What Is A Dwarf Planet?

The term dwarf planet has been tossed around a lot in recent years. As part of a three-way categorization of bodies orbiting the Sun, the term was adopted in 2006 due to the discovery of objects beyond the orbit of Neptune that were comparable in size to Pluto. Since then, it has come to be used to describe many objects in our Solar System, upending the old classification system that claimed there were nine planets.

The term has also led to its fair share of confusion and controversy, with many questioning its accuracy and applicability to bodies like Pluto. Nevertheless, the IAU currently recognizes five bodies within our Solar System as dwarf planets, six more could be recognized in the coming years, and as many as 200 or more could exist within the expanse of the Kuiper Belt.

Definition:

According to the definition adopted by the IAU in 2006, a dwarf planet is, “a celestial body orbiting a star that is massive enough to be rounded by its own gravity but has not cleared its neighboring region of planetesimals and is not a satellite. More explicitly, it has to have sufficient mass to overcome its compressive strength and achieve hydrostatic equilibrium.”

In essence, the term is meant to designate any planetary-mass object that is neither a planet nor a natural satellite that fits two basic criteria. For one, it must be in direct orbit of the Sun and not be a moon around another body. Second, it must be massive enough for it to have become spherical in shape under its own gravity. And, unlike a planet, it must have not cleared the neighborhood around its orbit.

The presently known largest trans-Neptunian objects (TSO) - are likely to be surpassed by future discoveries. Which of these trans-Neptunian objects (TSO) would you call planets and which "dwarf planets"? (Illustration Credit: Larry McNish, Data: M.Brown)
The largest known trans-Neptunian objects (TNO), shown to scale. Credit: Larry McNish/M.Brown

Size and Mass:

In order for a body to be become rounded, it must be sufficiently massive, to the point that its own gravity is the dominant force effecting it. Here, the internal pressure created by this mass would cause a surface to achieve plasticity, allowing high elevations to sink and hollows to fill in. This does not occur with smaller bodies that are less than a few km in diameter (such as asteroids), which are dominated by forces outside of their own gravity forces and tend to maintain irregular shapes.

Meanwhile, bodies that measure a few kilometers across – where their gravity is more significant but not dominant – tend to be spheroid or “potato-shaped”. The bigger the body is, the higher its internal pressure, until the pressure is sufficient to overcome its internal compressive strength and it achieves hydrostatic equilibrium. At this point, a body is as round as it can possibly be, given its rotation and tidal effects. This is the defining limit of a dwarf planet.

However, rotation can also affect the shape of a dwarf planet. If the body does not rotate, it will be a sphere. But the faster it does rotate, the more oblate or even scalene it becomes. The extreme example of this is Haumea, which is twice as long along its major axis as it is at the poles. Tidal forces also cause a body’s rotation to gradually become tidally locked, such that it always presents the same face to its companion. An extreme example of this is the Pluto-Charon system, where both bodies are tidally locked to each other.

The upper and lower size and mass limits of dwarf planets have not been specified by the IAU. And while the lower limit is defined as the achievement of a hydrostatic equilibrium shape, the size or mass at which an object attains this shape depends on its composition and thermal history.

For example, bodies made of rigid silicates (such as rocky asteroids) should achieve hydrostatic equilibrium at a diameter of approx. 600 km and a mass of 3.4×1020 kg. For a body made of less rigid water ice, the limit would closer to 320 km and 1019 kg. As a result, no specific standard currently exists for defining a dwarf planet based on either its size or mass, but is instead more generally defined based on its shape.

Orbital Dominance:

In addition to hydrostatic equilibrium, many astronomers have insisted that a distinction between planets and dwarf planets be made based on the inability of the latter to “clear the neighborhood around their orbits”. In short, planets are able to remove smaller bodies near their orbits by collision, capture, or gravitational disturbance (or establish orbital resonances that prevent collisions), whereas dwarf planets do not have the requisite mass to do this.

To calculate the likelihood of a planet clearing its orbit, planetary scientists Alan Stern and Harold F. Levison (the former of whom is the principal investigator of the New Horizons mission to Pluto and the Chief Scientist at Moon Express) introduced a parameter they designated as ? (lambda).

This parameter expresses the likelihood of an encounter resulting in a given deflection of an object’s orbit. The value of this parameter in Stern’s model is proportional to the square of the mass and inversely proportional to the period, and can be used to estimate the capacity of a body to clear the neighborhood of its orbit.

Astronomers like Steven Soter, the scientist-in-residence for NYU and a Research Associate at the American Museum of Natural History, have advocated using this parameter to differentiate between planets and dwarf planets. Soter has also proposed a parameter he refers to as the planetary discriminant – designated as µ (mu) – which is calculated by dividing the mass of the body by the total mass of the other objects that share its orbit.

Recognized and Possible Dwarf Planets:

There are currently five dwarf planets: Pluto, Eris, Makemake, Haumea, and Ceres. Only Ceres and Pluto have been observed enough to indisputably fit into the category. The IAU decided that unnamed Trans-Neptunian Objects (TNOs) with an absolute magnitude brighter than +1 (and a mathematically delimited minimum diameter of 838 km) are to be named as dwarf planets.

