planets orbiting low mass, white dwarf stars, the method could produce some highly valuable scientific returns.

While this might sound rather limited, it would present some rather fascinating opportunities to learn more about planets beyond our Solar System. As they explain:

“Finding the first evidence of mountains on planets outside our solar system would be exciting in its own right, but we can also infer planet characteristics from the presence and distribution of surface features. For example, a detection of bumpiness could lead to constraints on a planet’s internal processes.”

In short, planets with a high degree of bumpiness would indicate tectonic activity or the buildup of lava caused by internal heating sources. Those with the highest bumpiness (i.e. like Mars) would indicate that they too experience a combination internal processes, low surface gravity, volcanism, and a lack of tectonic plate movement. Meanwhile, low-bumpiness planets are less likely to have any of these internal processes and their surfaces are more likely to be shaped by external factors – like asteroid bombardment.

Artist’s impression of the OWL Telescope being deployed at night from its enclosure, where it will operated during the daytime. Credit: ESO

Based on their estimates, they conclude that the various super telescopes that are scheduled to be commissioned in the coming years would be up to task. These include the ESO’s OverWhelmingly Large (OWL) Telescope, a 100-meter proposed optical and near-infrared telescope that would build on the success of the Very Large Telescope (VLT) and the upcoming Extremely Large Telescope (ELT).

Another example is the Colossus Telescope, a 74-meter optical and infrared telescope that is currently being commissioned by an international consortium. Once operational, it will be the largest telescope optimized for detecting extrasolar life and extraterrestrial civilizations.

In the past, the success of exoplanet hunters has come down to a combination of factors. In addition to greater levels of cooperation between institutions, amateur astronomers and citizen scientists, there has also been the way in which improved technology has coincided with new theoretical models. As more data become available, scientists are able to produce more educated estimates on what we might be able to learn once new instruments come online.

When the next-generation telescopes take to space or are finished construction here on Earth, we can anticipate that thousands more exoplanets will be found. At the same time, we can anticipate that important details will be also discovered about these planets that were not possible before. Do they have atmospheres? Do they have oceans? Do they have mountain ranges and chasms? We hope to find out!

Further Reading: arXiv

What is the Radial Velocity Method?

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

Welcome back to our series on Exoplanet-Hunting methods! Today, we look at another widely-used and popular method of exoplanet detection, known as the Radial Velocity (aka. Doppler Spectroscopy) Method.

The hunt for extra-solar planets sure has heated up in the past decade or so! Thanks to improvements made in instrumentation and methodology, the number of exoplanets discovered (as of December 1st, 2017) has reached 3,710 planets in 2,780 star systems, with 621 system boasting multiple planets. Unfortunately, due to the limits astronomers are forced to contend with, the vast majority have been discovered using indirect methods.

When it comes to these indirect methods, one of the most popular and effective is the Radial Velocity Method – also known as Doppler Spectroscopy. This method relies on observing the spectra stars for signs of “wobble”, where the star is found to be moving towards and away from Earth. This movement is caused by the presence of planets, which exert a gravitational influence on their respective sun.

Continue reading “What is the Radial Velocity Method?”

What is the Transit Method?

In a series of papers, Professor Loeb and Michael Hippke indicate that conventional rockets would have a hard time escaping from certain kinds of extra-solar planets. Credit: NASA/Tim Pyle
In a series of papers, Professor Loeb and Michael Hippke indicate that conventional rockets would have a hard time escaping from certain kinds of extra-solar planets. Credit: NASA/Tim Pyle

Welcome all to the first in our series on Exoplanet-hunting methods. Today we begin with the most popular and widely-used, known as the Transit Method (aka. Transit Photometry).

For centuries, astronomers have speculated about the existence of planets beyond our Solar System. After all, with between 100 and 400 billion stars in the Milky Way Galaxy alone, it seemed unlikely that ours was the only one to have a system of planets. But it has only been within the past few decades that astronomers have confirmed the existence of extra-solar planets (aka. exoplanets).

Astronomers use various methods to confirm the existence of exoplanets, most of which are indirect in nature. Of these, the most widely-used and effective to date has been Transit Photometry, a method that measures the light curve of distant stars for periodic dips in brightness. These are the result of exoplanets passing in front of the star (i.e. transiting) relative to the observer.

Description:

These changes in brightness are characterized by very small dips and for fixed periods of time, usually in the vicinity of 1/10,000th of the star’s overall brightness and only for a matter of hours. These changes are also periodic, causing the same dips in brightness each time and for the same amount of time. Based on the extent to which stars dim, astronomers are also able to obtain vital information about exoplanets.

