SpaceX CEO Elon Musk to Unveil Manned Dragon ‘Space Taxi’ on May 29

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA

SpaceX Dragon cargo freighter berthed to the International Space Station during recently concluded SpaceX-3 mission in May 2014. An upgraded, manrated version will carry US astronauts to space in the next two to three years. Credit: NASA
Story updated[/caption]

SpaceX CEO, founder and chief designer Elon Musk is set to unveil the manned version of his firms commercial Dragon spaceship later this week, setting in motion an effort that he hopes will soon restore America’s capability to launch US astronauts to low Earth orbit and the International Space Station (ISS) by 2017.

Musk will personally introduce SpaceX’s ‘Space Taxi’ dubbed ‘Dragon V2’ at what amounts to sort of a world premiere event on May 29 at the company’s headquarters in Hawthorne, CA, according to an official announcement this evening (May 27) from SpaceX.

“SpaceX’s new Dragon V2 spacecraft is a next generation spacecraft designed to carry astronauts into space,” according to the SpaceX statement.

The manned Dragon will launch atop the powerful SpaceX Falcon 9 v1.1 rocket from a SpaceX pad on the Florida Space Coast.

Dragon was initially developed as a commercial unmanned resupply freighter to deliver 20,000 kg (44,000 pounds) of supplies and science experiments to the ISS under a $1.6 Billion Commercial Resupply Services (CRS) contract with NASA during a dozen Dragon cargo spacecraft flights through 2016.

Musk is making good on a recent comment he posted to twitter on April 29, with respect to the continuing fallout from the deadly crisis in Ukraine which has resulted in some US economic sanctions imposed against Russia, that now potentially threaten US access to the ISS in a boomerang action from the Russian government:

“Sounds like this might be a good time to unveil the new Dragon Mk 2 spaceship that @SpaceX has been working on with @NASA. No trampoline needed,” Musk tweeted.

“Cover drops on May 29. Actual flight design hardware of crew Dragon, not a mockup,” Musk added.

The ‘Dragon V2’ is an upgraded, man rated version of the unmanned spaceship that can carry a mix of cargo and up to a seven crewmembers to the ISS.

NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by SpaceX. The evaluation in Hawthorne, Calif., on Jan. 30, 2012, was part of SpaceX's Commercial Crew Development Round 2 agreement with NASA's Commercial Crew Program. Credit: NASA
NASA astronauts and industry experts check out the crew accommodations in the Dragon spacecraft under development by SpaceX. The evaluation in Hawthorne, Calif., on Jan. 30, 2012, was part of SpaceX’s Commercial Crew Development Round 2 agreement with NASA’s Commercial Crew Program. Credit: NASA

Dragon is among a trio of US private sector manned spaceships being developed with seed money from NASA’s Commercial Crew Program in a public/private partnership to develop a next-generation crew transportation vehicle to ferry astronauts to and from the ISS by 2017 – a capability totally lost following the space shuttle’s forced retirement in 2011.

Since that day, US astronauts have been totally dependent on the Russian Soyuz capsules for ferry rides to orbit and back.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

All three company’s have been making excellent progress in meeting their NASA mandated milestones in the current contract period known as Commercial Crew Integrated Capability initiative (CCiCAP) under the auspices of NASA’s Commercial Crew Program.

However, US progress getting the space taxis actually built and flying has been repeatedly stifled by the US Congress who have severely cut NASA’s budget request for the Commercial Crew Program by about half each year. Thus forcing NASA to delay the first manned orbital test flights by at least 18 months from 2015 to 2017.

The situation with regard to US dependency on Russian rocketry to reach the ISS has always been awkward.

But it finally took on new found importance and urgency from politicos in Washington, DC, since the ongoing crisis in Ukraine this year exposed US vulnerability in a wide range of space endeavors affecting not just astronaut rides to the ISS but also the launch of the most critical US national security surveillance satellites essential to US defense.

US space vulnerability became obvious to everyone when Russia’s deputy prime minister, Dmitry Rogozin. who is in charge of space and defense industries, said that US sanctions could “boomerang” against the US space program and that perhaps NASA should “deliver their astronauts to the International Space Station using a trampoline.”

A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL.   File photo.  Credit: Ken Kremer/kenkremer.com
A SpaceX Falcon 9 rocket with Dragon cargo capsule bound for the ISS launched from Space Launch Complex 40 at Cape Canaveral, FL. File photo. Credit: Ken Kremer/kenkremer.com

Rogozin also threatened to cut off exports of the Russian made RD-180 rocket engines which power the first stage of the United Launch Alliance (ULA) Atlas V rocket used to launch numerous US National Security spy satellites.

“Moscow is banning Washington from using Russian-made rocket engines, which the US has used to deliver its military satellites into orbit,” Rogozin said at a media briefing held on May 13.

NASA is also a hefty user of the Atlas V for many of the agency’s science and communication satellites like the Curiosity Mars rover, MAVEN Mars orbiter, MMS, Juno Jupiter orbiter and TDRS.

Musk and SpaceX have also filed lawsuits against the US Air Force to legally block the importation of the RD-180 engines by ULA for the Atlas V as a violation of the US economic sanctions.

So overall, US space policy is in a murky and uncertain situation and Musk clearly aims for SpaceX to be a central and significant player in a wide range of US space activities, both manned and unmanned.

Read my earlier articles about the Atlas V controversy, Rogozin’s statements, Musk’s suit and more about the effects of economic sanctions imposed by the US and Western nations in response to Russia’s actions in Ukraine and the annexation of Crimea; here, here, here, here and here.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The 3rd operational Dragon cargo resupply mission completed the 30 day SpaceX-3 flight to the ISS with a successful Pacific Ocean splashdown on May 18.

SpaceX will webcast the Dragon unveiling event LIVE on May 29 at 7 p.m. PST for anyone wishing to watch at: www.spacex.com/webcast

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket successfully launched the SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Boeing CST-100 Space Taxi Maiden Test Flight to ISS Expected Early 2017 – One on One Interview with Chris Ferguson, Last Shuttle Commander

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

KENNEDY SPACE CENTER, FL – Boeing expects to launch the first unmanned test flight of their commercial CST-100 manned ‘space taxi’ in “early 2017,” said Chris Ferguson, commander of NASA’s final shuttle flight in an exclusive one-on-one interview with Universe Today for an inside look at Boeing’s space efforts. Ferguson is now spearheading Boeing’s human spaceflight capsule project as director of Crew and Mission Operations.

“The first unmanned orbital test flight is planned in January 2017 … and may go to the station,” Ferguson told me during a wide ranging, in depth discussion about a variety of human spaceflight topics and Boeing’s ambitious plans for their privately developed CST-100 human rated spaceship – with a little help from NASA.

Boeing has reserved a launch slot at Cape Canaveral with United Launch Alliance (ULA), but the details are not yet public.

If all goes well, the maiden CST-100 orbital test flight with humans would follow around mid-2017.

“The first manned test could happen by the end of summer 2017 with a two person crew,” he said.

“And we may go all the way to the space station.”

Boeing is among a trio of American aerospace firms, including SpaceX and Sierra Nevada Corp, vying to restore America’s capability to fly humans to Earth orbit and the space station by late 2017, using seed money from NASA’s Commercial Crew Program (CCP) in a public/private partnership. The next round of contracts will be awarded by NASA about late summer 2014.

That’s a feat that America hasn’t accomplished in nearly three years.

“It’s been over 1000 days and counting since we landed [on STS-135],” Ferguson noted with some sadness as he checked the daily counter on his watch. He is a veteran of three space flights.

Boeing has selected Florida to be the base for its commercial crew program office. Image Credit: Boeing
Boeing CST-100 commercial crew capsule approaches the ISS in this artist’s concept. Credit: Boeing

Since the shuttles retirement in July 2011 following touchdown of Space Shuttle Atlantis on the last shuttle flight (STS-135) with Ferguson in command, no American astronauts have launched to space from American soil on American rockets and spaceships.

The only ticket to the ISS and back has been aboard the Russian Soyuz capsule.

Chris and the Boeing team hope to change the situation soon. They are chomping at the bits to get Americas back into space from US soil and provide reliable and cost-effective US access to destinations in low Earth orbit like the ISS and the proposed private Bigelow space station.

Boeing wants to send its new private spaceship all the way to the space station starting on the very first unmanned and manned test flights currently slated for 2017, according to Ferguson.

“NASA wants us to provide [crew flight] services by November 2017,” said Ferguson, according to the terms of the CCP contact award.”

The CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing
The Boeing CST-100 crew capsule awaits liftoff aboard an Atlas V launch vehicle at Cape Canaveral in this artist’s concept. Credit: Boeing

The CST-100 will launch atop a man rated Atlas V rocket and carry a mix of cargo and up to seven crew members to the ISS.

“So both the first unmanned and manned test flight will be in 2017. The first unmanned orbital flight test is currently set for January 2017. The first manned test could be end of summer 2017,” he stated.

I asked Chris to outline the mission plans for both flights.

“Our first flight, the CST-100 Orbital Flight Test – is scheduled to be unmanned.”

“Originally it was just going to be an on orbital test of the systems, with perhaps a close approach to the space station. But we haven’t precluded our ability to dock.

“So if our systems mature as we anticipate then we may go all the way and actually dock at station. We’re not sure yet,” he said.

So I asked whether he thinks the CST-100 will also go dock at the ISS on the first manned test flight?

“Yes. Absolutely. We want go to all the way to the space station,” Ferguson emphatically told me.

“For the 1st manned test flight, we want to dock at the space station and maybe spend a couple weeks there.”

“SpaceX did it [docking]. So we think we can too.”

“The question is can we make the owners of the space station comfortable with what we are doing. That’s what it really comes down to.”

“As the next year progresses and the design matures and it becomes more refined and we understand our own capability, and NASA understands our capabilities as the space station program gets more involved – then I’m sure they will put the same rigor into our plan as they did into the SpaceX and Orbital Sciences plans.”

“When SpaceX and Orbital [wanted to] come up for the grapple [rather than just rendezvous], NASA asked ‘Are these guys ready?’ That’s what NASA will ask us.”

“And if we [Boeing] are ready, then we’ll go dock at the station with our CST-100.”

“And if we’re not ready, then we’ll wait another flight and go to the station the next time. It’s just that simple.”

“We looked at it and this is something we can do.”

“There are a lot of ways we have to make NASA and ourselves happy. But as a company we feel we can go do it,” Ferguson stated.

Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing
Boeing CST-100 crew vehicle docks at the ISS. Credit: Boeing

So the future looks promising.

But the schedule depends entirely on NASA funding levels approved by Congress. And that vital funding has been rather short on supply. It has already caused significant delays to the start of the space taxi missions for all three companies contending for NASA’s commercial crew contracts because of the significant slashes to the agency’s CCP budget request, year after year.

In fact the schedule has slipped already 18 months to the right compared to barely a few years ago.

So I asked Chris to discuss the CCP funding cuts and resulting postponements – which significantly affected schedules for Boeing, SpaceX and Sierra Nevada.

Here it is in a nutshell.

“No Bucks, No Buck Rogers,” explained Ferguson.

“The original plan was to conduct both the unmanned and manned CST-100 test flights in 2015.”

“Originally, we would have flown the unmanned orbital test in the summer of 2015. The crewed test would have been at the end of 2015.”

“So both flights are now a full year and a half later.” Ferguson confirmed.

“For the presidents [CCP] funding requests for the past few years of roughly about $800 million, they [Congress] only approved about half. It was significantly less than the request.”

Now at this very moment Congress is deliberating NASA’s Fiscal 2015 budget.

NASA Administrator Charles Bolden has said he will beg Congress to approve full funding for the commercial crew program this year – on his hands and knees if necessary.

NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011.   From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew will delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS). Credit: Ken Kremer - kenkremer.com
NASA’s final shuttle crew on STS-135 mission greets the media and shuttle workers during Atlantis rollover from the OPF-1 processing hanger to the VAB at KSC during May 2011. From left: Rex Walheim, Shuttle Commander Christopher Ferguson, Douglas Hurley and Sandra Magnus. The all veteran crew will delivered the Raffaello multipurpose logistics module (MPLM), science supplies, provisions and space parts to the International Space Station (ISS). Credit: Ken Kremer – kenkremer.com

Otherwise there will be further delays to the start of the space taxi missions. And the direct consequence is NASA would be forced to continue buying US astronaut rides from the Russians at $70 Million per seat. All against the backdrop of Russian actions in the Ukraine where deadly clashes potentially threaten US access to the ISS in a worst case scenario if the ongoing events spin even further out of control and the West ratchets up economic sanctions against Russia.