Possible candidates that are currently under consideration include Orcus, 2002 MS4, Salacia, Quaoar, 2007 OR10, and Sedna. All of these objects are located in the Kuiper Belt or the Scattered Disc; with the exception of Sedna, which is a detached object – a special class that applies to dynamic TNOs in the outer Solar System.

It is possible that there are another 40 known objects in the solar system that could be rightly classified as dwarf planets. Estimates are that up to 200 dwarf planets may be found when the entire region known as the Kuiper belt is explored, and that the number may exceed 10,000 when objects scattered outside the Kuiper belt are considered.

Pluto and moons Charon, Hydra and Nix (left) compared to the dwarf planet Eris and its moon Dysmonia (right). This picture was taken before Kerberos and Styx were discovered in 2011 and 2012, respectively. Credit: International Astronomical Union
Pluto and moons Charon, Hydra and Nix (left) compared to the dwarf planet Eris and its moon Dysmonia (right). Credit: International Astronomical Union

Contention:

In the immediate aftermath of the IAU decision regarding the definition of a planet, a number of scientists expressed their disagreement with the IAU resolution. Mike Brown (the leader of the Caltech team that discovered Eris) agrees with the reduction of the number of planets to eight. However, astronomers like Alan Stern have voiced criticism over the IAUs definition.

Stern has contended that much like Pluto, Earth, Mars, Jupiter, and Neptune have not fully cleared their orbital zones. Earth orbits the Sun with 10,000 near-Earth asteroids, which in Stern’s estimation contradicts the notion that it has cleared its orbit. Jupiter, meanwhile, is accompanied by a whopping 100,000 Trojan asteroids on its orbital path.

Thus, in 2011, Stern still referred to Pluto as a planet and accepted other dwarf planets such as Ceres and Eris, as well as the larger moons, as additional planets. However, other astronomers have countered this opinion by saying that, far from not having cleared their orbits, the major planets completely control the orbits of the other bodies within their orbital zone.

Another point of contention is the application of this new definition to planets outside of the Solar System. Techniques for identifying extrasolar objects generally cannot determine whether an object has “cleared its orbit”, except indirectly. As a result, a separate “working” definition for extrasolar planets was established by the IAU in 2001 and includes the criterion that, “The minimum mass/size required for an extrasolar object to be considered a planet should be the same as that used in the Solar System.”

Credit: The Habitable Exoplanets Catalog, Planetary Habitability Laboratory @ UPR Arecibo (phl.upl.edu)
How the current IAU definition applies to exoplanets is a source of controversy for many astronomers. Credit: phl.upl.edu

Beyond the content of the IAU’s decision, there is also the controversy surrounding the decision process itself. Essentially, the final vote involved a relatively small percentage of the IAU General Assembly – 425 out of 9000, or less than 5%. This was due in part to the timing of the vote, which happened on the final day of the ten-day event when many members had already left.

However, supporters of the decision emphasize that a sampling of 400 representative out of a population of 9,000 statistically yields a result with good accuracy. Ergo, even if only 4-5% of the members voted in favor of reclassifying Pluto, the fact that the majority of said members agreed could be taken as a sampling of IAU opinion as a whole.

There is also the issue of the many astronomers who were unable to attend to the conference or who chose not to make the trip to Prague. Astronomer Marla Geha has also clarified that not all members of the Union were needed to vote on the classification issue, and that only those whose work is directly related to planetary studies needed to be involved.

Lastly, NASA has announced that it will use the new guidelines established by the IAU, which constitutes an endorsement or at least acceptance of the IAUs position. Nevertheless, the controversy surrounding the 2006 decision is by no means over, and we can expect further developments on this front as more “dwarf planets” are found and designated.

Understanding what is a dwarf planet according to the IAU is easy enough, but making the solar system fit into a three tiered classification system will prove increasingly difficult as our understanding of the universe increases and we are able to see farther and farther into space.

We have written many articles about dwarf planets for Universe Today. Here’s one about Dwarf Planets, and here’s one on Why Pluto is no longer a planet.

Astronomy Cast also has an episode all about Dwarf Planets. Listen here, Episode 194: Dwarf Planets.

For more information, check out NASA’s Solar System Overview: Dwarf Planets, the Solar System Exploration Guide on Dwarf Planets, and Mike Brown’s Dwarf Planet page.

Here is the list of all the known Dwarf Planets and their moons. We hope you find what you are looking for:

Recognized Dwarf Planets:

Possible Dwarf Planets:

Dawn Does Dramatic Fly Over of Ceres, Enters Lower Mapping Orbit: Video

Video caption: This new video animation of Ceres was created from images taken by NASA’s Dawn spacecraft at altitudes of 8,400 miles (13,600 kilometers) and 3,200 miles (5,100 kilometers) away. Vertical dimension has been exaggerated by a factor of two and a star field added. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Scientists leading NASA’s Dawn mission to dwarf planet Ceres have just released a brand new animated video showing a dramatic fly over of the heavily cratered world featuring its mysterious bright spots whose exact origin and nature remain elusive.

Meanwhile, the venerable probe has just successfully entered its new and lower mapping orbit on June 3 from which researchers hope to glean hordes of new data to unravel the secrets of the bright spots and unlock the nature of Ceres origin and evolution.

Pockmarked Ceres is an alien world unlike any other in our solar system.

