Titan’s Atmosphere Has All the Ingredients For Life. But Not Life as We Know It

A global mosaic of the surface of Titan, thanks to the infrared eyes of the Cassini spacecraft. Image Credit: NASA/JPL-Caltech/University of Nantes/University of Arizona
A global mosaic of the surface of Titan, thanks to the infrared eyes of the Cassini spacecraft. Image Credit: NASA/JPL-Caltech/University of Nantes/University of Arizona

Using the Atacama Large Millimeter/submillimeter Array (ALMA), a team of scientists has identified a mysterious molecule in Titan’s atmosphere. It’s called cyclopropenylidene (C3H2), a simple carbon-based compound that has never been seen in an atmosphere before. According to the team’s study published in The Astronomical Journal, this molecule could be a precursor to more complex compounds that could indicate possible life on Titan.

Similarly, Dr. Catherine Neish of the University of Western Ontario’s Institute for Earth and Space Exploration (Western Space) and her colleagues in the European Space Agency (ESA) found that Titan has other chemicals that could be the ingredients for exotic life forms. In their study, which appeared in Astronomy & Astrophysics, they present Cassini mission data that revealed the composition of impact craters on Titan’s surface.

Continue reading “Titan’s Atmosphere Has All the Ingredients For Life. But Not Life as We Know It”

Scientists Construct a Global Map of Titan’s Geology

Titan’s methane-based hydrologic cycle makes it one of the Solar System’s most geologically diverse bodies. There are lakes of methane, methane rainfall, and even “snow” made of complex organic molecules. But all of that detail is hidden under the moon’s dense, hazy atmosphere.

Now a team of scientists have used data from the Cassini mission to create our first global geological map of Titan.

Continue reading “Scientists Construct a Global Map of Titan’s Geology”

A Jarful of Titan Could Teach Us A Lot About Life There, and Here On Earth

A near-infrared mosaic image of Saturn's moon Titan shows the sun reflecting and glinting off of Titan's northern polar seas. Image Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho
A near-infrared mosaic image of Saturn's moon Titan shows the sun reflecting and glinting off of Titan's northern polar seas. Image Credit: NASA/JPL-Caltech/University of Arizona/University of Idaho

Titan is a distant, exotic, and dangerous world. It’s frigid temperatures and hydrocarbon chemistry is like nothing else in the Solar System. Now that NASA is heading there, some researchers are getting a jump on the mission by recreating Titan’s chemistry in jars.

Continue reading “A Jarful of Titan Could Teach Us A Lot About Life There, and Here On Earth”

NASA is Going Back to Saturn’s Moon Titan, this Time With a Nuclear Battery-Powered Quadcopter

An illustration of NASA's Dragonfly rotorcraft on Titan. Image Credit: NASA

The official announcement has been made. NASA is sending the Dragonfly, its rotary-winged flying robot, to Titan. We’ll have to control our excitement for a while, though. The launch date isn’t until 2026.

Continue reading “NASA is Going Back to Saturn’s Moon Titan, this Time With a Nuclear Battery-Powered Quadcopter”

Yes Please! NASA is Considering a Helicopter Mission to Titan

In this illustration, the Dragonfly helicopter drone is descending to the surface of Titan. Image: NASA
In this illustration, the Dragonfly helicopter drone is descending to the surface of Titan. Image: NASA

The only thing cooler than sending a helicopter drone to explore Titan is sending a nuclear powered one to do the job. Called the “Dragonfly” spacecraft, this helicopter drone mission has been selected as one of two finalists for NASA’s robotic exploration missions planned for the mid 2020’s. NASA selected the Dragonfly mission from 12 proposals they were considering under their New Horizons program.

Titan is Saturn’s largest moon, and is a primary target in the search for life in our Solar System. Titan has liquid hydrocarbon lakes on its surface, a carbon-rich chemistry, and sub-surface oceans. Titan also cycles methane the way Earth cycles water.

This true-color image of Titan, taken by the Cassini spacecraft, shows the moon's thick, hazy atmosphere. Image: By NASA - http://photojournal.jpl.nasa.gov/catalog/PIA14602, Public Domain, https://commons.wikimedia.org/w/index.php?curid=44822294
This true-color image of Titan, taken by the Cassini spacecraft, shows the moon’s thick, hazy atmosphere. Image: By NASA – http://photojournal.jpl.nasa.gov/catalog/PIA14602, Public Domain, https://commons.wikimedia.org/w/index.php?curid=44822294

Dragonfly would fulfill its mission by hopping around on the surface of Titan. Once an initial landing site is selected on Titan, Dragonfly will land there with the assistance of a ‘chute. Dragonfly will spend periods of time on the ground, where it will charge its batteries with its radioisotope thermoelectric generator. Once charged, it would then fly for hours at time, travelling tens of kilometers during each flight. Titan’s dense atmosphere and low gravity (compared to Earth) allows for this type of mission.

During these individual flights, potential landing sites would be identified for further scientific work. Dragonfly will return to its initial landing site, and only visit other sites once they have been verified as safe.

Dragonfly is being developed at the Johns Hopkins Applied Physics Laboratory (JHAPL.) It has a preliminary design weight of 450 kg. It’s a double quad-copter design, with four sets of dual rotors.

“Titan is a fascinating ocean world,” said APL’s Elizabeth Turtle, principal investigator for Dragonfly. “It’s the only moon in the solar system with a dense atmosphere, weather, clouds, rain, and liquid lakes and seas—and those liquids are ethane and methane. There’s so much amazing science and discovery to be done on Titan, and the entire Dragonfly team and our partners are thrilled to begin the next phase of concept development.”

The science objectives of the Dragonfly mission center around prebiotic organic chemistry and habitability on Titan. It will likely have four instruments:

Being chosen as a finalist has the team behind Dragonfly excited for the project. “This brings us one step closer to launching a bold and very exciting space exploration mission to Titan,” said APL Director Ralph Semmel. “We are grateful for the opportunity to further develop our New Frontiers proposals and excited about the impact these NASA missions will have for the world.”

Exploring Titan holds a daunting set of challenges. But as we’ve seen in recent years, NASA and its partners have the capability to meet those challenges. The JHAPL team behind Dragonfly also designed and built the New Horizons mission to Pluto and the Kuiper Belt object 2014 MU69. Their track record of success has everyone excited about the Dragonfly mission.

The Dragonfly mission, and the other finalist—the Comet Astrobiology Exploration Sample Return being developed by Cornell University and the Goddard Space Flight Center—will each receive funding through the end of 2018 to work on the concepts. In the Spring of 2019, NASA will select one of them and will fund its continued development.

Dragonfly is part of NASA’s New Frontiers program. New Frontiers missions are planetary science missions with a cap of approximately $850 million. New Frontiers missions include the Juno mission to Jupiter, the Osiris-REx asteroid sample-return missions, and the aforementioned New Horizons mission to Pluto.

Further reading: