A Tale of Three Moons: Is There Life in the Outer Solar System?

[/caption]

Until fairly recently, the search for life elsewhere in the solar system has focused primarily on Mars, as it is the most Earth-like of all the other planets in the solar system. The possibility of finding any kind of life farther out in the outer solar system was considered very unlikely at best; too cold, too little sunlight, no solid surfaces on the gas giants and no atmospheres to speak of on any of the moons apart from Titan.

But now, some of the places that were previously considered the least likely to hold life have turned out to be perhaps some of the most likely to provide habitable environments. Moons that were thought be cold and frozen for eons are now known to be geologically active, in surprising ways. One of them is the most volcanically active place known in the solar system. At least two others appear to have oceans of liquid water beneath their surfaces. That’s right, oceans. And geysers. On the surface, they are ice worlds, but below, they are water worlds. Then there’s the one with rain, rivers, lakes and seas, but made of liquid methane instead of water. Billions of kilometres farther out from the Sun than the Earth. Who would have thought? Let’s look at those last three in a bit more detail…

Ever since the film 2001: A Space Odyssey first came out, Europa has been the subject of fascination. A small, icy moon orbiting Jupiter, its depiction in that movie, as an inhabited world beneath its ice crust was like a sort of foreshadowing, before the Voyager and Galileo spacecraft gave us our first real close-up looks of this intriguing place. Its surface shell of ice is covered with long cracks and fissures, giving it an appearance much like ice floes at the poles on Earth. More surprising though, was the discovery that, also like on Earth, this ice cover most likely is floating on top of a deep layer of liquid water below. In Europa’s case though, the water layer appears to cover the entire moon, a global subsurface ocean. How is this possible? If there is liquid water, there must be heat (or high concentrations of salts or ammonia), and if you have water and heat, could there be something living in those waters? Gravitational tugging from Jupiter indeed appears to provide enough heat to keep the water liquid instead of frozen. The environment is now thought to be similar to ocean bottoms on Earth. No sunlight, but if there are volcanic vents generating heat and minerals, as on Earth, such a spot could be ideal for at least simple forms of life. On Earth, places like these deep in the oceans are brimming with organisms which don’t require sunlight to survive.

Water vapour geysers on Enceladus. Credit: NASA/JPL

Then there’s Enceladus. Another very small icy moon, orbiting Saturn. Geological activity was considered very unlikely on such a tiny world, only a few hundred kilometres in diameter. But then Cassini saw the geysers, plumes of material erupting from the south polar region through large, warmer cracks nicknamed “tiger stripes.” Cassini has now flown directly through the geysers, analyzing their composition, which is mostly water vapour, ice particles, salts and organics. The latest analysis based on the Cassini data indicates that they almost certainly originate from a sea or ocean of liquid water below the surface. Warm, salty water loaded with organics; could Enceladus be another possible niche for extraterrestrial life? As with Europa, only further missions will be able to answer these questions, but the possibilities are exciting.

Radar image of one of many methane lakes on Titan. Credit: NASA/JPL

Titan is even more fascinating in some ways, the largest moon of Saturn. It is perpetually shrouded in a thick smoggy atmosphere of nitrogen and methane, so the surface has never been visible until now, when Cassini, and its small lander probe Huygens, first looked below the smog and clouds. Titan is like an eerily alien version of Earth, with rain, rivers, lakes and seas, but being far too cold for liquid water (not much heat here), its “water cycle” is composed of liquid methane/ethane. Appearance-wise, the surface and geology look amazingly Earth-like, but the conditions are uniquely Titan. For that reason, it has long been considered that the chances of any kind of life existing here are remote at best. In the last few years however, some scientists are starting to consider the possibility of life forming in just such environments, using liquids other than water, even in such cold conditions. Could life occur in a liquid methane lake or sea? How would it differ from water-based life? Last year, a discovery was made which might be interpreted as evidence of methane-based life on Titan – a seeming disappearance of hydrogen from the atmosphere near the surface and a lack of acetylene on the surface. Previous theoretical studies had suggested that those two things, if ever found, could be evidence for methane-based lifeforms consuming the hydrogen and acetylene. All of this is still highly speculative, and while a chemical explanation is probably more likely according to the scientists involved, a biological one cannot be ruled out yet. Future proposed missions for Titan include a floating probe to land in one of the lakes and a balloon to soar over the landscape, pursuing such mysteries as never before. How cool is that?