“Dawn completed the maneuvering to reach its second mapping orbit and stopped ion-thrusting on schedule. Since May 9, the spacecraft has reduced its orbital altitude from 8,400 miles (13,600 kilometers) to 2,700 miles (4,400 kilometers),” reported Marc Rayman, Dawn Chief Engineer/ Mission Director of NASA’s Jet Propulsion Laboratory, Pasadena, California.

“As Dawn flew 2,700 miles (4,400 kilometers) over Ceres’ north pole on June 5 that marked the beginning of the new mapping phase, and Dawn began taking photos and making other measurements on schedule.”

Each orbit of Dawn around Ceres at this second science mapping orbit lasts 3.1 days.

The new video was created by the research team based on observations of Ceres that were taken from Dawn’s initial mapping orbit, at an altitude of 8,400 miles (13,600 kilometers), as well as the most recent navigational images taken from 3,200 miles (5,100 kilometers), according to NASA.

It is based on data from over 80 images captured by Dawn’s framing cameras which were provided The German Aerospace Center (DLR) and Max Planck Institute for Solar System Research in Göttingen, Germany.

The images were used to provide a three-dimensional video view. The vertical dimension is exaggerated by a factor of two in the video.

“We used a three-dimensional terrain model that we had produced based on the images acquired so far,” said Dawn team member Ralf Jaumann of the German Aerospace Center (DLR), in Berlin.

“They will become increasingly detailed as the mission progresses — with each additional orbit bringing us closer to the surface.”

Imagery of the mysterious bright spots show them to seemingly be sheets of many spots of water ice, and not just single huge patches. The famous duo of ice spots are located inside the middle of a 57 miles (92 kilometers) wide crater situated in Ceres northern hemisphere.

Dawn is an international science mission managed by NASA’s Jet Propulsion Laboratory, Pasadena, California. The trio of science instruments are from the US, Germany and Italy.

The framing camera was provided by the Max Planck Institute for Solar System Research, Göttingen, Germany and the German Aerospace Center (DLR).

This view of Ceres was taken by Dawn spacecraft on May 23 and shows finer detail becoming visible on the dwarf planet. The spacecraft snapped the image at a distance of 3,200 miles (5,100 kilometers) with a resolution of 1,600 feet (480 meters) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This view of Ceres was taken by Dawn spacecraft on May 23 and shows finer detail becoming visible on the dwarf planet. The spacecraft snapped the image at a distance of 3,200 miles (5,100 kilometers) with a resolution of 1,600 feet (480 meters) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn will spend most if June at this second mapping orbit before firing up the ion engines and spiraling yet lower for a mission expected to last until at least June 2016.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Dawn’s spiral descent from its first mapping orbit (RC3) to its second (survey). The two mapping orbits are shown in green. The color of Dawn’s trajectory progresses through the spectrum from blue, when it began ion-thrusting on May 9, to red, when ion-thrusting concludes on June 3. The red dashed sections show where Dawn is coasting, mostly for telecommunications. The first two coast periods include OpNav 8 and 9. Image credit: NASA/JPL-Caltech
Dawn’s spiral descent from its first mapping orbit (RC3) to its second (survey). The two mapping orbits are shown in green. The color of Dawn’s trajectory progresses through the spectrum from blue, when it began ion-thrusting on May 9, to red, when ion-thrusting concludes on June 3. The red dashed sections show where Dawn is coasting, mostly for telecommunications. The first two coast periods include OpNav 8 and 9. Image credit: NASA/JPL-Caltech

The Dwarf Planet Eris

Eris is the largest dwarf planet in the Solar System, and the ninth largest body orbiting our Sun. Sometimes referred to as the “tenth planet”, it’s discovery is responsible for upsetting the traditional count of nine planets in our Solar System, as well as leading the way to the creation of a whole new astronomical category.

Located beyond the orbit of Pluto, this “dwarf planet” is both a trans-Neptunian object (TNO), which refers to any planetary object that orbits the Sun at a greater distance than Neptune – or 30 astronomical units (AU). Because of this distance, and the eccentricity of its orbit, it is also a member of a the population of objects (mostly comets) known as the “scattered disk”.

The discovery of Eris was so important because it was a celestial body larger than Pluto, which forced astronomers to consider, for the first time in history, what the definition of a planet truly is.

Discovery:

Eris, which has the full title of 136199 Eris, was first observed in 2003 during a Palomar Observatory survey of the outer solar system by a team led by Mike Brown, a professor of planetary astronomy at the California Institute of Technology. The discovery was confirmed in January 2005 after the team examined the pictures obtained from the survey in detail.

Classification:

At the time of it’s discovery, Brown and his colleagues believed that they had located the 10th planet of our solar system, since it was the first object in the Kuiper Belt found to be bigger than Pluto. Some astronomers agreed and liked the designation, but others objected since they claimed that Eris was not a true planet. At the time, the definition of “planet” was not a clear-cut since there had never been an official definition issued by the International Astronomical Union (IAU).

The matter was settled by the IAU in the summer of 2006. They defined a planet as an object that orbits the Sun, which is large enough to make itself roughly spherical. Additionally, it would have to be able to clear its neighborhood – meaning it has enough gravity to force any objects of similar size or that are not under its gravitational control out of its orbit.