The CST-100 is designed to be a “simple ride up to and back from space,” Ferguson emphasized to me.

NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

It is being designed at Boeing’s Houston Product Support Center in Texas.

In Part 2 of my interview, Chris Ferguson will discuss the details about the design, how and where the CST-100 capsule will be manufactured at a newly renovated, former space shuttle facility at NASA’s Kennedy Space Center in Florida.

Stay tuned here for Ken’s continuing Boeing, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer at emergency M-113 Tank Practice.  Chris brought a special public gift for science aboard the last shuttle mission. Chris and Ken discuss our mutual love of science in the weeks before Atlantis July 8 liftoff.  Credit: Ken Kremer
STS-135 Shuttle Commander Chris Ferguson (right) and Ken Kremer (Universe Today) meet at emergency M-113 Tank Practice during crew pre-launch events at the Kennedy Space Center in the weeks before Atlantis July 8, 2011 liftoff. Credit: Ken Kremer- kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

ISS, NASA and US National Security dependent on Russian & Ukrainian Rocketry Amidst Crimean Crisis

The International Space Station (ISS) in low Earth orbit. The sole way for every American and station partner astronaut to fly to space and the ISS is aboard the Russian Soyuz manned capsule since the retirement of NASA’s Space Shuttles in 2011. There are currently NO alternatives to Russia’s Soyuz. Credit: NASA

The International Space Station (ISS) in low Earth orbit
The sole way for every American and station partner astronaut to fly to space and the ISS is aboard the Russian Soyuz manned capsule since the retirement of NASA’s Space Shuttles in 2011. There are currently NO alternatives to Russia’s Soyuz. Credit: NASA[/caption]

Virtually every aspect of the manned and unmanned US space program – including NASA, other government agencies, private aerospace company’s and crucially important US national security payloads – are highly dependent on Russian & Ukrainian rocketry and are therefore potentially at risk amidst the current Crimea crisis as tensions flared up dangerously in recent days between Ukraine and Russia with global repercussions.

The International Space Station (ISS), astronaut rides to space and back, the Atlas V and Antares rockets and even critical U.S. spy satellites providing vital, real time intelligence gathering are among the examples of programs that may be in peril if events deteriorate or worse yet, spin out of control.

The Crimean confrontation and all the threats and counter threats of armed conflicts and economic sanctions shines a spotlight on US vulnerabilities regarding space exploration, private industry and US national security programs, missions, satellites and rockets.

The consequences of escalating tensions could be catastrophic for all sides.

Many Americans are likely unaware of the extent to which the US, Russian and Ukrainian space programs, assets and booster rockets are inextricably intertwined and interdependent.

First, let’s look at America’s dependency on Russia regarding the ISS.

The massive orbiting lab complex is a partnership of 15 nations and five space agencies worldwide – including Russia’s Roscosmos and the US NASA. The station is currently occupied by a six person crew of three Russians, two Americans and one Japanese.

Since the forced retirement of NASA’s space shuttle program in 2011, America completely lost its own human spaceflight capability. So now the only ticket for astronauts to space and back is by way of the Russian Soyuz capsule.

Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA
Expedition 38 crew members proudly sport their national flags in this March 2014 picture from the International Space Station. Pictured (clockwise from top center) are Russian cosmonaut Oleg Kotov, commander; Japan Aerospace Exploration Agency astronaut Koichi Wakata, Russian cosmonaut Sergey Ryazanskiy, NASA astronauts Rick Mastracchio and Mike Hopkins, and Russian cosmonaut Mikhail Tyurin, all flight engineers. Credit: NASA

American and station partner astronauts are 100% dependent on Russia’s three seat Soyuz capsule and rocket for rides to the ISS.

Russia has a monopoly on reaching the station because the shuttle was shut down by political ‘leaders’ in Washington, DC before a new U.S. manned space system was brought online.

And congressional budget cutters have repeatedly slashed NASA’s budget, thereby increasing the gap in US manned spaceflight launches from American soil by several years already.

Congress was repeatedly warned of the consequences by NASA and responded with further reductions to NASA’s budget.

In a continuation of the normal crew rotation routines, three current crew members are set to depart the ISS in a Soyuz and descend to Earth on Monday, March 10.

Coincidentally, one of those Russian crew members, Oleg Kotov, was actually born in Crimea when it was part of the former Soviet Union.