Oh, and the moon that is the most volcanically active place in the solar system? Io, although with the only known forms of liquid there being extremely hot lavas on that sulfuric hothouse, the chances of life are still thought to be unbelievably slim. But that’s ok when you start to find out that worlds with oceans and lakes, etc. may be much more common than previously imagined…

Solar Powered Jupiter bound JUNO lands at Kennedy Space Center for blastoff

[/caption]

Juno, NASA’s next big mission bound for the outer planets, has arrived at the Kennedy Space Center to kick off the final leg of launch preparations in anticipation of blastoff for Jupiter this summer.

The huge solar-powered Juno spacecraft will skim to within 4800 kilometers (3000 miles) of the cloud tops of Jupiter to study the origin and evolution of our solar system’s largest planet. Understanding the mechanism of how Jupiter formed will lead to a better understanding of the origin of planetary systems around other stars throughout our galaxy.

Juno will be spinning like a windmill as it fly’s in a highly elliptical polar orbit and investigates the gas giant’s origins, structure, atmosphere and magnetosphere with a suite of nine science instruments.

Technicians at Astrotech's payload processing facility in Titusville, Fla. secure NASA's Juno spacecraft to the rotation stand for testing. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins. Credit: NASA/Jack Pfaller

During the five year cruise to Jupiter, the 3,600 kilogram probe will fly by Earth once in 2013 to pick up speed and accelerate Juno past the asteroid belt on its long journey to the Jovian system where it arrives in July 2016.

Juno will orbit Jupiter 33 times and search for the existence of a solid planetary core, map Jupiter’s intense magnetic field, measure the amount of water and ammonia in the deep atmosphere, and observe the planet’s auroras.

The mission will provide the first detailed glimpse of Jupiter’s poles and is set to last approximately one year. The elliptical orbit will allow Juno to avoid most of Jupiter’s harsh radiation regions that can severely damage the spacecraft systems.

Juno was designed and built by Lockheed Martin Space Systems, Denver, and air shipped in a protective shipping container inside the belly of a U.S. Air Force C-17 Globemaster cargo jet to the Astrotech payload processing facility in Titusville, Fla.

Juno undergoes acoustics testing at Lockheed Martin in Denver where the spacecraft was built. Credit: NASA/JPL-Caltech/Lockheed Martin

This week the spacecraft begins about four months of final functional testing and integration inside the climate controlled clean room and undergoes a thorough verification that all its systems are healthy. Other processing work before launch includes attachment of the long magnetometer boom and solar arrays which arrived earlier.

Juno is the first solar powered probe to be launched to the outer planets and operate at such a great distance from the sun. Since Jupiter receives 25 times less sunlight than Earth, Juno will carry three giant solar panels, each spanning more than 20 meters (66 feet) in length. They will remain continuously in sunlight from the time they are unfurled after launch through the end of the mission.

“The Juno spacecraft and the team have come a long way since this project was first conceived in 2003,” said Scott Bolton, Juno’s principal investigator, based at Southwest Research Institute in San Antonio, in a statement. “We’re only a few months away from a mission of discovery that could very well rewrite the books on not only how Jupiter was born, but how our solar system came into being.”

Juno is slated to launch aboard the most powerful version of the Atlas V rocket – augmented by 5 solid rocket boosters – from Cape Canaveral, Fla. on August 5. The launch window extends through August 26. Juno is the second mission in NASA’s New Frontiers program.

NASA’s Mars Curiosity Rover will follow Juno to the Atlas launch pad, and is scheduled to liftoff in late November 2011. Read my stories about Curiosity here and here.

Because of cuts to NASA’s budget by politicians in Washington, the long hoped for mission to investigate the Jovian moon Europa may be axed, along with other high priority science missions. Europa may harbor subsurface oceans of liquid water and is a prime target in NASA’s search for life beyond Earth.

