Comet Curiosity? MSL Looks Like a Comet as it Heads Toward Mars

Visible at the bottom of the image is the venting of gases, probably from the Mars Science Laboratory Centaur rocket stage, as seen from the Sir Thomas Brisbane Planetarium in Australia. The Orion Nebula is at the top. Photo by Duncan Waldron.

What does a spacecraft look like as it lights-out for another world? This incredible time-lapse video was taken by astronomers at the Sir Thomas Brisbane Planetarium in Australia. The sequence shows a plume drifting against the background stars, probably caused by venting from the Centaur rocket stage that sent the Mars Science Laboratory/Curiosity Rover on its way to the Red Planet, after it carried out a burn over the Indian Ocean on November 26, 2011.

Brisbane Planetarium Curator Mark Rigby said that he and photographer/amateur astronomer Duncan Waldron, along with another planetarium staff member were likely the only people who saw this amazing sight, as they have received no other reports of similar observations.

Rigby said they are “are over the Moon – or higher” from seeing the departure of the Mars Science Laboratory, its rocket stage and plume above Australia on Sunday. “It is a real shame that we couldn’t have woken up everyone that didn’t have clouds,” Rigby wrote on the Planetarium’s Facebook page. “Even we didn’t expect to see such a spectacle. Can you imagine the feeling if there had been a crew onboard heading for Mars?”

Rigby first saw the plume at 2:15am local time, (16:15 UT) and said it was “a one-degree elongated cloud of VERY easy naked eye brightness.” Duncan Waldron also saw it starting at about 2:30pm and began to photograph it until it faded. Nonetheless, he captured a unique timelapse covering 21 minutes until 3am.

Here is one of Waldron’s images, below:

[/caption]

The coordinates of the observing site: -27.630779,152.966324, altitude 40m approx.

Congrats to the Sir Thomas Brisbane Planetarium team for capturing such an amazing and historical sight!

Curiosity Majestically Blasts off on ‘Mars Trek’ to ascertain ‘Are We Alone?’

Curiosity Mars Science Laboratory (MSL) rover blast off on Mars Trek. NASA's Mars Science Laboratory spacecraft, sealed inside its payload fairing atop the United Launch Alliance Atlas V rocket, clears the tower at Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.The mission lifted off at 10:02 a.m. EST on Nov. 26, beginning an eight-month interplanetary cruise to Mars. Credit: Mike Deep/David Gonzales

[/caption]

Atop a towering inferno of sparkling flames and billowing ash, Humankinds millennial long quest to ascertain “Are We Alone ?” soared skywards today (Nov. 26) with a sophisticated spaceship named ‘Curiosity’ – NASA’s newest, biggest and most up to date robotic surveyor that’s specifically tasked to hunt for the ‘Ingredients of Life’ on Mars, the most ‘Earth-like’ planet in our Solar System.

‘Mars Trek – Curiosity’s Search for Undiscovered Life’ zoomed to the heavens with today’s (Nov. 26) pulse pounding blastoff of NASA’s huge Curiosity Mars rover mounted atop a United Launch Alliance Atlas V rocket at 10:02 a.m. EST from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida.

Curiosity Mars Science Laboratory MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Ken Kremer

Curiosity’s noble goal is to meticulously gather and sift through samples of Martian soil and rocks in pursuit of the tell-tale signatures of life in the form of organic molecules – the carbon based building blocks of life as we know it – as well as clays and sulfate minerals that may preserve evidence of habitats and environments that could support the genesis of Martian microbial life forms, past or present.

The Atlas V booster carrying Curiosity to the Red Planet vaulted off the launch pad on 2 million pounds of thrust and put on a spectacular sky show for the throngs of spectators who journeyed to the Kennedy Space Center from across the globe, crowded around the Florida Space Coast’s beaches, waterways and roadways and came to witness firsthand the liftoff of the $2.5 Billion Curiosity Mars Science Lab (MSL) rover.

Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. The car-sized rover, Curiosity, which has 10 science instruments designed to search for signs of life, including methane, and to help determine if this gas is from a biological or geological source. Credit: Ken Kremer

The car sized Curiosity rover is the most ambitious, important and far reaching science probe ever sent to the Red Planet – and the likes of which we have never seen or attempted before.

“Science fiction is now science fact,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. “We’re flying to Mars. We’ll get it on the ground… and see what we find.”

“’Ecstatic’ – in a word, NASA is Ecstatic. We have started a new Era in the Exploration of Mars with this mission – technologically and scientifically. MSL is enormous, the equivalent of 3 missions frankly.”

“We’re exactly where we want to be, moving fast and cruising to Mars.”