In addition to finally defining what a planet is, the IAU also created a new category of “dwarf planets“. The only difference between a planet and a dwarf planet is that a dwarf planet has not cleared its neighborhood. Eris was assigned to this new category, and Pluto lost its status as a planet. Other celestial bodies, including Haumea, Ceres, and Makemake, have been classified as dwarf planets.

artist's impression shows the distant dwarf planet Eris. New observations have shown that Eris is smaller than previously thought and almost exactly the same size as Pluto. Eris is extremely reflective and its surface is probably covered in frost formed from the frozen remains of its atmosphere. Credit: ESO
Artist’s impression shows the distant dwarf planet Eris, highlighting its bright surface. Credit: ESO

Naming:

Eris is named after the Greek goddess of strife and discord. The name was assigned on September 13th, 2006, following an unusually long consideration period that arose over the issue of classification. During this time, the object became known to the wider public as Xena, which was the name given to it by the discovery team.

The team had been saving this name, which was inspired by the title character of the television series Xena: Warrior Princess, for the first body they discovered that was larger than Pluto. They also chose it because it started with the letter X, a reference to Percival Lowell’s hunt for a planet he believed to exist the edge of the Solar System (which he referred to as “Planet X“).

According to fellow astronomer and science writer Govert Schilling, Brown initially wanted to call the object “Lila”. This name was inspired by a concept in Hindu mythology that described the cosmos as the outcome of a game played by Brahma, and also because it was similar to “Lilah” – the name of Brown’s newborn daughter.

Size and Orbit:

The actual size and mass of Eris has been the subject of debate, as official estimates have changed with time and subsequent viewing. In 2005, using images from the Hubble Space Telescope. the diameter of Eris was measured to be 2397 ± 100 km (1,489 miles). In 2007, a series of observations of the largest trans-Neptunian objects with the Spitzer Space Telescope estimated Eris’s diameter at 2600 (+400/-200) km (1616 miles).

A diagram showing solar system orbits. The highly tilted orbit of Eris is in red. Credit: NASA
A diagram showing solar system orbits. The highly tilted orbit of Eris is in red. Credit: NASA

The most recent observation took place in November of 2010, when Eris was the subject of one of the most distant stellar occultations yet achieved from Earth. The teams findings were announced on October 2011, and contradicted previous findings with an estimated diameter of 2326 ± 12 km (1445 miles).

Because of these differences, astronomers have been hard-pressed to maintain that Eris is more massive than Pluto. According to the latest estimates, the Solar System’s “ninth planet” has a diameter of 2368 km (1471 miles), placing it on par with Eris. Part of the difficulty in accurately assessing the planet’s size comes from interference from Pluto’s atmosphere. Astronomers expect a more accurate appraisal when the New Horizons space probe arrives at Pluto in July 2015.

Eris has an orbital period of 558 years. Its maximum possible distance from the Sun (aphelion) is 97.65 AU, and its closest (perihelion) is 37.91 AU. This means that Eris and its moon are currently the most distant known objects in the Solar System, apart from long-period comets and space probes.

Eris’s orbit is highly eccentric, and brings Eris to within 37.9 AU of the Sun, a typical perihelion for scattered objects. This is within the orbit of Pluto, but still safe from direct interaction with Neptune (29.8-30.4 AU). Unlike the eight planets, whose orbits all lie roughly in the same plane as the Earth’s, Eris’s orbit is highly inclined – the planet is tilted at an angle of about 44° to the ecliptic.

Moons:

Eris has one moon called Dysnomia, which is named after the daughter of Eris in Greek mythology, which was first observed on September 10th, 2005 – a few months after the discovery of Eris. The moon was spotted by a team using the Keck telescopes in Hawaii, who were busy carrying out observations of the four brightest TNOs (Pluto, Makemake, Haumea, and Eris) at the time.

Eris (center) and its moon of Dysnomia (left of center), taken by the Hubble Space Telescope. Credit: NASA/ESA/Mike Brown
Eris (center) and its moon of Dysnomia (left of center), taken by the Hubble Space Telescope. Credit: NASA/ESA/Mike Brown

Interesting Facts:

The dwarf planet is rather bright and can be detected using something as simple as a small telescope. Models of internal heating via radioactive decay suggest that Eris may be capable of sustaining an internal ocean of liquid water at the mantle-core boundary. These studies were conducted by Hauke Hussmann and colleagues from the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG) at the University of São Paulo.

Brown and the discovery team followed up their initial identification of Eris with spectroscopic observations of the planet, which were made on January 25th, 2005. Infrared light from the object revealed the presence of methane ice, indicating that the surface may be similar to that of Pluto and of Neptune’s moon Triton.

Due to Eris’s distant eccentric orbit, its surface temperature is estimated to vary between about 30 and 56 K (?243.2 and ?217.2 °C). This places it on par with Pluto’s surface temperature, which ranges from 33 to 55 K (-240.15 and -218.15 °C).

We have many interesting articles on planets here at Universe Today, including this article on What is the newest planet and the 10th planet.

If you are looking for more information, try Eris and NASA’s Solar System Exploration entry.

Astronomy Cast has an episode on Pluto’s planetary identity crisis.

Source:

How Dense is the Asteroid Belt?

We’ve seen way too many science fiction episodes that show asteroid belts as dense fields of tumbling boulders. How dense is the asteroid belt, and how to spacecraft survive getting through them?