Technicians inside the clean room at Astrotech in Titusville, Fla. guide NASA's Juno spacecraft, as it is lowered by overhead crane, onto the rotation stand for testing. Credit: NASA/Jack Pfaller
Technicians at Astrotech unfurl solar array No. 1 with a magnetometer boom that will help power NASA's Juno spacecraft on a mission to Jupiter. Credit: NASA
Juno's interplanetary trajectory to Jupiter. Juno will launch in August 2011 and fly by Earth once in October 2013 during its 5 year cruise to Jupiter. Click to enlarge. Credit: NASA/JPL

NASA Mission to Europa May Fall to Budget Cuts

Europa During Voyager 2 Closest Approach

[/caption]

Next week, the US National Academy of Sciences will release their decadal review of priorities for planetary science in 2013-2022, and it will be interesting to see how highly prioritized a mission to Jupiter’s enticing moon Europa will be. But according to Space News, word from the NASA Advisory Council’s planetary science subcommittee is that because of probable flat or declining budgets for building and operating planetary probes over the next five years, there will likely be no funding to begin development of a flagship-class mission such as a long-anticipated detailed survey of Europa.

“The out-years budget means no major new starts of a flagship planetary [mission],” Ronald Greeley, a regent’s professor at Arizona State University in Tempe and chairman of the NASA Advisory Council’s planetary science subcommittee, said during a March 1 conference call with panel members. “That’s a major, major issue for our community.”

The only flagship-class planetary mission in the works is the $2.5 billion Mars Science Laboratory Curiosity. The Juno mission to Jupiter, scheduled to launch in August 2011, is a medium-class “New Frontiers” mission set to study Jupiter only and not any of its moons.

The 2012 budget request for NASA, unveiled February 14, 2011 by President Obama, would boost spending on planetary science activities from the current level of $1.36 billion to $1.54 billion next year. But funding would steadily decline over the following four years, to $1.25 billion in 2016.

Space News reports that “NASA’s projected top-line budget is flat over the next five years at $18.72 billion, which when inflation is factored in translates into a decline in spending power. But there are budgetary scenarios under which NASA’s budget would decline over the next five years, even as the agency tries to replace the space shuttle and contends with runaway cost growth on the $5 billion-plus James Webb Space Telescope, the designated successor to the Hubble Space Telescope.”

Many have long hoped for mission to Europa, but budgetary issues have been a problem, even the past; the JIMO (Jupiter Icy Moon Orbiter) mission was canceled in 2005 because of lack of funding.

ESA and NASA have been studying a collaborative mission called Europa Jupiter System Mission/Laplace that would send two spacecraft to survey Jupiter and its moons. It is one of three candidates for a large-scale science mission opportunity that would launch around 2022. ESA has budgeted about $1 billion for the opportunity but is awaiting decisions from NASA and the Japanese space agency, which is collaborating on another candidate mission, before making a final decision on which one to pursue.

“How we will implement [the decadal priorities] within our existing budget needs to be considered,” NASA Planetary Science Division Director Jim Green said during the March 1 conference call, adding there is “no additional money beyond the president’s submitted budget.”

Source: Space News

Europa’s Tidal Processes Give Hints to Our Moon’s Far-side Bulge

[/caption]

A self-conscious Moon might ask, “Does my far side look big?” To which lunar scientists would have to reply in the affirmative. They have long known there is a bulge on the Moon’s far side, a thick region of the lunar crust which underlies the farside highlands. But why that bulge is there has been a mystery, and the fact that the far side always faces away from Earth hasn’t helped. Now, a group of international scientists have found that perhaps the tidal processes of Jupiter’s icy moon, Europa, can provide a clue.

“Europa is a completely different satellite from our moon, but it gave us the idea to look at the process of tidal flexing of the crust over a liquid ocean,” said Ian Garrick-Bethell, the lead author of a new paper that offers an explanation for the lop-sided Moon.


Since the Apollo 15 laser altimeter experiment, scientists have known that a region of the lunar far side highlands is the highest place on the Moon. Additionally, the far side has only highlands and no maria.

Like Europa’s icy crust that sits over an ocean of liquid water, the Moon’s crust once floated on a sub-surface ocean of liquid rock. So, could the same gravitational forces from Jupiter that influence Europa also apply to the Earth’s influence on the early Moon?

Garrick-Bethell, from UC Santa Cruz, and his team found that the shape of the Moon’s bulge can be calculated by looking at the variations in tidal heating as the ancient lunar crust was being torn away from the underlying ocean of liquid magma.