Curiosity Mars Science Laboratory (MSL) rover blasts off for Mars atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST from Cape Canaveral, Florida. Credit: Mike Deep/David Gonzales

NASA is utilizing an unprecedented, rocket powered precision descent system to guide Curiosity to a pinpoint touch down inside the Gale Crater landing site, with all six wheels deployed.

Gale Crater is 154 km (96 mi) wide. It is dominated by layered terrain and an enormous mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of ancient or extant Martian life.

“I hope we have more work than the scientists can actually handle. I expect them all to be overrun with data that they’ve never seen before.”

“The first images from the bottom of Gale Crater should be stunning. The public will see vistas we’ve never seen before. It will be like sitting at the bottom of the Grand Canyon,” said McCuistion.

Topography of Gale Crater - Curiosity Mars rover landing site
Color coding in this image of Gale Crater on Mars represents differences in elevation. The vertical difference from a low point inside the landing ellipse for NASA's Curiosity Mars Science Laboratory (yellow dot) to a high point on the mountain inside the crater (red dot) is about 3 miles (5 kilometers). Credit: NASA

The 197 ft tall Atlas booster’s powerful liquid and solid fueled engines ignited precisely on time with a flash and thunderous roar that grew more intense as the expanding plume of smoke and fire trailed behind the rapidly ascending rockets tail.

The Atlas rockets first stage is comprised of twin Russian built RD-180 liquid fueled engines and four US built solid rocket motors.

The engines powered the accelerating climb to space and propelled the booster away from the US East Coast as it majestically arced over in between broken layers of clouds. The four solids jettisoned 1 minute and 55 seconds later. The liquid fueled core continued firing until its propellants were expended and dropped away at T plus four and one half minutes.

The hydrogen fueled Centaur second stage successfully fired twice and placed the probe on an Earth escape trajectory at 22,500 MPH.

The MSL spacecraft separates and heads on its way to Mars. Credit: NASA TV

The Atlas V initially lofted the spacecraft into Earth orbit and then, with a second burst from the Centaur, pushed it out of Earth orbit into a 352-million-mile (567-million-kilometer) journey to Mars.

MSL spacecraft separation of the solar powered cruise stage stack from the Centaur upper stage occurred at T plus 44 minutes and was beautifully captured on a live NASA TV streaming video feed.

“Our spacecraft is in excellent health and it’s on its way to Mars,” said Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California at the briefing. “I want to thank the launch team, United Launch Alliance, NASA’s Launch Services Program and NASA’s Kennedy Space Center for their help getting MSL into space.”

Curiosity punches through Florida clouds on the way to Mars. Credit: Mike Deep/David Gonzales

“The launch vehicle has given us a first rate injection into our trajectory and we’re in cruise mode. The spacecraft is in communication, thermally stable and power positive.”

“I’m very happy.”

“Our first trajectory correction maneuver will be in about two weeks,” Theisinger added.

“We’ll do instrument checkouts in the next several weeks and continue with thorough preparations for the landing on Mars and operations on the surface.”

Curiosity is a 900 kg (2000 pound) behemoth. She measures 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as Spirit and Opportunity, NASA’s prior set of twin Martian robots.

NASA was only given enough money to build 1 rover this time.

“We are ready to go for landing on the surface of Mars, and we couldn’t be happier,” said John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the briefing. “I think this mission will be a great one. It is an important next step in NASA’s overall goal to address the issue of life in the universe.”

Pete Theisinger, Mars Science Laboratory Project Manager from the Jet Propulsion Laboratory in California and John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology at the Nov. 26 post-launch media briefing at the Kennedy Space Center (KSC), pose with model of Atlas V rocket. Credit: Ken Kremer

Curiosity is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times more than its predecessor’s science payloads.

Curiosity rover launches to Mars atop an Atlas V rocket on Nov. 26 from Cape Canaveral, Florida. Credit: Mike Killian/Zero-G News

A drill and scoop located at the end of the robotic arm will gather soil and powdered samples of rock interiors, then sieve and parcel out these samples into analytical laboratory instruments inside the rover. A laser will zap rocks to determine elemental composition.

“We are not a life detection mission.”

“It is important to distinguish that as an intermediate mission between the Mars Exploration Rovers, which was the search for water, and future missions, which may undertake life detection.”

“Our mission is about looking for ancient habitable environments – a time on Mars which is very different from the conditions on Mars today.”

“The promise of Mars Science Laboratory, assuming that all things behave nominally, is we can deliver to you a history of formerly, potentially habitable environments on Mars,” Grotzinger said at the briefing. “But the expectation that we’re going to find organic carbon, that’s the hope of Mars Science Laboratory. It’s a long shot, but we’re going to try.”

