Zombie ISON ‘Behaving Like A Comet’, Stunned Astronomers Say

Bright, brighter, brightest: these views of Comet ISON after its closest approach to the sun Nov. 28 show that a small part of the nucleus may have survived the comet's close encounter with the sun. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/GSFC

Talk about the Comeback Kid. After Comet C/2012 S1 ISON rounded the sun yesterday afternoon, professional astronomers around the world looked at the faded debris and concluded it was an “ex-comet.” NASA wrapped up an hours-long Google+ Hangout with that news. The European Space Agency declared it was dead on Twitter.

But the remnants — or whatever ISON is now — kept brightening and brightening and brightening in images from the NASA/European Space Agency Solar and Heliospheric Observatory. The pictures are still puzzling astronomers right now, almost a day after ISON’s closest encounter with the sun.

 

You can follow our liveblogged confusion yesterday, capped by a gobsmacking announcement from the Naval Research Laboratory’s Karl Battams, “We believe some small part of ISON’s nucleus has SURVIVED perihelion,” he said on Twitter. Since then, Battams wrote a detailed blog post, referring to images from the Large Angle and Spectrometric Coronagraph (LASCO) aboard SOHO:

“Matthew [Knight] and I are ripping our hair out right now as we know that so many people in the public, the media and in science teams want to know what’s happened. We’d love to know that too! Right now, here’s our working hypothesis: As comet ISON plunged towards to the Sun, it began to fall apart, losing not giant fragments but at least a lot of reasonably sized chunks. There’s evidence of very large dust in the form of that long thin tail we saw in the LASCO C2 images.

After its closest approach to to the sun on Nov. 28 (left), Comet ISON appeared a dim shadow of its former self (at right). "The comet may still be intact," NASA wrote on Nov. 29. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/Jhelioviewer
After its closest approach to to the sun on Nov. 28 (left), Comet ISON appeared a dim shadow of its former self (at right). “The comet may still be intact,” NASA wrote on Nov. 29. Images from the Solar and Heliospheric Observatory. Credit: ESA/NASA/SOHO/Jhelioviewer

Then, as ISON plunged through the corona, it continued to fall apart and vaporize, and lost its coma and tail completely just like Lovejoy did in 2011. (We have our theories as to why it didn’t show up in the SDO images but that’s not our story to tell – the SDO team will do that.) Then, what emerged from the Sun was a small but perhaps somewhat coherent nucleus, that has resumed emitting dust and gas for at least the time being. In essence, the tail is growing back, as Lovejoy’s did.

So while our theory certainly has holes, right now it does appear that a least some small fraction of ISON has remained in one piece and is actively releasing material. We have no idea how big this nucleus is, if there is indeed one. If there is a nucleus, it is still too soon to tell how long it will survive. If it does survive for more than a few days, it is too soon to tell if the comet will be visible in the night sky. If it is visible in the night sky, it is too soon to say how bright it will be…

This morning (EST), Battams succinctly summarized the latest images he saw: “Based on a few more hours of data, comet #ISON appears to be… well, behaving like a comet!”, he wrote on Twitter.

NASA issued a status update this morning saying it’s unclear if this leftover is debris or an actual nucleus, but added that “late-night analysis from scientists with NASA’s Comet ISON Observing Campaign suggest that there is at least a small nucleus intact.” NASA, as well as Battams, pointed out that comet has behaved unpredictably throughout the 15 months scientists and amateurs have been observing it.

Mike Hankey of Monkton, Maryland took this photo of Comet ISON in outburst this morning Nov. 14. The tail now shows multiple streamers. Click to enlarge. Credit: Mike Hankey
Mike Hankey of Monkton, Maryland took this photo of Comet ISON in outburst Nov. 14. The tail showed multiple streamers. Click to enlarge. Credit: Mike Hankey

Throughout the year that researchers have watched Comet ISON – and especially during its final approach to the sun – the comet brightened and dimmed in unexpected ways.  Such brightness changes usually occur in response to material boiling off the comet, and different material will do so at different temperatures thus providing clues as to what the comet is made of.  Analyzing this pattern will help scientists understand the composition of ISON, which contains material assembled during the very formation of the solar system some 4.5 billion years ago.

Slate Bad Astronomy blogger Phil Plait jokingly threw out phrases like “What the what?” on Twitter yesterday, but added in a late-night update: “If you haven’t figured this out yet: We are *loving* this. The Universe surprises us yet again! How awesome!” He continued with his astonishment in a blog post:

For those keeping score at home, it got bright, then it faded, then it got all smeared out, then it came around the Sun smeared out, and then it seemed to get its act together again. At this point, I refuse to make any further conclusions about this comet; it seems eager to confuse. I’ve been hearing from comet specialists who are just as baffled… which is fantastic! If we knew what was going on, there’d be nothing more to learn.

Science confusion: Comet ISON made its closest approach to the sun Nov. 28. Although it showed up again in images from the Solar and Heliospheric Observatory, scientists could not spot it using the ESA PROBA-2 spacecraft (view pictured). ISON's composition or proximity to the sun may have caused this. Credit: PROBA-2 Science Centre
Science confusion: Comet ISON made its closest approach to the sun Nov. 28. Although it showed up again in images from the Solar and Heliospheric Observatory, scientists could not spot it using the ESA PROBA-2 spacecraft (view pictured). ISON’s composition or proximity to the sun may have caused this. Credit: PROBA-2 Science Centre

In a series of Twitter posts this morning, the European Space Agency’s science feed offered this take from Gerhard Schwehm, ESA’s head of planetary science:

From my initial look at ISON in today’s SOHO images, it seems nucleus has mostly disintegrated. Will only know if part of ISON nucleus has survived by continuing observations and performing more analysis. Bright fan-shape implies lots of material was released and travelling along ISON orbit, not confined in a traditional tail. Would be interesting to learn more about composition of debris to help us piece together what’s happened, but we need more time.

Other spacecraft searching for ISON were not able to spot it. For ESA’s PROBA-2, it may have been because of its composition or proximity to the sun, but scientists are unsure. It was also invisible in NASA’s Solar Dynamics Observatory; “scientists are still looking at the data to figure out why,” an agency Twitter update stated this morning.

So to sum up: no one’s quite sure of what is happening now, or what is happening next, but we will keep you posted and let you know if and when you can see ISON again in your home telescopes.

One of the finest pictures to date of Comet ISON by ace astrophotographer Damian Peach taken on Oct. 27.
One of the finest pictures to date of Comet ISON by ace astrophotographer Damian Peach taken on Oct. 27.

‘Will We Soon Find Ourselves Back In The Stone Age?’ Why Swarm Is Watching Our Magnetic Field

Artist's conception of the Swarm satellites during launch. Credit: ESA–P. Carril, 2013

A satellite triplet was born last week. The European Space Agency’s Swarm constellation flew into space on Friday (Nov. 22) on a quest to understand more about the Earth’s magnetic field.

Around the same time, ESA put out a few videos explaining why the magnetic field is important. This one explains that the magnetic field has weakened over the past few years, while the north pole has shifted direction. “In fact, a whole pole reversal is possible,” the narrator says. “It happened last 780,000 years ago at the very beginning of human history. But cavemen didn’t have mobile phone networks, GPS networks or power supplies.”

If a reversal did happen, it could affect those systems, the video adds, asking “Will we soon find ourselves back in the stone age?”

In the short term, however, the focus is on Swarm’s science. The satellites successfully unfurled their booms on Saturday (Nov. 23) and are now starting three months of commissioning before their planned four-year mission.

Once they get going, the satellites will make observations from two altitudes — a pair at about 285 miles (460 kilometers) in altitude and the final of the trio at a higher altitude of 330 miles (530 kilometers). They will monitor any changes in the Earth’s magnetic field, looking at spots ranging from the core of our planet to areas of the upper atmosphere.

Check out this ESA web page for more information about the mission.