For the purposes of revenue, lazy storytelling, and whatever it is Zak Snyder tells himself to get out of bed in the morning, when it comes to asteroids, Science fiction and video games creators have done something of disservice to your perception of reality.

Take a fond trip down sci-fi memory lane, and think about the time someone, possibly you, has had to dogfight or navigate through yet another frakkin’ asteroid belt. Huge space rocks tumbling dangerously in space! Action! Adventure! Only the skilled pilot, with her trusty astromecha-doplis ship can maneuver through the dense cluster of space boulders, dodging this way and that, avoiding certain collision.

And then she shoots her pew pew laser breaking up larger asteroids up into smaller ones, possibly obliterating them entirely depending on the cg budget. Inevitably, there’s bobbing and weaving. Pursuit craft will clip their wings on asteroids, spinning off into nearby tango. Some will fly straight into a space boulder.

Finally you’ll thread the needle on a pair of asteroids and the last ship of the whatever they’re called clicky clacky mantis Zorak bug people will try and catch you, but he/it won’t be quite so lucky. Poetically getting squashed like… a… bug. Sackhoff for the win, pilot victorious.

Okay, you probably knew the laser part is totally fake. I mean, everybody knows you can’t hear sounds in space. Outside of Starbuck being awesome, is that at all realistic? And if so, how does NASA maneuver unmanned spacecraft through that boulder-strewn grand canyon death trap to reach the outer planets?

The asteroid belt is a vast region between the orbits of Mars and Jupiter. Our collection of space rocks starts around 300 million kilometers from the Sun and ends around 500 million kilometers. The first asteroid, the dwarf planet Ceres which measures 950 km across, was discovered in 1801, with a “That’s funny.”. Soon after astronomers turned up many more small objects orbiting in this region at the “Oooh neat!” stage.

Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech
Artist’s concept of Dawn in its survey orbit at dwarf planet Ceres. Credit: NASA/JPL-Caltech

They realized it was a vast belt of material orbiting the Sun, with I suspect a “We’re all gonna die.”. To date, almost half a million asteroids have been discovered, most of which are in the main belt.

As mentioned in a another video, gathering up all the material in the asteroid belt and gluing it together makes a mass around 4% of the Moon. So, in case one of your friends gets excited and suggests it was a failed planet, you can bust out that stat and publicly shame them for being so 1996, Goodwill Hunting style. You like asteroids? How about them asteroids?

There’s a few hundred larger than 100 km across, and tens of millions of rocks a hundred meters across. Any one of these could ruin a good day, or bring a bad day to a welcome firey close for either a depressed wayfaring spacecraft or a little bluegreen speck of a planet. Which sounds dangerous all the way around.

Fortunately, our asteroid belt is a vast region of space. Let’s wind up the perspective-o-meter. If you divide the total number of objects in the field by the volume of space that asteroid belt takes up, each space rock is separated by hundreds of thousands of kilometers. Think of it as gravity’s remarkably spacious zen rock garden.

Ceres compared to asteroids visited to date, including Vesta, Dawn's mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.
Ceres compared to asteroids visited to date, including Vesta, Dawn’s mapping target in 2011. Image by NASA/ESA. Compiled by Paul Schenck.

As a result, when NASA engineers plot a spacecraft’s route through the asteroid belt, they don’t expect to make a close encounter with any asteroids – in fact, they’ll change its flight path to intercept asteroids en route. Because hey look, asteroid!

Even though Ceres was discovered in 1801, it’s never been observed up close, until now. NASA’s Dawn spacecraft already visited Asteroid Vesta, and by the time you’re watching this video, it will have captured close-up images of the surface of Ceres.

Once again, science fiction creatives sold us out to drama over hard science. If you’re passing through an asteroid belt, you won’t need to dodge and weave to avoid the space rocks. In fact, you probably wouldn’t even know you were passing through a belt at all. You’d have to go way the heck over there to even get a nearby look at one of the bloody things. So we’re safe, our speck is safe, and all the little spacecraft are safe…. for now.

Which dramatic version of “asteroids” are you most fond of? Tell us in the comments below.

Here’s Ceres Compared to All the Other Asteroids We’ve Visited

When the Dawn mission was in its planning stages, Ceres was considered an asteroid. But in 2006, a year before the mission launched, the International Astronomical Union formed a new class of solar system objects known as dwarf planets, and since by definition a dwarf planet is spherical and travels in an orbit around the Sun, Ceres fit that definition perfectly.

But since it’s located in the Asteroid Belt, we still tend to think of Ceres as an asteroid. So, how does Ceres compare to other asteroids?

Dr. Paul Schenk, who is a participating scientist on the Dawn mission, recently put together some graphics on his website and the one above compares Ceres to other asteroids that we’ve visited with spacecraft.

Of course, Ceres is bigger (it’s the biggest object in the Asteroid Belt) and more spherical than the other asteroids. When it comes right down to it, Ceres doesn’t look much like an asteroid at all!

“Ceres is most similar in size to several of Saturn’s icy moons and may be similar internally as well, being composed of 25% water ice by mass,” Schenk noted on his website.

 Comparisons of Ceres with other prominent icy objects.  Dione is Ceres' closest twin in size and mass. Image credit: NASA/ESA. Compiled by Paul Schenk.
Comparisons of Ceres with other prominent icy objects. Dione is Ceres’ closest twin in size and mass. Image credit: NASA/ESA. Compiled by Paul Schenk.