For all of these reasons, Transit Photometry is considered a very robust and reliable method of exoplanet detection. Of the 3,526 extra-solar planets that have been confirmed to date, the transit method has accounted for 2,771 discoveries – which is more than all the other methods combined.

Advantages:

One of the greatest advantages of Transit Photometry is the way it can provide accurate constraints on the size of detected planets. Obviously, this is based on the extent to which a star’s light curve changes as a result of a transit.  Whereas a small planet will cause a subtle change in brightness, a larger planet will cause a more noticeable change.

When combined with the Radial Velocity method (which can determine the planet’s mass) one can determine the density of the planet. From this, astronomers are able to assess a planet’s physical structure and composition – i.e. determining if it is a gas giant or rocky planet. The planets that have been studied using both of these methods are by far the best-characterized of all known exoplanets.

In addition to revealing the diameter of planets, Transit Photometry can allow for a planet’s atmosphere to be investigated through spectroscopy. As light from the star passes through the planet’s atmosphere, the resulting spectra can be analyzed to determine what elements are present, thus providing clues as to the chemical composition of the atmosphere.

Artist’s impression of an extra-solar planet transiting its star. Credit: QUB Astrophysics Research Center

Last, but not least, the transit method can also reveal things about a planet’s temperature and radiation based on secondary eclipses (when the planet passes behind it’s sun). On this occasion, astronomers measure the star’s photometric intensity and then subtract it from measurements of the star’s intensity before the secondary eclipse. This allows for measurements of the planet’s temperature and can even determine the presence of clouds formations in the planet’s atmosphere.

Disadvantages:

Transit Photometry also suffers from a few major drawbacks. For one, planetary transits are observable only when the planet’s orbit happens to be perfectly aligned with the astronomers’ line of sight. The probability of a planet’s orbit coinciding with an observer’s vantage point is equivalent to the ratio of the diameter of the star to the diameter of the orbit.

Only about 10% of planets with short orbital periods experience such an alignment, and this decreases for planets with longer orbital periods. As a result, this method cannot guarantee that a particular star being observed does indeed host any planets. For this reason, the transit method is most effective when surveying thousands or hundreds of thousands of stars at a time.

It also suffers from a substantial rate of false positives; in some cases, as high as 40% in single-planet systems (based on a 2012 study of the Kepler mission). This necessitates that follow-up observations be conducted, often relying on another method. However, the rate of false positives drops off for stars where multiple candidates have been detected.

Number of extrasolar planet discoveries per year through September 2014, with colors indicating method of detection – radial velocity (blue), transit (green), timing (yellow), direct imaging (red), microlensing (orange). Credit: Public domain

While transits can reveal much about a planet’s diameter, they cannot place accurate constraints on a planet’s mass. For this, the Radial Velocity method (as noted earlier) is the most reliable, where astronomers look for signs of “wobble” in a star’s orbit to the measure the gravitational forces acting on them (which are caused by planets).

In short, the transit method has some limitations and is most effective when paired with other methods. Nevertheless, it remains the most widely-used means of “primary detection” – detecting candidates which are later confirmed using a different method – and is responsible for more exoplanet discoveries than all other methods combined.

Examples of Transit Photometry Surveys:

Transit Photometry is performed by multiple Earth-based and space-based observatories around the world. The majority, however, are Earth-based, and rely on existing telescopes combined with state-of-the-art photometers. Examples include the Super Wide Angle Search for Planets (SuperWASP) survey, an international exoplanet-hunting survey that relies on the Roque de los Muchachos Observatory and the South African Astronomical Observatory.

There’s also the Hungarian Automated Telescope Network (HATNet), which consists of six small, fully-automated  telescopes and is maintained by the Harvard-Smithsonian Center for Astrophysics. The MEarth Project is another, a National Science Foundation-funded robotic observatory that combines the Fred Lawrence Whipple Observatory (FLWO) in Arizona with the Cerro Tololo Inter-American Observatory (CTIO) in Chile.

The SuperWasp Cameras at the South African Astronomical Observatory. Credit: SuperWASP project & David Anderson

Then there’s the Kilodegree Extremely Little Telescope (KELT), an astronomical survey jointly administered by Ohio State University, Vanderbilt University, Lehigh University, and the South African Astronomical Society (SAAO). This survey consists of two telescopes, the Winer Observatory in southeastern Arizona and the Sutherland Astronomical Observation Station in South Africa.