Map of crustal thickness. Credit: Garrick-Bethell, et al.

With Europa in mind, the scientists looked at global topography and gravity data sets of the Moon, trying to determine the possibility of how about 4.4 billion years ago, the gravitational pull of the Earth could have caused tidal flexing and heating of the lunar crust. At the polar regions, where the flexing and heating was greatest, the crust became thinner, while the thickest crust would have formed in the regions in line with the Earth.

To back up their theory, they found that a simple mathematical function — a 2-degree spherical harmonics function — can explain the phenomenon. “What’s interesting is that the form of the mathematical function implies that tides had something to do with the formation of that terrain,” said Garrick-Bethell.

The far side of the Moon, photographed by the crew of Apollo 11 as they circled the Moon in 1969. The large impact basin is Crater 308. Credit: NASA

However, this doesn’t explain why the bulge is now found only on the farside of the Moon. “You would expect to see a bulge on both sides, because tides have a symmetrical effect,” Garrick-Bethell said. “It may be that volcanic activity or other geological processes over the past 4.4 billion years have changed the expression of the bulge on the nearside.”

Garrick-Bethell said his team hopes to continue to do more modeling and calculations to fully describe the far side’s features.

“It’s still not completely clear yet, but we’re starting to chip away at the problem,”he said.

The paper will be published in the November 12, 2010 issue of Science.

(Paper not yet available — we’ll post the link when it goes online).

Acid Rain-Like Chemistry Could Occur in Europa’s Ice Crust

A new look at how chemicals on Jupiter’s moon Europa may be reacting together could provide new insight to how chemical reactions could be occurring in the moon’s icy crust, despite frigid temperatures. Researchers have found that water and sulfur dioxide react together very quickly, even at temperatures hundreds of degrees below freezing. Because the reaction occurs without the aid of radiation, it could take place throughout Europa’s thick coating of ice. If this is occurring, it would revamp current thinking about the chemistry and geology of this moon and perhaps others.

Europa has temperatures around 86 to 130 Kelvin (minus 300 to minus 225 degrees Fahrenheit), and in those extremely cold conditions, most chemical reactions require an infusion of energy from radiation or light. On Europa, the energy comes from particles from Jupiter’s radiation belts. Because most of those particles penetrate just fractions of an inch into the surface, models of Europa’s chemistry typically stop there.

“When people talk about chemistry on Europa, they typically talk about reactions that are driven by radiation,” says Goddard scientist Reggie Hudson. “Once you get below Europa’s surface, it’s cold and solid, and you normally don’t expect things to happen very fast under those conditions,” said Reggie Hudson, from NASA Goddard’s Astrochemistry Laboratory.

“But with the chemistry we describe,” said Mark Loeffler, who is first author on the paper being published in Geophysical Research Letters, “you could have ice 10 or 100 meters [roughly 33 or 330 feet] thick, and if it has sulfur dioxide mixed in, you’re going to have a reaction.”

Spectroscopy shows there is sulfur in Europa’s ice, and astronomers believe it originates from the volcanoes of Jupiter’s moon Io, then becomes ionized and is transported to Europa, where it gets embedded in the ice. But originally, astronomers thought not much of a reaction could occur between water ice and the sulfur.

Loeffler and Hudson sprayed water vapor and sulfur dioxide gas onto quarter-sized mirrors in a high-vacuum chamber. Because the mirrors were kept at about 50 to 100 Kelvin (about minus 370 to minus 280 degrees Fahrenheit), the gases immediately condensed as ice. As the reaction proceeded, the researchers used infrared spectroscopy to watch the decrease in concentrations of water and sulfur dioxide and the increase in concentrations of positive and negative ions generated.

Even with the extremely cold temperatures, the molecules reacted quickly in their icy forms. “At 130 Kelvin [about minus 225 degrees Fahrenheit], which represents the warm end of the expected temperatures on Europa, this reaction is essentially instantaneous,” said Loeffler. “At 100 Kelvin, you can saturate the reaction after half a day to a day. If that doesn’t sound fast, remember that on geologic timescales-billions of years-a day is faster than the blink of an eye.”