And water is one of the most interesting and mysterious aspects of Ceres. A year ago, the Herschel space telescope discovered water vapor around Ceres, and the vapor could be emanating from water plumes — much like those that are on Saturn’s moon Enceladus – or it could be from cryovolcanism from geysers or icy volcano.

“The water vapor question is one of the most interesting things we will look for,” Schenk told Universe Today. “What is its source, what does it indicate about the interior and activity level within Ceres? Is Ceres active, very ancient, or both? Does it go back to the earliest Solar System? Those are the questions we hope to answer with Dawn.”

Some scientists also think Ceres may have an ocean and possibly an atmosphere, which makes Dawn’s arrival at Ceres in March one of the most exciting planetary events of 2015, in addition to New Horizon’s arrival at Pluto.

“Since we don’t know why the water vapor venting has happened, or even if it continues, it’s hard to say much more than that,” Schenk said via email, “but it is theoretically possible that some liquid water still exists within Ceres. Dawn will try to determine if that is true.”

One of the possibilities that has been discussed is that if the water vapor is confirmed, Ceres could potentially host microbial life. I asked Schenk what other factors would have to be present in order for that to have occurred?

“The presence of carbon molecules is often regarded as necessary for life,” he replied, “and we think we see that on the surface spectroscopically in the form of carbonates and clays. So, I think the questions will be, whether there is actually liquid water of any kind, whether the carbon compounds are just a surface coating or in the interior, and whether Ceres has ever been warm. If those are true then some sort of prebiotic or biotic activity is in play.”

Since we do not know the answer to any of these questions yet, Schenk says Dawn’s visit to Ceres should be interesting!

On thing of note is that Dawn is now closing in on Ceres and just today, the team released the best image we have yet of Ceres, which you can see in our article here.

Read more of Schenk’s article, “Year of the ‘Dwarves’: Ceres and Pluto Get Their Due.”

Keep tabs on the Dawn mission by following Universe Today, or see the Dawn mission website.

Herschel Discovers Water Vapor Spewing from Ceres

With the Dawn spacecraft now heading towards the dwarf planet/asteroid Ceres, the mission has suddenly gotten even more intriguing. The Herschel space observatory has discovered water vapor around Ceres, and the vapor could be emanating from water plumes — much like those that are on Saturn’s moon Enceladus – or it could be from cryovolcanism from geysers or icy volcano.

“This is the first time water vapor has been unequivocally detected on Ceres or any other object in the asteroid belt and provides proof that Ceres has an icy surface and an atmosphere,” said Michael Küppers of ESA in Spain, lead author of a paper in the journal Nature.

Ceres might be considered to have a bit of an identity crisis, and this new discovery might complicate things even more. When it was discovered in 1801, astronomers thought it was a planet orbiting between Mars and Jupiter. Later, other bodies with similar orbits were found, marking the discovery of our Solar System’s main belt of asteroids.

Ceres laid claim as the largest asteroid in our Solar System, but in 2006, the International Astronomical Union reclassified Ceres as a dwarf planet because of its large size.

But now, could Ceres also have comet-like attributes? Herschel scientists say the most straightforward explanation of the water vapor production is through sublimation, where ice is warmed and transformed directly into gas, dragging the surface dust with it, and exposing fresh ice underneath to sustain the process. This is how comets work.

Ceres is roughly 950 kilometers (590 miles) in diameter. The best guess on Ceres composition is that it is layered, perhaps with a rocky core and an icy outer mantle. Ice had been theorized to exist on Ceres but had not been detected conclusively, until now.

This graph shows variability in the intensity of the water absorption signal detected at Ceres by the Herschel space observatory on March 6, 2013.  Credit: ESA.
This graph shows variability in the intensity of the water absorption signal detected at Ceres by the Herschel space observatory on March 6, 2013. Credit: ESA.

Herschel used its far-infrared vision with the HIFI instrument to see a clear spectral signature of the water vapor. But, interestingly, Herschel did not see water vapor every time it looked. There were variations in the water signal during the dwarf planet’s 9-hour rotation period. The telescope spied water vapor four different times, on one occasion there was no signature. The astronomers deduced that almost all of the water vapor was seen to be coming from just two spots on the surface.

Although Herschel was not able to make a resolved image of Ceres, the team was able to derive the distribution of water sources on the surface.

“We estimate that approximately 6 kg of water vapour is being produced per second, requiring only a tiny fraction of Ceres to be covered by water ice, which links nicely to the two localised surface features we have observed,” says Laurence O’Rourke, Principal Investigator for the Herschel asteroid and comet observation programme called MACH-11, and second author on the paper.

The two emitting regions are about 5% darker than the average on Ceres. Since darker regions are able to absorb more sunlight, they are then likely the warmest regions, resulting in a more efficient sublimation of small reservoirs of water ice, the team said.

They added that this new finding could have significant implications for our understanding of the evolution of the Solar System.

“Herschel’s discovery of water vapour outgassing from Ceres gives us new information on how water is distributed in the Solar System,” said Göran Pilbratt, ESA’s Herschel Project Scientist. “Since Ceres constitutes about one fifth of the total mass of asteroid belt, this finding is important not only for the study of small Solar System bodies in general, but also for learning more about the origin of water on Earth.”