In terms of space-based observatories, the most notable example is NASA’s Kepler Space Telescope. During its initial mission, which ran from 2009 to 2013, Kepler detected 4,496 planetary candidates and confirmed the existence of 2,337 exoplanets. In November of 2013, after the failure of two of its reaction wheels, the telescope began its K2 mission, during which time an additional 515 planets have been detected and 178 have been confirmed.

The Hubble Space Telescope also conducted transit surveys during its many years in orbit. For instance, the Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPS) – which took place in 2006 – consisted of Hubble observing 180,000 stars in the central bulge of the Milky Way Galaxy. This survey revealed the existence of 16 additional exoplanets.

Other examples include the ESA’s COnvection ROtation et Transits planétaires (COROT) – in English “Convection rotation and planetary transits” – which operated from 2006 to 2012. Then there’s the ESA’s Gaia mission, which launched in 2013 with the purpose of creating the largest 3D catalog ever made, consisting of over 1 billion astronomical objects.

NASA’s Kepler space telescope was the first agency mission capable of detecting Earth-size planets. Credit: NASA/Wendy Stenzel

In March of 2018, the NASA Transiting Exoplanet Survey Satellite (TESS) is scheduled to be launched into orbit. Using the transit method, TESS will detect exoplanets and also select targets for further study by the James Webb Space Telescope (JSWT), which will be deployed in 2019. Between these two missions, the confirmation and characterization or many thousands of exoplanets is anticipated.

Thanks to improvements in terms of technology and methodology, exoplanet discovery has grown by leaps and bounds in recent years. With thousands of exoplanets confirmed, the focus has gradually shifted towards the characterizing of these planets to learn more about their atmospheres and conditions on their surface.

In the coming decades, thanks in part to the deployment of new missions, some very profound discoveries are expected to be made!

We have many interesting articles about exoplanet-hunting here at Universe Today. Here’s What are Extra Solar Planets?, What are Planetary Transits?, What is the Radial Velocity Method?, What is the Direct Imaging Method?, What is the Gravitational Microlensing Method?, and Kepler’s Universe: More Planets in our Galaxy than Stars.

Astronomy Cast also has some interesting episodes on the subject. Here’s Episode 364: The COROT Mission.

For more information, be sure to check out NASA’s page on Exoplanet Exploration, the Planetary Society’s page on Extrasolar Planets, and the NASA/Caltech Exoplanet Archive.

Sources:

Standford Team Creates mDOT, a Mini-Starshade for Exoplanet Research

The new DARKNESS camera developed by an international team of researchers will allow astronomers to directly study nearby exoplanets. Credit: Stanford/SRL

NASA has turned a lot of heads in recent years thanks to its New Worlds Mission concept – aka. Starshade. Consisting of a giant flower-shaped occulter, this proposed spacecraft is intended to be deployed alongside a space telescope (most likely the James Webb Space Telescope). It will then block the glare of distant stars, creating an artificial eclipse to make it easier to detect and study planets orbiting them.

The only problem is, this concept is expected to cost a pretty penny – an estimated $750 million to $3 billion at this point! Hence why Stanford Professor Simone D’Amico (with the help of exoplanet expert Bruce Macintosh) is proposing a scaled down version of the concept to demonstrate its effectiveness. Known as mDot, this occulter will do the same job, but at a fraction of the cost.

The purpose behind an occulter is simple. When hunting for exoplanets, astronomers are forced to rely predominantly on indirected methods – the most common being the Transit Method. This involves monitoring stars for dips in luminosity, which are attributed to planets passing between them and the observer. By measuring the rate and the frequency of these dips, astronomers are able to determine the sizes of exoplanets and their orbital periods.

As Simone D’Amico, whose lab is working on this eclipsing system, explained in a Stanford University press statement:

“With indirect measurements, you can detect objects near a star and figure out their orbit period and distance from the star. This is all important information, but with direct observation you could characterize the chemical composition of the planet and potentially observe signs of biological activity – life.”

However, this method also suffers from a substantial rate of false positives and generally requires that part of the planet’s orbit intersect a line-of-sight between the host star and Earth. Studying the exoplanets themselves is also quite difficult, since the light coming from the star is likely to be several billion times brighter than the light being reflected off the planet.

The ability to study this reflected light is of particular interest, since it would yield valuable data about the exoplanets’ atmospheres. As such, several key technologies are being developed to block out the interfering light of stars. A spacecraft equipped with an occulter is one such technology. Paired with a space telescope, this spacecraft would create an artificial eclipse in front of the star so objects around it (i.e. exoplanets) can be clearly seen.