To test the reaction, the researchers added frozen carbon dioxide, also known as dry ice, which is commonly found on icy bodies, including Europa. “If frozen carbon dioxide had blocked the reaction, we wouldn’t be nearly as interested,” said Hudson, “because then the reaction probably wouldn’t be relevant to Europa’s chemistry. It would be a laboratory curiosity.” But the reaction continued, which means it could be significant on Europa as well as Ganymede and Callisto, two more of Jupiter’s moons, and other places where both water and sulfur dioxide are present.

The reaction converted one-quarter to nearly one-third of the sulfur dioxide into different products. “This is an unexpectedly high yield for this chemical reaction,” said Loeffler. “We would have been happy with five percent.”

What’s more, the positive and negative ions produced will react with other molecules. This could lead to some intriguing chemistry, especially because bisulfite, a type of sulfur ion, and some other products of this reaction are refractory-stable enough to last for quite some time.

This new finding will certainly prompt new remote observations of Europa to see whether evidence of any reaction-based products can be found.

Source: JPL

Europa Analog Deep-Sea Vents Discovered in the Caribbean

[/caption]

White sand, blue water, sunny skies, pina coladas. When you think of “extreme environments” I doubt the Caribbean is high on your list. But a team of scientists from Woods Hole Oceanographic institute and NASA’s Jet Propulsion Laboratory, exploring the 68-mile-long Mid-Cayman rise deep beneath the surface of the Caribbean, have discovered the deepest known hydrothermal vent in the world, along with two other distinct types of vents.

The mid-Cayman rise is a much smaller version of the mid-ocean ridge system, a chain of submarine mountains that encircles the globe. These ridges form in locations where tectonic plates are pulling apart, allowing mantle rocks to melt and emerge at the surface as lava. Seawater, percolating through the hot rocks at these spreading centers, is superheated and emerges at vents, bearing a rich bounty of dissolved nutrients to support thriving ecosystems that can live without any sunlight.

“This was probably the highest-risk expedition I have ever undertaken,” said chief scientist Chris German, a Woods Hole Oceanographic Institution geochemist who has pioneered the use of autonomous underwater vehicles to search for hydrothermal vent sites. “We know hydrothermal vents appear along ridges approximately every 100 kilometers [62 miles]. But this ridge crest is only 100 kilometers long, so we should only have expected to find evidence for one site at most. So finding evidence for three sites was quite unexpected – but then finding out that our data indicated that each site represents a different style of venting – one of every kind known, all in pretty much the same place – was extraordinarily cool.”

Towering carbonate formations at the Lost City hydrothermal field. Image Credit: Kelley, U of Washington, IFE, URI-IAO, NOAA

In addition to the deepest hydrothermal vent yet discovered, at a depth of 5,000 meters (16,400 feet), the team also found a shallower low-temperature vent. Only one other vent of this type has been discovered: the famous “Lost City” vent in the Atlantic.

“We were particularly excited to find compelling evidence for high-temperature venting at almost 5,000 meters depth,” said Julie Huber, a scientist in the Josephine Bay Paul Center at the Marine Biological Laboratory in Woods Hole. “We have absolutely zero microbial data from high-temperature vents at this depth.”

The ecosystems encrusting the deep sea vents on the mid-Cayman rise provide valuable clues to how life could arise and thrive elsewhere in the solar system. “Most life on Earth is sustained by food chains that begin with sunlight as their energy source. That’s not an option for possible life deep in the ocean of Jupiter’s icy moon Europa,” said JPL co-author Max Coleman.

With an airless sky, intense radiation, icy crust, and no pina coladas, the surface of Europa is about as different from the Caribbean as you can get. But deep on the sea floor, they may be remarkably similar.

“Organisms around the deep vents get energy from the chemicals in hydrothermal fluid, a scenario we think is similar to the seafloor of Europa,” Coleman said. “This work will help us understand what we might find when we search for life there.”

An artist's depiction of a future Europa mission. Image credit: NASA

Could there be Life on Jupiter and Saturn’s Moons?

The ongoing search for the existence of life that doesn’t call the Earth ‘home’ could potentially find that life right here in our own Solar System. There is considerable debate about whether evidence for that life has already been found on Mars, but astronomers might do well to look at other, more exotic locations in our neighborhood.