Dawn is scheduled to arrive at Ceres in the spring of 2015 after spending more than a year orbiting the large asteroid Vesta. Dawn will give us the closest look ever at Ceres surface and provide more insight into this latest finding.

“We’ve got a spacecraft on the way to Ceres, so we don’t have to wait long before getting more context on this intriguing result, right from the source itself,” said Carol Raymond, the deputy principal investigator for Dawn. “Dawn will map the geology and chemistry of the surface in high resolution, revealing the processes that drive the outgassing activity.”

Sources: ESA, NASA, Nature

Are Pluto and Eris Twins?

[/caption]

Back a couple of weeks ago, I wrote an article highlighting the debate between scientists on which dwarf planet is bigger, Pluto or Eris. During a planetary science conference earlier this month in France, word “leaked” out that Eris was still more massive, but likely smaller in diameter.

Today, the latest findings were published in Nature, and as such are now “official”. There’s also some additional information, so I’d like to revisit this topic and include some new details which may help answer the question:

Could Eris and Pluto actually be twins?

Before we answer the pressing question, let’s revisit my prior post at: http://www.universetoday.com/89901/pluto-or-eris-which-is-bigger/.

Bruno Sicardy of the Paris Observatory and his team calculated the diameter of Eris in 2010. The technique they used took advantage of an occultation between Eris and a faint background star. Sicardy’s results provided a diameter of 2,326 kilometers for Eris, slightly less than his 2009 estimate of Pluto’s diameter at 2,338 kilometers.

Combining the diameter estimate with mass estimates yielded a density estimate for Eris which suggests, and is supported by its extra mass, that its composition is far more rocky than Pluto, with Eris being only 10-15% ice by mass.

In this week’s announcement by the European Southern Observatory, additional information was presented which sheds new light on cold, distant Eris.

Regarding the new density estimates, Emmanuel Jehin, one of Sicardy’s team members mentions, “This density means that Eris is probably a large rocky body covered in a relatively thin mantle of ice”.

Further supporting Jehin’s assertion, The surface of Eris was found to be extremely reflective, (96% of the light that falls on Eris is reflected, making it nearly as reflective as a backyard telescope mirror). Based on the current estimate, Eris is more reflective than freshly fallen snow on Earth. Based on spectral analysis of Eris, its surface reflectivity is most likely due to a surface of nitrogen-rich ice and frozen methane. Some estimates place the thickness of this layer at less than one millimeter.

Jehin also added, “This layer of ice could result from the dwarf planet’s nitrogen or methane atmosphere condensing as frost onto its surface as it moves away from the Sun in its elongated orbit and into an increasingly cold environment. The ice could then turn back to gas as Eris approaches its closest point to the Sun, at a distance of about 5.7 billion kilometers.”

Based on the new information on surface composition and surface reflectivity, Sicardy and his team were able to make temperature estimates for Eris. The team estimates daytime temperatures on Eris of -238 C, and that temperatures on the night side of Eris would be much lower.

Sicardy concluded with, “It is extraordinary how much we can find out about a small and distant object such as Eris by watching it pass in front of a faint star, using relatively small telescopes. Five years after the creation of the new class of dwarf planets, we are finally really getting to know one of its founding members.”

Source(s): ESO Press Release , Universe Today

Eris and Pluto: Two Peas in a Pod

About Dwarf Planets

[/caption]

Or two dwarf planets in the Kuiper Belt…

Eris — that pesky big dwarf planet that caused all the brouhaha about planets, dwarf planets, plutoids and the like — has gotten a closer look by a team of astronomers from several different universities, and guess what? Eris and Pluto have a lot in common. Eris appears to have a frozen surface, predominantly covered in nitrogen ice and methane, just like Pluto.

The scientists integrated two years of work conducted in Northern Arizona University’s new ice research laboratory, in addition to astronomical observations of Eris from the Multiple Mirror Telescope Observatory from Mount Hopkins, Ariz., and of Pluto from Steward Observatory from Kitt Peak, Ariz.

“There are only a handful of such labs doing this kind of work in the world,” said Stephen Tegler, from NAU and lead author of “Methane and Nitrogen Abundances on Eris and Pluto,” which was presented this week at the American Astronomical Society’s Divison of Planetary Science meeting. “By studying surfaces of icy dwarf planets, we hope to get a better understanding of the processes that affect their surfaces.”

NAU’s ice lab grew optically clear ice samples of methane, nitrogen, argon, methane-nitrogen mixtures, and methane-argon mixtures in a vacuum chamber at temperatures as low as minus 390 degrees Fahrenheit to simulate the planets’ cold surfaces. Light passed through the samples revealed the “chemical fingerprints” of molecules and atoms, which were compared to telescopic observations of sunlight reflected from the surfaces of Eris and Pluto.

“By combining the astronomical data and laboratory data, we found about 90 percent of Eris’s icy surface is made up of nitrogen ice and about 10 percent is made up of methane ice, which is not all that different from Pluto,” said David Cornelison, coauthor and physicist at Missouri State University.

The scientists say the recent findings will directly enhance NASA’s New Horizons spacecraft mission, currently scheduled to fly by Pluto in 2015, by lending greater value to the continued research of Eris and Pluto.