But in addition to the significant cost of building one, there is also the issue of size and deployment.  For such a mission to work, the occulter itself would need to be about the size of a baseball diamond – 27.5 meters (90 feet) in diameter. It would also need to be separated from the telescope by a distance equal to multiple Earth diameters and would have to be deployed beyond Earth’s orbit.  All of this adds up to a rather pricey mission!

Artist’s impression of the mDOT system. Much like the moon in a solar eclipse, one spacecraft would block the light from the star, allowing the other to observe objects near that star. Credit: Space Rendezvous Laboratory/Stanford University

As such, D’Amico – an assistant professor and the head of the Space Rendezvous Laboratory (SRL) at Stanford – and and Bruce Macintosh (a Stanford professor of physics) teamed up to create a smaller version called the Miniaturized Distributed Occulter/Telescope (mDOT). The primary purpose of mDOT is to provide a low-cost flight demonstration of the technology, in the hopes of increasing confidence in a full-scale mission.

As Adam Koenig, a graduate student with the SRL, explained:

“So far, there has been no mission flown with the degree of sophistication that would be required for one of these exoplanet imaging observatories. When you’re asking headquarters for a few billion dollars to do something like this, it would be ideal to be able to say that we’ve already flown all of this before. This one is just bigger.”

Consisting of two parts, the mDOT system takes advantage of recent developments in miniaturization and small satellite (smallsat) technology. The first is a 100-kg microsatellite that is equipped with a 3-meter diameter starshade. The second is a 10-kg nanosatellite that carries a telescope measuring 10 cm (3.937 in) in diameter. Both components will be deployed in high Earth orbit with a nominal separation of less than 1,000 kilometers (621 mi).

With the help of colleagues from the SRL, the shape of mDOT’s starshade was reformulated to fit the constraints of a much smaller spacecraft. As Koenig explained, this scaled down and specially-designed starshade will be able to do the same job as the large-scale, flower-shaped version – and on a budget!

Simone D’Amico’s Space Rendezvous Laboratory, pictured inside the room where they test space navigation in highly realistic illumination conditions. Credit: Space Rendezvous Laboratory/Stanford University

“With this special geometric shape, you can get the light diffracting around the starshade to cancel itself out,” he said. “Then, you get a very, very deep shadow right in the center. The shadow is deep enough that the light from the star won’t interfere with observations of a nearby planet.”

However, since the shadow created by mDOT’s starshade is only tens of centimeters in diameter, the nanosatellite will have do some careful maneuvering to stay within it. For this purpose, D’Amico and the SRL also designed an autonomous system for the nanosatellite, which would allow it to conduct formation maneuvers with the starshade, break formation when needed, and rendezvous with it again later.

An unfortunate limitation to the technology is the fact that it won’t be able to resolve Earth-like planets. Especially where M-type (red dwarf) stars are concerned, these planets are likely to orbit too close to their parent stars to be observed clearly. However, it will be able to resolve Jupiter-sized gas giants and help characterize exozodiacal dust concentrations around nearby stars – both of which are priorities for NASA.

In the meantime, D’Amico and his colleagues will be using the Testbed for Rendezvous and Optical Navigation (TRON) to test their mDOT concept. This facility was specially-built by D’Amico to replicate the types of complex and unique illumination conditions that are encountered by sensors in space. In the coming years, he and his team will be working to ensure that the system works before creating an eventual prototype.

Artist’s concept of the prototype starshade, a giant structure designed to block the glare of stars so that future space telescopes can take pictures of planets. Credit: NASA/JPL

As D’Amico said of the work he and his colleagues at the SNL perform:

“I’m enthusiastic about my research program at Stanford because we’re tackling important challenges. I want to help answer fundamental questions and if you look in all current direction of space science and exploration – whether we’re trying to observe exoplanets, learn about the evolution of the universe, assemble structures in space or understand our planet – satellite formation-flying is the key enabler.”

Other projects that D’Amico and the SNL are currently engaged in include developing larger formations of tiny spacecraft (aka. “swarm satellites”). In the past, D’Amico has also collaborated with NASA on such projects as GRACE – a mission that mapped variations in Earth’s gravity field as part of the NASA Earth System Science Pathfinder (ESSP) program – and TanDEM-X, an SEA-sponsored mission which yielded 3D maps of Earth.

These and other projects which seek to leverage miniaturization for the sake of space exploration promise a new era of lower costs and greater accessibility. With applications ranging from swarms of tiny research and communications satellites to nanocraft capable of making the journey to Alpha Centauri at relativistic speeds (Breakthrough Starshot), the future of space looks pretty promising!

Be sure to check out this video of the TRON facility too, courtesy of Standford University:

Further Reading: Standford University