A new three man crew of two Russians and one American is set to blast off in their Soyuz capsule from Russia’s launch pad in Kazakhstan on March 25.

The U.S. pays Russia $70 million per Soyuz seat under the most recent contact, while American aerospace workers are unemployed.

The fastest and most cost effective path to restore America’s human spaceflight capability to low Earth orbit and the ISS is through NASA’s Commercial Crew Program (CCP) seeking to develop private ‘space taxis’ with Boeing, SpaceX and Sierra Nevada.

Alas, Congress has sliced NASA’s CCP funding request by about 50% each year and the 1st commercial crew flight to orbit has consequently been postponed by more than three years.

So it won’t be until 2017 at the earliest that NASA can end its total dependence on Russia’s Soyuz.

A sensible policy to eliminate US dependence on Russia would be to accelerate CCP, not cut it to the bone, especially in view of the Crimean crisis which remains unresolved as of this writing.

If U.S. access to Soyuz seats were to be cut off, the implications would be dire and it could mean the end of the ISS.

When NASA Administrator Chales Bolden was asked about contingencies at a briefing yesterday, March 4, he responded that everything is OK for now.

“Right now, everything is normal in our relationship with the Russians,” said Bolden.

“Missions up and down are on target.”

“People lose track of the fact that we have occupied the International Space Station now for 13 consecutive years uninterrupted, and that has been through multiple international crises.”

“I don’t think it’s an insignificant fact that we are starting to see a number of people with the idea that the International Space Station be nominated for the Nobel Peace Prize.”

But he urged Congress to fully fund CCP and avoid still more delays.

“Let me be clear about one thing,” Bolden said.

“The choice here is between fully funding the request to bring space launches back to the US or continuing millions in subsidies to the Russians. It’s that simple. The Obama administration chooses investing in America, and we believe Congress will choose this course as well.”

NASA Administrator Charles Bolden discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

Now let’s examine a few American rockets which include substantial Russian and Ukrainian components – without which they cannot lift one nanometer off the ground.

The Atlas V rocket developed by United Launch Alliance is the current workhorse of the US expendable rocket fleet.

Coincidentally the next Atlas V due to blastoff on March 25 will carry a top secret spy satellite for the U.S. National Reconnaissance Office (NRO).

The Atlas V first stage however is powered by the Russian built and supplied RD-180 rocket engine.

Several Air Force – DOD satellites are launched on the Atlas V every year.

Many NASA probes also used the Atlas V including Curiosity, MAVEN, Juno and TDRS to name just a few.

NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA’s Mars bound MAVEN spacecraft launches atop Atlas V booster at 1:28 p.m. EST from Space Launch Complex 41 at Cape Canaveral Air Force Station on Nov. 18, 2013. Image taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

What will happen to shipments of the dual nozzle, dual chamber RD-180’s manufactured by Russia’s NPO Energomesh in the event of economic sanctions or worse? It’s anyone’s guess.

ULA also manufactures the Delta IV expendable rocket which is virtually all American made and has successfully launched numerous US national security payloads.

The Antares rocket and Cygnus resupply freighter developed by Orbital Sciences are essential to NASA’s plans to restore US cargo delivery runs to the ISS – another US capability lost by voluntarily stopping shuttle flights. .

Orbital Sciences and SpaceX are both under contract with NASA to deliver 20,000 kg of supplies to the station. And they both have now successfully docked their cargo vehicles – Cygnus and Dragon – to the ISS.

The first stage of Antares is built in Ukraine by the Yuzhnoye Design Bureau and Yuzhmash.

And the Ukrainian booster factory is located in the predominantly Russian speaking eastern region – making for an even more complicated situation.

Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)
Antares rocket raised at NASA Wallops launch pad 0A bound for the ISS on Sept 18, 2013. Credit: Ken Kremer (kenkremer.com)

By contrast, the SpaceX Falcon 9 rocket and Dragon cargo vessel is virtually entirely American built and not subject to economic embargoes.

At a US Congressional hearing held today (March 5) dealing with national security issues, SpaceX CEO Elon Musk underscored the crucial differences in availability between the Falcon 9 and Atlas V in this excerpt from his testimony:

“In light of Russia’s de facto annexation of the Ukraine’s Crimea region and the formal severing of military ties, the Atlas V cannot possibly be described as providing “assured access to space” for our nation when supply of the main engine depends on President Putin’s permission, said Space X CEO and founder Elon Musk, at the US Senate appropriations subcommittee hearing on Defense.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

So, continuing operations of the ISS and US National Security are potentially held hostage to the whims of Russian President Vladimir Putin.