Source: Northern Arizona University, DPS

Astronomy Without A Telescope – One Potato, Two Potato

Sometimes it’s good to take a break from mind-stretching cosmology models, quantum entanglements or events at 10-23 seconds after the big bang and get back to some astronomy basics. For example, the vexing issue of the potato radius. 

At the recent 2010 Australian Space Science Conference, it was proposed by Lineweaver and Norman that all naturally occurring objects in the universe adopt one of five basic shapes depending on their size, mass and dynamics. Small and low mass objects can be considered Dust – being irregular shapes governed primarily by electromagnetic forces. 

Next up are Potatoes, being objects where accretion by gravity begins to have some effect, though not as much as in the more massive Spheres – which, to quote the International Astronomical Union’s second law of planets, has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape

Objects of the scale of molecular dust clouds will collapse down into Disks where the sheer volume of accreting material means that much of it can only rotate in a holding pattern around and towards the centre of mass. Such objects may evolve into a star with orbiting planets (or not), but the initial disk structure seems to be a mandatory step in the formation of objects at this scale. 

At the galactic scale you may still have disk structures, such as a spiral galaxy, but usually such large scale structures are too diffuse to form accretion disks and instead cluster in Halos – of which the central bulge of a spiral galaxy is one example. Other examples are globular clusters, elliptical galaxies and even galactic clusters. 

The proposed five major forms that accumulated matter adopts in our universe. Credit: Lineweaver and Norman.

The authors then investigated the potato radius, or Rpot, to identify the transition point from Potato to Sphere, which would also represent the transition point from small celestial object to dwarf planet. Two key issues emerged in their analysis. 

Firstly, it is not necessary to assume a surface gravity of a magnitude necessary to generate hydrostatic equilibrium. For example, on Earth such rock crushing forces only act at 10 kilometres or more below the surface – or to look at it another way you can have a mountain on Earth the size of Everest (9 kilometres), but anything higher will begin to collapse back towards the planet’s roughly spheroid shape. So, there is an acceptable margin where a sphere can still be considered a sphere even if it does not demonstrate complete hydrostatic equilibrium across its entire structure. 

Secondly, the differential strength of molecular bonds affects the yield strength of a particular material (i.e. its resistance to gravitational collapse). 

On this basis, the authors conclude that Rpot for rocky objects is 300 kilometres. However, Rpot for icy objects is only 200 kilometres, due to their weaker yield strength, meaning they more easily conform to a spheroidal shape with less self-gravity. 

Since Ceres is the only asteroid with a radius that is greater than Rpot for rocky objects we should not expect any more dwarf planets to be identified in the asteroid belt. But applying the 200 kilometre Rpot for icy bodies, means there may be a whole bunch of trans-Neptunian objects out there that are ready to take on the title.

Minor Planets

Main Belt Asteroids

[/caption]
Minor planet is a term used to refer to a celestial object – that is not a planet or comet – which orbits the Sun. Found in 1801, Ceres, also known as a dwarf planet, was the first minor planet discovered. The term minor planet has been in use since the 1800’s. Planetoids, asteroids, and minor planets have all been used interchangeably, but the situation became even more confusing when the International Astronomical Union (IAU) committee reclassified minor planets and comets into the new categories of dwarf planets and small solar system bodies. At the same time, the IAU created a new definition of what a planet is, and Pluto was reclassified as a dwarf planet. Hydrostatic equilibrium – the ability to maintain a roughly spherical shape – is what separates dwarf planets from the more irregularly shaped small solar system bodies. The names become even more confusing because the IAU still recognizes the use of the term minor planets.

Minor planets are extremely common with over 400,000 registered and thousands more found each month. Approximately 15,000 minor planets have been given official names while the rest are numbered. When asteroids were first discovered, they were named after characters from Greek and Roman mythology like Ceres was. At first, astronomers thought that the asteroids, especially Ceres and Pallas were actually planets. Astronomers also created symbols for the first asteroids found. There were symbols created for 14 asteroids and some of them were very complex like Victoria’s symbol, which looks like a plant with three leaves growing out of an off center starburst. Soon, astronomers ran out of mythological names and started christening asteroids after television characters, famous people, and relatives of discoverers. Most names were feminine, attesting to an unnamed  tradition. As the numbers ran into the thousands, scientists started using their pets as inspiration. After an asteroid was named 2309 Mr. Spock, pet’s names were banned. That did not stop the oddness though because names such as 9007 James Bond and 6402 Chesirecat have been suggested and actually accepted.

There are a number of different categories that minor planets fall into including asteroids, Trans-Neptunian objects, and centaurs. There  are various types of asteroids, although most of them can be found in the asteroid belt, which is the region of space between Mars and Jupiter. Trans-Neptunian objects are celestial bodies found orbiting beyond Neptune, and centaurs are celestial bodies with unstable orbits located between Jupiter and Neptune. The categories also overlap, making classifying things a nightmare. For example, Ceres is a dwarf planet and minor planet, additionally it can also be classified as an asteroid.

Universe Today has a number of articles including astronomers find new minor planet and why Pluto is no lone a planet.

You can also check out these articles on asteroids and the solar system.

Astronomy Cast has an episode on the asteroid belt you will want to listen to.

Reference:
Wikipedia