Speedy Science: Here’s Four Years Of Herschel Telescope Work In A Short Video

ESA's Herschel telescope used liquid helium to keep cool while it observed heat from the early Universe. Credit: ESA

In just one minute, you can watch the Herschel space telescope painting the sky blue, green and yellow! The colors in this new video represent four years of observations from the European Space Agency telescope, which was active between 2009 and 2013.

“In total, Herschel observed almost a tenth of the entire sky for over 23,500 hours, providing new views into the previously hidden universe, pointing to unseen star birth and galaxy formation, and tracing water through the universe from molecular clouds to newborn stars and to their planet-forming discs and belts of comets,” ESA stated on a video explanation.

As ESA explains, Herschel had two cameras and imaging spectrometers on board, called PACS (Photoconductor Array Camera and Spectrometer, in blue) and SPIRE (Spectral and Photometric Imaging Receiver, in green). When they worked together, their observations are shown in yellow.

Herschel was officially shut down on June 17 — check out the video of those commands here — but the scientific information the telescope produced is still being plumbed by astronomers.

Source: ESA

 

A Cosmic Intruder Grabbed Hot Gas From This Galaxy Group

NGC 5044 as seen by XMM-Newton. Astronomers say they are able to see hot gas moving in this galaxy because of an interaction with another galaxy millions of years ago. Credit: E. O’Sullivan & ESA

So galaxy group NGC 5044 was just sitting quietly by itself a few million years ago when galaxy NGC 5054 decided to pass right through it. That close encounter finished long ago, but the ricochet is still visible in telescopes as astronomers spotted hot gas rippling through the host galaxy.

“Galaxies are social beasts that are mostly found in groups or clusters – large assemblies of galaxies that are permeated by even larger amounts of diffuse gas. With temperatures of 10 million degrees or more, the gas in galaxy groups and clusters is hot enough to shine brightly in X-rays and be detected by ESA’s XMM-Newton X-ray observatory,” the European Space Agency stated.

“As galaxies speed through these gigantic cauldrons, they occasionally jumble the gas and forge it into lop-sided shapes. An example is revealed in this composite image of the galaxy group NGC 5044, the brightest group in X-rays in the entire sky.”

Fresh observations from XMM-Newton (in blue) are visible in this composite image with other pictures from the Wide-field Infrared Survey Explorer, the Digitized Sky Survey (optical) and Galex (near-ultraviolet).

Publication of this research was accepted in MNRAS and is currently available on prepublishing site Arxiv. The lead author is Ewan O’Sullivan, a visiting scientist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.

Photographer Catches ATV-4’s Fiery Plunge Through the Atmosphere

The faint streak on the left side of this image, just above the house, is a look at the ATV-4 Albert Einstein less than 30 minutes before it plunged through the atmosphere. Taken from Thailand. Credit and copyright: Oliver Broadie.

UPDATE: Editor’s note: Here’s a story that we’ve updated a couple of times, and now it ultimately has a happy ending. We originally posted a picture from Oliver Broadie who thought he captured an image of the ATV-4 Albert Einstein right before it burned up in the atmosphere. That image, see below, was ultimately determined to be of the International Space Station and not the ATV-4, so yesterday we pulled the image and explained why. But now, thanks to a great discussion between the photographer and satellite tracker Marco Langbroek (see it in the comment section), they have determined that Oliver actually did capture the ATV-4 in a subsequent image taken about 4 minutes later. Thanks to both Ollie and Marco for analyzing the timing and images. Also, we were in error for saying that the image showed the ATV-4 burning up in the atmosphere. That was my mistake (Nancy).

And you can now actually see images of ATV-4’s fiery plunge taken by the ISS astronauts here — Nancy Atkinson, Senior Editor.

Universe Today reader Oliver Broadie captured this shot of the International Space Station, shot from Sukhothai, Thailand. Just a few minutes later, the ATV-4 flew by at a lower altitude. Credit: Oliver Broadie
Universe Today reader Oliver Broadie captured this shot of the International Space Station, shot from Sukhothai, Thailand. Just a few minutes later, the ATV-4 flew by at a lower altitude. Credit: Oliver Broadie

Each Automated Transfer Vehicle series ferries cargo to the International Space Station, stays attached for a few months to do routine boosts to the station’s altitude, then leaves with a haul of trash to burn up in Earth’s atmosphere.

