This JWST Image Shows Gravitational Lensing at its Finest

. Credit: ESA/Webb, NASA & CSA, J. Rigby

One of the more intriguing aspects of the cosmos, which the James Webb Space Telescope (JWST) has allowed astronomers to explore, is the phenomenon known as gravitational lenses. As Einstein’s Theory of General Relativity describes, the curvature of spacetime is altered by the presence of massive objects and their gravity. This effect leads to objects in space (like galaxies or galaxy clusters) altering the path light travels from more distant objects (and amplifying it as well). By taking advantage of this with a technique known as Gravitational Lensing, astronomers can study distant objects in greater detail.

Consider the image above, the ESA’s picture of the month acquired by the James Webb Space Telescope (JWST). The image shows a vast gravitational lens caused by SDSS J1226+2149, a galaxy cluster located roughly 6.3 billion light-years from Earth in the constellation Coma Berenices. The lens these galaxies created greatly amplified light from the more distant Cosmic Seahorse galaxy. Combined with Webb‘s incredible sensitivity, this technique allowed astronomers to study the Cosmic Seahorse in the hopes of learning more about star formation in early galaxies.

Continue reading “This JWST Image Shows Gravitational Lensing at its Finest”

“The Universe Breakers”: Six Galaxies That are Too Big, Too Early

Images of six candidate massive galaxies, seen 500-700 million years after the Big Bang. One of the sources (bottom left) could contain as many stars as our present-day Milky Way, according to researchers, but it is 30 times more compact. Credit: NASA, ESA, CSA, I. Labbe (Swinburne University of Technology). Image processing: G. Brammer (Niels Bohr Institute’s Cosmic Dawn Center at the University of Copenhagen).

In the first data taken last summer with the Near Infrared Camera (NIRCam) on the new James Webb Space Telescope, astronomers found six galaxies from a time when the Universe was only 3% of its current age, just 500-700 million years after the Big Bang. While its incredible JWST saw these galaxies from so long ago, the data also pose a mystery.

These galaxies should be mere infants, but instead they resemble galaxies of today, containing 100 times more stellar mass than astronomers were expecting to see so soon after the beginning of the Universe. If confirmed, this finding calls into question the current thinking of galaxy formation and challenges most models of cosmology.

Continue reading ““The Universe Breakers”: Six Galaxies That are Too Big, Too Early”

Astronomers Pin Down the Age of the Most Distant Galaxy: Seen 367 Million Years After the Big Bang

The radio telescope array ALMA has pin-pointed the exact cosmic age of a distant JWST-identified galaxy, GHZ2/GLASS-z12, at 367 million years after the Big Bang. Image Credit: NASA/ESA/CSA/T. Treu, UCLA/NAOJ/T. Bakx, Nagoya U.

Staring off into the ancient past with a $10 billion space telescope, hoping to find extraordinarily faint signals from the earliest galaxies, might seem like a forlorn task. But it’s only forlorn if we don’t find any. Now that the James Webb Space Telescope has found those signals, the exercise has moved from forlorn to hopeful.

But only if astronomers can confirm the signals.

Continue reading “Astronomers Pin Down the Age of the Most Distant Galaxy: Seen 367 Million Years After the Big Bang”

Webb Completes its First “Deep Field” With Nine Days of Observing Time. What did it Find?

This image taken by the James Webb Space Telescope highlights the region of study by the JWST Advanced Deep Extragalactic Survey (JADES). This area is in and around the Hubble Space Telescope’s Ultra Deep Field. Image Credit: NASA, ESA, CSA, and M. Zamani (ESA/Webb).

About 13 billion years ago, the stars in the Universe’s earliest galaxies sent photons out into space. Some of those photons ended their epic journey on the James Webb Space Telescope’s gold-plated, beryllium mirrors in the last few months. The JWST gathered these primordial photons over several days to create its first “Deep Field” image.

Continue reading “Webb Completes its First “Deep Field” With Nine Days of Observing Time. What did it Find?”

Astronomer Working With Webb Said the new Images “Almost Brought him to Tears.” We’ll see Them on July 12th

The James Webb Space Telescope being placed in the Johnson Space Center’s historic Chamber A on June 20th, 2017. Credit: NASA/JSC

The scientific and astronomical community are eagerly waiting for Tuesday, July 12th, to come around. On this day, the first images taken by NASA’s James Webb Space Telescope (JWST) will be released! According to a previous statement by the agency, these images will include the deepest views of the Universe ever taken and spectra obtained from an exoplanet atmosphere. In another statement issued yesterday, the images were so beautiful that they almost brought Thomas Zarbuchen – Associate Administrator for NASA’s Science Mission Directorate (SMD) – to tears!

Continue reading “Astronomer Working With Webb Said the new Images “Almost Brought him to Tears.” We’ll see Them on July 12th”

Nearby Ancient Dwarf Galaxies Have a Surprising Amount of Dark Matter

An artist's impression of the four tails of the Sagittarius Dwarf Galaxy (the orange clump on the left of the image) orbiting the Milky Way. The bright yellow circle to the right of the galaxy's center is our Sun (not to scale). Image credit: Amanda Smith (University of Cambridge)

Around the Milky Way, there are literally dozens of dwarf galaxies that continue to be slowly absorbed into our own. These galaxies are a major source of interest for astronomers because they can teach us a great deal about cosmic evolution, like how smaller galaxies merged over time to create larger structures. Since they are thought to be relics of the very first galaxies in the Universe, they are also akin to “galactic fossils.”