At the recent meeting of the American Geophysical Union in San Fransisco, Francis Nimmo, who is a professor of Earth and planetary sciences at UC Santa Cruz, said that the conditions on Saturn’s moon Enceladus, and Jupiter’s moon Europa may be just right to harbor life.

Nimmo said, “Liquid water is the one requirement for life that everyone can agree on.” The water underneath the icy crusts of Enceladus and Europa may just be teeming with alien fish and algae, or more basic forms of life such as bacteria.

Nimmo is one of a long list of scientists speculating on the existence of life on these watery moons. A discovery of any life form originating from a planet other than the Earth “would be the scientific discovery of the millennium,” Nimmo said. And even saying that is an understatement.

If life were able to exist in the watery oceans of the moons around Saturn and Jupiter, Nimmo said, it would mean that the ‘habitable zone’ around a star would extend much further out than previously thought, to moons that orbit large gas giants in other systems around faraway stars.

The possible ocean under the surface of Enceladus may receives its heat from the tidal forces of Saturn. That is, if there is an ocean under the surface of Enceladus, as that topic is still somewhat debated among astronomers. The constant tug of Saturn’s gravitational pull may stretch the interior of the planet enough to heat the water below the crust of ice, which is estimated to vary in thickness between 25km to 45km. Geysers of frozen water forced out of crack on Enceladus’ surface have been observed by the Cassini mission, and the craft has even flown through the plume of one of these jets.

Here’s a video of Carolyn Porco, who leads the imaging team on the Cassini mission, talking about the potential for life inside the moon, and some of the discoveries made by Cassini so far:

Evidence for the ocean under Europa’s icy skin comes from the Galileo mission, which passed by the moon in 2000 and took measurements of the moon’s magnetic field. Variations in the magnetic field have led astronomers to believe there is a vast ocean of water under the surface, leading to natural suppositions about the potential of its habitability.

Europa’s ocean is heated much in the same way as that of Enceladus: both moons have an eccentric orbit around their much more massive planets, and this orbit causes a shift in the way the planet tugs on their interiors, causing friction in the cores which in turn heats them up.

The core and surface of these moons both are possible sources of chemicals that are necessary for life to form. Impacts from comets can leave molecules on the surface, and light from the Sun breaks down compounds as well. Organic molecules and minerals may originate in the cores of the moons, streaming out into the watery ‘mantle’. Such nutrients could potentially support small communities of exotic bacteria like those seen around hydrothermal vents here on Earth.

Of course, just because these moons are habitable doesn’t mean that life exists there, as Nimmo and other planetary scientists are quick to point out. Cassini may still provide evidence of life on Enceladus, as the data from this last flyby of the plumes is still being analyzed. Future missions to Europa, such as the proposed ‘interplanetary submarine‘, may also give us an answer to the question of life’s existence elsewhere, and of course the quest continues for a mission to Mars that will finally give us some idea of its habitability now or in the past.

Until the data comes back from these missions, though, we’ll still have to wait and speculate.

Source: UC Santa Cruz press release

Europa Capable of Supporting Life, Scientist Says

The global ocean on Jupiter’s moon Europa contains about twice the liquid water of all the Earth’s oceans combined. New research by Richard Greenberg of the University of Arizona suggests that there may be plenty of oxygen available in that ocean to support life, a hundred times more oxygen than previously estimated.

The chances for life there have been uncertain, because Europa’s ocean lies beneath several miles of ice, which separates it from the production of oxygen at the surface by energetic charged particles (similar to cosmic rays). Without oxygen, life could conceivably exist at hot springs in the ocean floor using exotic metabolic chemistries, based on sulfur or the production of methane. However, it is not certain whether the ocean floor actually would provide the conditions for such life.

Therefore a key question has been whether enough oxygen reaches the ocean to support the oxygen-based metabolic process that is most familiar to us. An answer comes from considering the young age of Europa’s surface. Its geology and the paucity of impact craters suggests that the top of the ice is continually reformed such that the current surface is only about 50 million years old, roughly 1% of the age of the solar system.

Greenberg has considered three generic resurfacing processes: gradually laying fresh material on the surface; opening cracks which fill with fresh ice from below; and disrupting patches of surface in place and replacing them with fresh material. Using estimates for the production of oxidizers at the surface, he finds that the delivery rate into the ocean is so fast that the oxygen concentration could exceed that of the Earth’s oceans in only a few million years.

Greenberg says that the concentrations of oxygen would be great enough to support not only microorganisms, but also “macrofauna”, that is, more complex animal-like organisms which have greater oxygen demands. The continual supply of oxygen could support roughly 3 billion kilograms of macrofauna, assuming similar oxygen demands to terrestrial fish.

The good news for the question of the origin of life is that there would be a delay of a couple of billion years before the first surface oxygen reached the ocean. Without that delay, the first pre-biotic chemistry and the first primitive organic structures would be disrupted by oxidation. Oxidation is a hazard unless organisms have evolved protection from its damaging effects. A similar delay in the production of oxygen on Earth was probably essential for allowing life to get started here.

Richard Greenberg is the author of the recent book “Unmasking Europa: The Search for Life on Jupiter’s Ocean Moon.” He presented his findings at the 41st meeting of the American Astronomical Society’s Division for Planetary Sciences.

Source: AAS DPS

Testing a Europa Probe Prototype

depthx-2.thumbnail.jpg

While NASA doesn’t have any definite plans to send a probe to study Jupiter’s moon Europa, many planetary scientists consider the exploration of this enticing moon to be a high priority. Evidence from the Voyager and Galileo spacecraft suggests Europa contains a deep ocean of salty water under an icy outer shell. NASA is, however, helping to fund a prototype of an underwater autonomous vehicle to investigate ice covered lakes here on Earth, to demonstrate if such a vehicle could operate in an environment similar to Europa. The next test of the vehicle will take place Feb. 12-15, 2008 in Lake Mendota on the campus of the University of Wisconsin, Madison.

The Environmentally Non-Disturbing Under-ice Robotic Antarctic Explorer, also known as Endurance, will swim untethered under ice, and collect data to create three-dimensional maps of underwater environments. The probe also will look at the conditions in those environments and take samples of microbial life. Later this year, researchers plan to ship the probe to a permanently frozen lake in Antarctica for more operations. The probe is a follow-up to the Deep Phreatic Thermal Explorer, a NASA-funded project that completed a series of underwater field tests in Mexico in 2007.

“We’re using extreme environments on Earth as our laboratory,” says Peter Doran, associate professor at the University of Illinois at Chicago. “Ice-covered lakes are good, small-scale analogs to what we might find on Europa.”

Mendota Lake is only 25 meters deep, while the lake in Antarctica, West Lake Bonney is 40 meters deep. Scientists believe that Europa’s ocean could be up to 100 kilometers deep.

Hot water drills will bore a hole for Endurance to enter the water. If all goes well, the probe will be tested again in 2009.

But many hurdles remain before an underwater vehicle could possibly head to Europa. Presently, Endurance is too massive to send on interplanetary travel. Scientists will also have to come up with a way to drill through Europa’s icy crust and lower the sub safely through the ice.

And before a probe would be sent to land on Europa, many scientists feel that an orbiting spacecraft would be the best way to study the moon. The Jet Propulsion Laboratory is currently working on a concept called the Europa Explorer which would deliver a low orbit spacecraft to determine the presence (or absence) of a liquid water ocean under Europa’s ice surface. It would also map the surface and subsurface for future exploration.

Original News Sources: NASA Press Release, Washington University Press Release

A Submarine for Europa

europa_with_shadows.thumbnail.jpg

Many planetary scientists believe that Jupiter’s moon Europa is our solar system’s best contender to share Earth’s distinction of harboring life. Evidence gathered by the Voyager and Galileo spacecrafts suggests Europa contains a deep, possibly warm ocean of salty water under an outer shell of fissured ice. In a paper published in the July 2007 Journal of Aerospace Engineering a British mechanical engineer proposes sending a submarine to explore Europa’s oceans.

Carl T. F. Ross, a professor at the University of Portsmouth in England offers an abstract design of an underwater craft built of a metal matrix composite. He also provides suggestions for suitable power supplies, communication techniques and propulsion systems for such a vessel in his paper, “Conceptual Design of a Submarine to Explore Europa’s Oceans.”