Russia has threatened to retaliate with sanctions against the West, if the West institutes sanctions against Russia.

The Crimean crisis is without a doubt the most dangerous East-West conflict since the end of the Cold War.

Right now no one knows the future outcome of the crisis in Crimea. Diplomats are talking but some limited military assets on both sides are reportedly on the move today.

map_of_ukraine

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, Orion, commercial space, Chang’e-3, LADEE, Mars and more planetary and human spaceflight news.

Ken Kremer

Atlantis thunders to life at Launch Pad 39 A at KSC on July 8.   Credit: Ken Kremer
Final Space Shuttle liftoff marks start of US dependency on Russia for human access to space.
Space Shuttle Atlantis thunders to life at Launch Pad 39 A at KSC on July 8, 2011. Credit: Ken Kremer

SpaceX Starts 2014 With Spectacular Private Rocket Success Delivering Thai Satellite to Orbit – Gallery

Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: Jeff Seibert

SpaceX began 2014 with a spectacular big bang for private space today, Jan. 6, when the firms next generation Falcon 9 rocket blasted off for the first time this year and successfully delivered the Thaicom 6 commercial broadcasting satellite to its target orbit.

The new, next generation Falcon 9 rocket lifted off at 5:06 p.m. EST (2206 GMT) from Cape Canaveral Air Force Station, Florida with the Thai payload.

The sunset SpaceX launch from the Florida Space Coast took place precisely on time with ignition of the nine Merlin 1-D first stage engines at Space Launch Complex 40.

TCom6-01

The launch was broadcast live via a SpaceX webcast.

The nine engines on the 224 foot tall Falcon 9 v1.1 rocket generate 1.3 million pounds of thrust, about 50% more than the initial Falcon 9.

The second stage Merlin vacuum engine fired twice as planned.

The first firing began approximately 184 seconds into flight and lasted five minutes and 35 second to deliver Thaicom 6 into its parking orbit.

Clearing the strongback, the Thaicom 6/Falcon 9 mission roars from the pad in its quest for supergeosync orbit. Credit: nasatech.net
Clearing the strongback, the Thaicom 6/Falcon 9 mission roars from the pad in its quest for supergeosync orbit. Credit: nasatech.net

The engine relit for a second burn eighteen minutes later and lasted just over one minute to carry the satellite to its final geostationary transfer orbit.

The restart of the Falcon 9 second stage is a requirement for all geostationary transfer missions.

Falcon 9 rocket soar to space with Thaicom 6 commercial satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Falcon 9 rocket soars to space with Thaicom 6 commercial satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert

31 minutes after liftoff the Thaicom 6 spacecraft separated from the Falcon 9 launch vehicle and was placed into the desired geosynchronous transfer orbit of 295 x 90,000 km geosynchronous at 22.5 degrees inclination.

SpaceX said in a statement that, “The Falcon 9 launch vehicle performed as expected, meeting 100% of mission objectives.”

SpaceX did not attempt to recover the first stage booster on this mission, SpaceX spokeswoman Emily Shanklin told me. “We may try on the next flight.”

Thaicom 6 commercial broadcasting satellite in geosynchronous orbit, artists concept
Thaicom 6 commercial broadcasting satellite in geosynchronous orbit, artists concept

This marks the second launch of the upgraded Falcon 9 in just over a month, following closely on the heels of the maiden flight from Cape Canaveral on Dec. 3 with another commercial satellite, namely SES-8.

“Today’s successful launch of the THAICOM 6 satellite marks the eighth successful flight in a row for Falcon 9,” said Gwynne Shotwell, President of SpaceX. “SpaceX greatly appreciates THAICOM’s support throughout this campaign and we look forward to a busy launch schedule in 2014.”

Both the Thaicom-6 and SES-8 satellites were built by Orbital Sciences, one of SpaceX’s chief competitors in the commercial space race, making for strange bedfellows.

Thaicom 6 patch
Thaicom 6 patch

Indeed it’s a very busy week for private rockets.