Today’s liftoff was the culmination of about 10 years of efforts by the more than 250 science team members and the diligent work of thousands more researchers, engineers and technicians spread around numerous locations across the United States and NASA’s international partners including Canada, Germany, Russia, Spain and France.

“Scientists chose the site they wanted to go to for the first time in history, because of the precision engineering landing system. We are going to the very best place we could find, exactly where we want to go.”

“I can’t wait to get on the ground,” said Grotzinger.

John Grotzinger, Mars Science Laboratory Project Scientist from the California Institute of Technology and Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters at the post launch briefing for reporters at KSC. Credit: Ken Kremer

Complete Coverage of Curiosity – NASA’s Next Mars Rover launched 26 Nov. 2011
Read continuing features about Curiosity by Ken Kremer starting here:

Mars Trek – Curiosity Poised to Search for Signs of Life
Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Curiosity Rover Launches to Mars

The Mars Science Laboratory is now on an 8.5 month trip to Mars! Watch the successful launch above, and our on-site team of Ken Kremer, Alan Walters, David Gonazales and Jason Rhian will provide all the launch details and more in subsequent, fact- and photo-filled articles.

Below is an incredible video of when the MSL spacecraft separated from the Centaur rocket:
Continue reading “Curiosity Rover Launches to Mars”

Mars Trek – Curiosity Poised to Search for Signs of Life

Atlas V rocket and Curiosity Mars rover poised at Space Launch Complex 41 at Cape Canaveral, Florida. Curiosity is set to blast off to Mars on Nov. 26, 2011. Credit: Ken Kremer

[/caption]‘Mars Trek – Curiosity’s Search for Undiscovered Life’ has its galaxy wide premiere Saturday morning Nov. 26 at 10:02 a.m. EST – live on NASA TV.

NASA’s quest ‘In Search of Life’ takes a bold leap in less than 12 hours with the Nov. 26 blastoff of “Curiosity”, the most complex and scientifically advanced robotic explorer ever sent to survey the surface of another world. The 103 minute launch window closes at 11:45 a.m. EST.

Curiosity and the United Launch Alliance Atlas V rocket that will thrust her to the Red Planet are poised for liftoff after being rolled out to Space Launch Complex 41 around 8 a.m. this morning under the watchful eyes of ground crews, mission scientists, reporters and photographers.

Universe Today was there – reporting live on all the history making and thrilling events !

Launch day weather remains favorable, with only a 30 percent chance of conditions prohibiting liftoff, said Air Force meteorologists. A low cloud ceiling is the sole concern at this time.

NASA’s Curiosity Mars rover is encapsulated inside the 5 meter payload fairing and loaded atop the Atlas V rocket at Space Launch Complex 41 at Cape Canaveral. Credit: Ken Kremer

The 1.2 million pound booster was pushed 1800 feet along rail tracks by twin diesel powered trackmobiles from the prelaunch preparation and assembly gantry inside the Vertical Integration Facility out to launch pad 41 at Cape Canaveral Air Force Station.

The 197 foot tall booster is equipped with 4 strap on solid rocket motors and generates some 2 million pounds of liftoff thrust according to Vernon Thorp, Atlas Program manager for ULA.

Curiosity is NASA’s next Mars rover and also quite possibly the last US built Mars rover due to severe cuts to NASA planetary science budget.

After an eight and one half month and 354 million mile (570 million km) interplanetary journey, Curiosity will slam into the thin Martian atmosphere at 13,000 MPH and utilize an unprecedented rocket powered pinpoint landing system known as the Sky Crane to touch down with all six wheels deployed inside Gale Crater.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor which exhibits exposures of minerals that may have preserved evidence of past or present Martian life.

NASA’s Curiosity Mars rover is rolled out from the Vertical Integration Facility to Launch Pad 41 at Cape Canaveral. Credit: Ken Kremer

Curiosity is packed with 10 state-of-the-art science experiments that will search for organic molecules and clay minerals, potential markers for signs of Martian microbial life and habitable zones.

Atlas V and Curiosity poised at Space Launch Complex 41 at Cape Canaveral, Florida for liftoff to Mars on Nov. 26, 2011. Credit: David Gonzales/Mike Deep

Immediately after touchdown, the 1 ton rover will transmit telemetry so that engineers back on Earth can assess the rover’s status.

“When we first land we want to ascertain the integrity and health of the vehicle and look at the surrounding terrain, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.

“The rover’s mast will be deployed on the second day and we’ll get pictures.”