ATV-4 Albert Einstein backs away from the space station after five months in space. It burned up in the Earth's atmosphere Nov. 2, 2013. Credit: ESA/NASA
ATV-4 Albert Einstein backs away from the space station after five months in space. It burned up in the Earth’s atmosphere Nov. 2, 2013. Credit: ESA/NASA

Albert Einstein carried a record 5,467 pounds (2,480 kg) of cargo for its type of vehicle and also brought away the most garbage of the series of vehicles. It did six reboosts of the ISS’ altitude and among its precious cargo was a GPS antenna for Japan’s Kibo laboratory as well as a water pump for Europe’s Columbus laboratory, according to the European Space Agency.

The cargo ship undocked from the space station on Oct. 28 after five months in space. It burned up Nov. 2 at 12:04 GMT within sight of the astronauts. The next of the series, Georges Lemaitre, is in French Guiana for a launch aboard an Ariane 5 rocket that will take place in June 2014.

The ATVs are just one of many space trucks that visit the International Space Station. Check out this recent article on cargo ships past and present to see other ones that ferry stuff into space.

Space Trucks! A Pictorial History Of These Mighty Machines

A view of Orbital Sciences' Cygnus spacecraft while it was being released from the International Space Station on Oct. 22. Credit: NASA/Karen Nyberg

Cargo resupply ships are vital for space exploration. These days they bring food, experiments and equipment to astronauts on the International Space Station. And in recent years, it hasn’t just been government agencies sending these things up; SpaceX’s Dragon spacecraft and (just this week) Orbital Sciences’ Cygnus spacecraft brought up cargo of their own to station in recent months.

NASA just published a brief timeline of (real-life) cargo spacecraft, so we thought we’d adapt that information in pictorial form. Here are some of the prominent members of that elite group. Did we miss anything? Let us know in the comments.

Dragon in orbit during the CRS-2 mission. Credit: NASA/CSA/Chris Hadfield
SpaceX’s Dragon in orbit during the CRS-2 mission. It was the first commercial spacecraft to resupply the space station, and since 2012 has completed resupply missions. Credit: NASA/CSA/Chris Hadfield
Thrust
Space shuttle Discovery heads to space after lifting off from Launch Pad 39A at NASA’s Kennedy Space Center in Florida to begin its final flight to the International Space Station on the STS-133 mission. The shuttle was NASA’s main human spacecraft between 1981 and 2011. Credit: NASA
Progress 51 on final approach to the International Space Station. The stuck antenna is visible below the crosshairs. Credit: NASA TV (screencap)
Progress 51 on final approach to the International Space Station. The Russians have been flying versions of this cargo spacecraft since 1978. Credit: NASA TV (screencap)
JAXA's H-II Transfer Vehicle during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA
JAXA’s H-II Transfer Vehicle (HTV) during a mission in July 2012. The first demonstration flight took place in 2009. Credit: NASA

 

The ATV Johannes Kepler docked at the International Space Station. Credit: NASA
The ATV Johannes Kepler docked at the International Space Station. Versions of this spacecraft have flown since 2008. Credit: NASA
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons
A line drawing of the TKS (Transportnyi Korabl’ Snabzheniia, or Transport Supply Spacecraft). It was intended to send crew and cargo together in one flight, but delays and a change in program priorities never allowed it to achieve that. According to NASA, versions of TKS (under the Cosmos designation) flew to the Salyut 6 and Salyut 7 space station. The cargo part of the spacecraft was also used for Russian base modules in the Mir space station and International Space Station. Credit: NASA/Wikimedia Commons

Planck Enters Retirement Shortly; This Picture Shows Just Some Of Its Views

A March 2013 picture of the Shapley Supercluster from the European Space Agency's Planck observatory. ESA describes it as "the largest cosmic structure in the local Universe." Credit: ESA & Planck Collaboration / Rosat/ Digitised Sky Survey

With two days left before Planck switches off forever, the European Space Agency re-posted this beautiful image the telescope recently assisted in taking. It shows the Shapley Supercluster, which ESA describes as the biggest cosmic structure in our neighborhood.