Recently, a team of astrophysicists from the Massachusetts Institute of Technology (MIT) observed one of the most ancient of these galaxies (Tucana II) and noticed something unexpected. At the edge of the galaxy, they observed stars in a configuration that suggest that Tucana II has an extended Dark Matter halo. These findings imply that the most ancient galaxies in the Universe had more Dark Matter than previously thought.

Continue reading “Nearby Ancient Dwarf Galaxies Have a Surprising Amount of Dark Matter”

Galaxies Grew Quickly and Early On in the Universe

Artist's illustration of a galaxy in the early universe that is very dusty and shows the first signs of a rotationally supported disk. In this image, the red color represents gas, and blue/brown represents dust as seen in radio waves with ALMA. Many other galaxies are visible in the background, based on optical data from VLT and Subaru. Credit: B. Saxton NRAO/AUI/NSF, ESO, NASA/STScI; NAOJ/Subaru

The behaviour of galaxies in the early Universe attracts a lot of attention from researchers. In fact, everything about the early Universe is under intense scientific scrutiny for obvious reasons. But unlike the Universe’s first stars, which have all died long ago, the galaxies we see around us—including our own—have been here since the early days.

Current scientific thinking says that in the early days of the Universe, the galaxies grew slowly, taking billions of years to become what they are now. But new observations show that might not be the case.

Continue reading “Galaxies Grew Quickly and Early On in the Universe”

This Distorted Circle is Actually a Galaxy That Looked Very Similar to the Milky Way, Shortly After the Big Bang

Astronomers using ALMA, in which the ESO is a partner, have revealed an extremely distant galaxy that looks surprisingly like our Milky Way. The galaxy, SPT0418-47, is gravitationally lensed by a nearby galaxy, appearing in the sky as a near-perfect ring of light.

The most widely accepted cosmological view states that the first galaxies formed about 380–400 million years after the Big Bang. These were made up of young, hot stars that lived fast and died young, causing the galaxies themselves to be turbulent. At least, that was the theory until a European team of astronomers observed a galaxy 12 billion light-years away that closely resembled the Milky Way.

Using the Atacama Large Millimeter-submillimeter Array (ALMA), the team observed the galaxy, SPT0418-47, as it appeared when the Universe was just 1.4 billion years old. Much to their surprise, the team noted that the structure and features of this galaxy were highly evolved and stable, something that contradicts previously-held notions about the nature of galaxies in the early Universe.

Continue reading “This Distorted Circle is Actually a Galaxy That Looked Very Similar to the Milky Way, Shortly After the Big Bang”

A Massive Rotating Disc Discovered in the Early Universe

Artist impression of the Wolfe Disk, a massive rotating disk galaxy in the early, dusty universe. Credit: NRAO/AUI/NSF, S. Dagnello

If we want to understand how the Universe evolves, we have to understand how its large structures form and evolve. That’s why astronomers study galaxy formation. Galaxies are enormous structures of stars, planets, gas, dust, and dark matter, and understanding how they form is critical to understanding the Universe itself.

In 2017, astronomers working with ALMA (Atacama Large Millimeter/sub-millimeter Array) discovered an ancient galaxy. This massive rotating disk galaxy was born when the Universe was only about 1.5 billion years old. According to the most accepted understanding of how galaxies form and evolve, it shouldn’t exist.

But there it is.

Continue reading “A Massive Rotating Disc Discovered in the Early Universe”

Astronomers See the Farthest Galaxy Group Ever Found, When the Universe was Only 5% of its Current Age

Inset: This illustration of the EGS77 galaxy group shows the galaxies surrounded by overlapping bubbles of ionized hydrogen. By transforming light-quenching hydrogen atoms to ionized gas, ultraviolet starlight is thought to have formed such bubbles throughout the early universe, gradually transitioning it from opaque to completely transparent. Background: This composite of archival Hubble Space Telescope visible and near-infrared images includes the three galaxies of EGS77 (green circles). Credits: NASA/ESA/V. Tilvi (ASU)

By looking deeper into space (and farther back in time), astronomers and cosmologists continue to push the boundaries of what is known about the Universe. Thanks to improvements in instrumentation and observation techniques, we are now at the point where astronomers are able to observe some of the earliest galaxies in the Universe – which in turn is providing vital clues about how our Universe evolved.

Using data obtained by the Kitt Peak National Observatory, a team of astronomers with the Cosmic Deep And Wide Narrowband (Cosmic DAWN) Survey were able to observe the farthest galaxy group to date. Known as EGS77, this galaxy existed when the Universe was just 680 million years old (less than 5% of the age of the Universe). Analysis of this galaxy is already revealing things about the period that followed shortly after the Big Bang.

Continue reading “Astronomers See the Farthest Galaxy Group Ever Found, When the Universe was Only 5% of its Current Age”