Ross’s paper weighs the options for constructing a submarine capable of withstanding the undoubtedly high pressure within Europa’s deep oceans. Scientists believe that this moon’s oceans could be up to 100 kilometers deep, more than ten times deeper than Earth’s oceans. Ross proposes a 3 meter long cylindrical sub with an internal diameter of 1 meter. He believes that steel or titanium, while strong enough to withstand the hydrostatic pressure, would be unsuitable as the vessel would have no reserve buoyancy. Therefore, the sub would sink like a rock to the bottom of the ocean. A metal matrix or ceramic composite would offer the best combination of strength and buoyancy.

Ross favors a fuel cell for power, which will be needed for propulsion, communications and scientific equipment, but notes that technological advances in the ensuing years may provide better sources for power.

Ross concedes that a submarine mission to Europa won’t occur for at least 15-20 years. Planetary scientist William B. McKinnon agrees.
Artist illustration of a Europa probe. Image credit: NASA/JPL
“It is difficult enough, and expensive, to get back to Europa with an orbiter, much less imagine a landing or an ocean entry,” said McKinnon, professor of Earth and Planetary Sciences at Washington University in St. Louis, Missouri. “Sometime in the future, and after we have determined the ice shell thickness, we can begin to seriously address the engineering challenges. For now, it might be best to search for those places where the ocean has come to us. That is, sites of recent eruptions on Europa’s surface, whose compositions can be determined from orbit.”

The Jet Propulsion Laboratory is currently working on a concept called the Europa Explorer which would deliver a low orbit spacecraft to determine the presence (or absence) of a liquid water ocean under Europa’s ice surface. It would also map the distribution of compounds of interest for pre-biotic chemistry, and characterize the surface and subsurface for future exploration. “This type of mission,” says McKinnon, “would really allow us to get the hard proof we would all like that the ocean is really there, and determine the thickness of the ice shell and find thin spots if they exist.”

McKinnon added that an orbiter could find “hot spots” that indicate recent geological or even volcanic activity and obtain high-resolution images of the surface. The latter would be needed to plan any successful landing.

Slightly smaller than Earth’s moon, Europa has an exterior that is nearly craterless, meaning a relatively “young” surface. Data from the Galileo spacecraft shows evidence of near-surface melting and movements of large blocks of icy crust, similar to ice bergs or ice rafts on Earth.

While Europa’s midday surface temperatures hover around 130 K (-142 C, -225 degrees F), interior temperatures could be warm enough for liquid water to exist underneath the ice crust. This internal warmth comes from tidal heating caused by the gravitational forces of Jupiter and Jupiter’s other moons which pull Europa’s interior in different directions. Scientists believe similar tidal heating drives the volcanoes on another Jovian moon, Io. Seafloor hydrothermal vents have also been suggested as another possible energy source on Europa. On Earth, undersea volcanoes and hydrothermal vents create environments that sustain colonies of microbes. If similar systems are active on Europa, scientists reason that life might be present there too.

Among scientists there is a big push to get a mission to Europa underway. However this type of mission is competing for funding against NASA’s goal of returning to our own moon with human missions. The proposed Jupiter Icy Moon Orbiter (JIMO) a nuclear powered mission to study three of Jupiter’s moons, fell victim to cuts in science missions in NASA’s Fiscal Year 2007 Budget.

Ross has been designing and improving submarines for over 40 years, but this is the first time he’s designed a craft for use anywhere but on Earth.

“The biggest problem that I see with the robot submarine is being able to drill or melt its way through a maximum of 6 km of the ice, which is covering the surface,” said Ross. “However, the ice may be much thinner in some places. It may be that we will require a nuclear pressurized water reactor on board the robot submarine to give us the necessary power and energy to achieve this”

While Ross proposes using parachutes to bring the submarine to Europa’s surface, McKinnon points out that parachutes would not work in Europa’s almost airless atmosphere.

Ross has received very positive responses to his paper from friends and colleagues, he says, including notable British astronomer Sir Patrick Moore. Ross says his life has revolved around submarines since 1959 and he finds this new concept of a submarine on Europa to be very exciting.

McKinnon classifies the exploration of Europa as “extremely important.”

“Europa is a place is where we are pretty sure we have abundant liquid water, energy sources, and biogenic elements such as carbon, nitrogen, sulfur, phosphorus, etc,” he said. “Is there life, any kind of life, in Europa’s ocean? Questions don’t get much more profound.”

Written by Nancy Atkinson