First discovered in the 1930s by Harlow Shapley, a U.S. astronomer, the structure has more than 8,000 galaxies and a mass that is 10 million billion times that the mass of the Sun, ESA added. The blue parts are detections by Planck, and the Rosat satellite imaged the pink sections. Visible wavelengths shown in the picture come from the Digitised Sky Survey.

Today (Oct. 21), ESA will order Planck to run its thrusters to empty. After years hovering at a Lagrange point, the telescope will be put in a “parking orbit” to circle the sun, keeping it away from the Earth and moon for at least several centuries. The last command will be sent Oct. 23.

Among other milestones, Planck released a cosmic map in March refining the Universe’s age to 13.82 billion years.

This Cave Video Makes You Feel Like You’re On An Alien Planet

"Cavenauts" exploring an underground lake. Credit: ESA/V. Crobu

A few weeks ago, a bunch of astronauts went underground in Italy in the name of science and better finessing the techniques of running a space mission. A movie-style “preview” of their work plays in the video above.

You can see how jazzed the astronauts are about the mission. “It was like being on Mars,” one says. Another says this is inspiration to explore the solar system, because then you get to possibly see beautiful things such as what is right in front of them.

Better yet, there’s way more material where that movie came from. Check out the full playlist on YouTube.

Don’t Panic: How Space Emergency Astronaut Training Works

Safety in spaceflight comes from working the procedures in training so often that responses become automatic, says German astronaut Alexander Gerst, shown here during spacewalk training. Credit: NASA

Routines. They tell you when to get up in the morning, what to do at your day job and how to handle myriad tasks ranging from house cleaning to using a computer. Memorizing these procedures makes it a lot easier to handle things that come up in life.

In space, establishing routines is even more important because they will help guide your thinking during an emergency. That’s why astronauts spend thousands of hours learning, simulating and memorizing before heading up to space.

European Space Agency astronaut Alexander Gerst, who will fly to the International Space Station in 2014 during Expedition 40/41, gave Universe Today some insight on how it’s done.

Why train so often? According to Gerst, practicing an emergency procedure on the ground makes it easier to think clearly during a situation up in space. An astronaut’s reaction to any problem on station — a fire, a depressurization, toxic air — is to begin with the procedures. “They sink in and become a memorized response or a natural reaction,” he said. In a fire situation, for example, “Immediately when you hear the sound of the alarm, I will grab the nearest gas mask and the nearest emergency book and head to our control post, which is part of the emergency response.” (Chris Cassidy, a former Navy SEAL on station right now, had more to say to Universe Today in March about “muscle memory” during emergencies.)

European Space Agency astronauts Alexander Gerst (left) and Samantha Cristoforetti in Russian Orlan spacesuits during training in 2012. Credit: GCTC
European Space Agency astronauts Alexander Gerst (left) and Samantha Cristoforetti in Russian Orlan spacesuits during training in 2012. Credit: GCTC

What’s the biggest challenge? The complexity of the station. The American and Russian sides have different procedures and different equipment. There are three types of gas masks on station, for example, and three kinds of fire extinguishing systems. (According to Gerst, all but the most stubborn fires on station are extinguished after cutting ventilation and electricity to the affected area.) To address the complexity, the astronauts spend hours in the classroom discussing what to look for in the fire sensors, pressure sensors, ammonia sensors and other parts of the vehicle. The signatures look different for depressurizations, fires and other conditions in space and it’s key to know what they mean at a glance.