Orbital Sciences is poised to launch their Antares rocket in less than 48 hours on Wednesday, Jan. 8 on a commercial resupply mission for NASA that’s bound for the international Space Station (ISS).

The new Falcon 9 is the key to fulfilling SpaceX’s future launch manifest of nearly 50 payloads worth billions of dollars for a diverse customer base.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The next gen Falcon 9 will also launch the human rated SpaceX Dragon to the ISS in a bid to restore America’s human spaceflight capability.

A pair of critical Falcon 9/Dragon abort tests are planned for 2014. Read my new article and discussion with SpaceX CEO Elon Musk – here.

The next SpaceX Dragon cargo launch to the ISS is currently scheduled for Feb. 22, said SpaceX spokeswoman Emily Shanklin told Universe Today.

Sunset launch of Falcon 9 with Thiacom 6 broadcast satellite on Jan 6, 2014 from Cape Canaveral, FL.   Credit: Jeff Seibert
Sunset launch of Falcon 9 with Thiacom 6 broadcast satellite on Jan 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Almost clear of the catenary wires, the Thaicom 6/Falcon 9 mission streaks to orbit. Credit: nasatech.net
Almost clear of the catenary wires, the Thaicom 6/Falcon 9 mission streaks to orbit. Credit: nasatech.net

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about SpaceX, Orbital Sciences Antares Jan. 8 launch, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Falcon 9 rocket disappears into the clouds following blastoff on Jan. 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Falcon 9 rocket disappears into the clouds following blastoff on Jan. 6, 2014 from Cape Canaveral, FL. Credit: Jeff Seibert
Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: SpaceX
Blastoff of 1st Falcon 9 rocket in 2014 with Thaicom 6 commercial satellite from Cape Canaveral, FL on Jan. 6. Credit: SpaceX

What’s Ahead for Human Rated SpaceX Dragon in 2014 – Musk tells Universe Today

Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. During 2014, SpaceX plans two flight tests simulating Dragon emergency abort scenarios launching from pad 40. Credit: Ken Kremer/www.kenkremer.com

Falcon 9 SpaceX CRS-2 launch of Dragon spacecraft on March 1, 2013 to the ISS from pad 40 at Cape Canaveral, Florida.- shot from the roof of the Vehicle Assembly Building. During 2014, SpaceX plans two flight tests simulating human crewed Dragon emergency abort scenarios launching from right here at pad 40. Credit: Ken Kremer/www.kenkremer.com
Story updated[/caption]

CAPE CANAVERAL AIR FORCE STATION, FL – A trio of American companies – SpaceX, Boeing, and Sierra Nevada – are working diligently to restore America’s capability to launch humans into low Earth orbit from US soil, aided by seed money from NASA’s Commercial Crew Program in a public-private partnership.

We’ve been following the solid progress made by all three companies. Here we’ll focus on two crucial test flights planned by SpaceX in 2014 to human rate and launch the crewed version of their entry into the commercial crew ‘space taxi’ sweepstakes, namely the Dragon spacecraft.

Recently I had the opportunity to speak about the upcoming test flights with the head of SpaceX, Elon Musk.

So I asked Musk, the founder and CEO of SpaceX, about “what’s ahead in 2014”; specifically related to a pair of critical “abort tests” that he hopes to conduct with the human rated “version of our Dragon spacecraft.”

“Assuming all goes well, we expect to conduct [up to] two Dragon abort tests next year in 2014,” Musk told me.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite  from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The two abort flight tests in 2014 involve demonstrating the ability of the Dragon spacecraft abort system to lift an uncrewed spacecraft clear of a simulated launch emergency.

The crewed Dragon – also known as DragonRider – will be capable of lofting up to seven astronauts to the ISS and remaining docked for at least 180 days.

First a brief overview of the goals of NASA’s Commercial Crew Program. It was started in the wake of the retirement of NASA’s Space Shuttle program which flew its final human crews to the International Space Station (ISS) in mid-2011.

“NASA has tasked SpaceX, Boeing, and Sierra Nevada to develop spacecraft capable of safely transporting humans to the space station, returning that capability to the United States where it belongs,’ says NASA Administrator Charles Bolden.

Since 2011, US astronauts have been 100% dependent on the Russians and their Soyuz capsules to hitch a ride to low Earth orbit and the ISS.