What happens during a simulation? After discussing what actions to take, it’s time to play them out. “We don’t light our modules on fire, but the trainers are creative in creating that [emergency] condition,” Gerst said. Sometimes smoke machines will be used during a fire simulation, for example, or the astronauts will simply be informed by instructors that there is a fire in a section of the station. As the astronauts go through the procedures, trainers keep an eye on them and give feedback. In more complex situations, 10 to 20 flight controllers can join in to simulate communications with Mission Control in Houston or its equivalent in Russia.

ESA astronaut Alexander Gerst (left) and NASA astronaut Gregory Reid Wiseman (middle) during training at NASA's Johnson Space Center. Credit: ESA–S. Corvaja
ESA astronaut Alexander Gerst (left) and NASA astronaut Gregory Reid Wiseman (middle) during training at NASA’s Johnson Space Center. Credit: ESA–S. Corvaja

What about dealing with emergencies in a smaller spacecraft? Astronauts can spend anywhere from hours to days on a Russian Soyuz getting to and from the station. If there’s a fire on board, the three people squashed inside the capsule wouldn’t have much room to deploy fire extinguishers. The response is essentially for astronauts to slam shut the visors on their spacesuits and vent the spacecraft. During a depressurization, the procedure is also to close the visor. “You don’t even have to get out of your seat to deal with the emergency, which makes it quite different,” Gerst said.

What about emergencies during a spacewalk? Astronauts spend hundreds of hours inside the Neutral Buoyancy Laboratory in Houston, a huge pool with a mockup of most of the International Space Station inside. They practice spacewalk procedures such as how to bring an unconscious crew member back to the airlock, or what to do if air leaks out of a spacesuit. Gerst credits this sort of training for helping out during a recent incident involving fellow ESA astronaut Luca Parmitano. In July, emergency procedures kicked in for real when Parmitano’s spacesuit sprung a water leak during a spacewalk. In a nutshell, the crew worked to bring Parmitano back inside as quickly as possible, which led to a safe (but early) end to the work. (Read Parmitano’s nail-biting first-hand account of the incident here.)

What’s the big takeaway? Gerst emphasizes that emergency training is a “huge topic”. He and Reid Wiseman recently got checked out for emergency procedures on the United States side of the station, only to fly to Moscow and then have to do the same thing for the Russian side in mid-August. And there’s other training to do as well — another huge topic is medical emergencies , which Gerst practiced in a German hospital in July.

How To Hit A Landing Target On Mars … Potentially, Precisely and Perfectly!

A Xombie technology demonstrator from Masten Space Systems. Credit: NASA/Masten

It’s frustrating to make it all the way to Mars, only to land in the wrong spot. So as Masten Space Systems tests its Xombie vertical-launch-vertical-landing rocket prototype on Earth, engineers are also examining a software solution to make Red Planet landings even more precise.

The software is called G-FOLD (for Fuel Optimal Large Divert Guidance algorithm) and is a product of NASA’s Jet Propulsion Laboratory and other NASA departments. The agency is using techniques for spacecraft landings that have origins from the Apollo moon missions of the 1960s, which have some limitations.

“These algorithms do not optimize fuel usage and significantly limit how far the landing craft can be diverted during descent,” JPL stated, adding that the new algorithm can figure out the best fuel-conserving paths in real time, along with a “key new technology required for planetary pinpoint landing.”

An artist's concept of Curiosity landing with the skycrane system. Credit: NASA/JPL
An artist’s concept of Curiosity landing with the skycrane system — demonstrating one recently used technique for landing on Mars. Credit: NASA/JPL

Hitting the target exactly is an exciting feat for researchers, JPL explained, because robotic missions can be steered to difficult-to-reach science targets and crewed missions could bring more cargo to their landing site rather than carrying extra fuel.

Xombie first tested out this technique on July 30 and nailed the landing — about half a mile away — when it received the commands while 90 feet in the air. A second flight is planned for August, providing the data analysis goes as planned.

The technology is still new, of course, and there are other concepts out there for pinpoint systems. In May, the European Space Agency released information on a concept it is funding. That system, which is also still being developed, uses a database of landmarks to assist a spacecraft with making landings.

Source: NASA