The abort tests are essential for demonstrating that the Dragon vehicle will activate thrusters and separate in a split second from a potentially deadly exploding rocket fireball to save astronauts lives in the event of a real life emergency – either directly on the launch pad or in flight.

“We are aiming to do at least the pad abort test next year [in 2014] with version 2 of our Dragon spacecraft that would carry astronauts,” Musk told me.

This is the Dragon mock-up that will be used for an upcoming pad abort test on Cape Canaveral Air Force Station's Space Launch Complex 40.  Credit: SpaceX
This is the Dragon mock-up that will be used for an upcoming pad abort test on Cape Canaveral Air Force Station’s Space Launch Complex 40. Credit: SpaceX

SpaceX plans to launch the crewed Dragon atop the human rated version of their own developed Falcon 9 next generation rocket, which is also being simultaneously developed to achieve all of NASA’s human rating requirements.

The initial pad abort test will test the ability of the full-size Dragon to safely push away and escape in case of a failure of its Falcon 9 booster rocket in the moments around launch, right at the launch pad.

“The purpose of the pad abort test is to demonstrate Dragon has enough total impulse (thrust) to safely abort,” SpaceX spokeswoman Emily Shanklin informed me.

For that test, Dragon will use its pusher escape abort thrusters to lift the Dragon safely away from the failing rocket. The vehicle will be positioned on a structural facsimile of the Dragon trunk in which the actual Falcon 9/Dragon interfaces will be represented by mockups.

This test will be conducted on SpaceX’s launch pad 40 at Cape Canaveral Air Force Station in Florida. It will not include an actual Falcon 9 booster.

The second Dragon flight test involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure at about T plus 1 minute, to save astronauts lives. The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted landing into the Atlantic Ocean.

“Assuming all goes well we expect to launch the high altitude abort test towards the end of next year,” Musk explained.

The second test will use the upgraded next generation version of the Falcon 9 that was successfully launched just weeks ago on its maiden mission from Cape Canaveral on Dec. 3. Read my earlier reports – starting here.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. The upgraded Falcon 9 will be used to launch the human rated SpaceX Dragon spacecraft to the ISS. Credit: Ken Kremer/kenkremer.com

To date, SpaceX has already successfully launched the original cargo version of the Dragon a total of three times. And each one docked as planned at the ISS.

The last cargo Dragon blasted off on March 1, 2013. Read my prior articles starting – here.

The next cargo Dragon bound for the ISS is due to lift off on Feb. 22, 2014 from Cape Canaveral, FL.

SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA
SpaceX Dragon berthing at ISS on March 3, 2013. Credit: NASA

Orbital Sciences – the commercial ISS cargo competitor to SpaceX – plans to launch its Cygnus cargo vehicle on the Orb-1 mission bound for the ISS on Jan. 7 atop the firms Antares rocket from NASA Wallops Flight Facility in Virginia. Watch for my on site reports from NASA Wallops.

NASA’s Commercial Crew Program’s goal is launching American astronauts from U.S. soil within the next four years – by 2017 to the ISS.

The 2017 launch date is dependent on funding from the US federal government that will enable each of the firms to accomplish a specified series of milestones. NASA payments are only made after each companies milestones are successfully achieved.

SpaceX was awarded $440 million in the third round of funding in the Commercial Crew integrated Capability (CCiCAP) initiative which runs through the third quarter of 2014. As of November 2013, NASA said SpaceX had accomplished 9 of 15 milestones and was on track to complete all on time.

Musk hopes to launch an initial Dragon orbital test flight with a human crew of SpaceX test pilots perhaps as early as sometime in 2015 – if funding and all else goes well.

Either a US commercial ‘space taxi’ or the Orion exploration capsule could have blasted off with American astronauts much sooner – if not for the continuing year-by-year slashes to NASA’s overall budget forced by the so called ‘political leaders’ of all parties in Washington, DC.

SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida.  Credit: Ken Kremer/kenkremer.com
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss SpaceX upcoming flight plans by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about SpaceX, Orbital Sciences Antares Jan. 7 launch, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 6-8: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 7”; Rodeway Inn, Chincoteague, VA, evening

NASA Administrator Charles Bolden discusses NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
NASA Administrator Charles Bolden and science chief Astronaut John Grunsfeld discuss NASA’s human spaceflight initiatives backdropped by the service module for the Orion crew capsule being assembled at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com