“Shortly thereafter we will begin our science investigations. The radiation (RAD) and subsurface hydrogen detection (DAN) instruments will start right away since they are passive.”

The rover will drive inside the first week.

“The cameras will be used to select targets. We will go up to the valuable targets. With the cameras and instruments we will determine which ones to sample” said Theisinger.

“Then we’ll deploy the arm which contains scientific equipment and collect samples with a percussion drill. The samples will be injected into the two science instruments for analysis that are located on the rover.”

“The SAM and ChemMin instruments will look for organic molecules and isotope ratios as well as identify and quantify the minerals in the rock and soil samples. It could be up to 2 to 3 months before we take the first samples,” explained Theisinger.

MSL is powered by a nuclear battery and is expected to operate for a minimum of one Martian year, equivalent to 687 days on Earth. NASA hopes the 6 foot tall rover will last alot longer.

Curiosity atop Atlas V poised at Space Launch Complex 41 at Cape Canaveral, Florida for liftoff to Mars on Nov. 26, 2011. Credit: David Gonzales/Mike Deep

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life
Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Curiosity Rover ‘Locked and Loaded’ for Quantum Leap in Pursuit of Martian Microbial Life

In the future, planetary protection (where we ensure that missions do not contaminate other words with Earth-borne organisms) will be especially important. Credit: NASA, JPL-Caltech

[/caption]

NASA’s Curiosity Mars rover, the most technologically complex and scientifically capable robot built by humans to explore the surface of another celestial body, is poised to liftoff on Nov. 26 and will enable a quantum leap in mankind’s pursuit of Martian microbes and signatures of life beyond Earth.

“The Mars Science Lab and the rover Curiosity is ‘locked and loaded’, ready for final countdown on Saturday’s launch to Mars,” said Colleen Hartman, assistant associate administrator in NASA’s Science Mission Directorate, at a pre-launch media briefing at the Kennedy Space Center (KSC).

The $2.5 Billion robotic explorer remains on track for an on time liftoff aboard a United Launch Alliance Atlas V rocket at 10:02 a.m. on Nov. 26 from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

Atlas V rocket at Space Launch Complex 41 at Cape Canaveral, Florida. An Atlas V rocket similar to this one utilized in August 2011 for NASAS’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 26, 2011 from Florida. Credit: Ken Kremer

NASA managers and spacecraft contractors gave the “Go-Ahead” for proceeding towards Saturday’s launch at the Launch Readiness Review on Wednesday, Nov. 23. The next milestone is to move the Atlas V rocket 1800 ft. from its preparation and assembly gantry inside the Vertical Integration Facility at the Cape.

“We plan on rolling the vehicle out of the Vertical Integration Facility on Friday morning [Nov. 25] ,” said NASA Launch Director Omar Baez at the briefing. “We should be on the way to the pad by 8 a.m.”

The launch window on Nov. 26 is open until 11:14 a.m. and the current weather prognosis is favorable with chances rated at 70 percent “GO”.

“The final launch rehearsal – using the real vehicle ! – went perfectly, said NASA Mars manager Rob Manning, in an exclusive interview with Universe Today. Manning is the Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“I was happy.”

“The folks at KSCs Payload Handling Facility and at JPL’s cruise mission support area (CMSA) – normally a boisterous bunch – worked quietly and professionally thru to T-4 minutes and a simulated fake hold followed by a restart and a recycle (shut down) due to a sail boat floating too close to the range,” Manning told me.

Curiosity rover - Engineering support team working at consoles at JPL. Credit: Rob Manning

Readers may recall that NASA’s JUNO Jupiter orbiter launch in August was delayed by an hour when an errant boat sailed into the Atlantic Ocean exclusion zone.

“This rover, Curiosity rover, is really a rover on steroids. It’s an order of magnitude more capable than anything we have ever launched to any planet in the solar system,” said Hartman.

“It will go longer, it will discover more than we can possibly imagine.”

Curiosity rover explores inside Gale Crater after landing in August 2012. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. Credit: NASA, JPL-Caltech

Curiosity is locked atop the powerful Alliance Atlas V rocket that will propel the 1 ton behemoth on an eight and one half month interplanetary cruise from the alligator filled swamps of the Florida Space Coast to a layered mountain inside Gale Crater on Mars where liquid water once flowed and Martian microbes may once have thrived.

Curiosity is loaded inside the largest aeroshell ever built and that will shield her from the extreme temperatures and intense buffeting friction she’ll suffer while plummeting into the Martian atmosphere at 13,000 MPH (5,900 m/s) upon arrival at the Red Planet in August 2012.

The Curiosity Mars Science Lab (MSL) rover is the most ambitious mission ever sent to Mars and is equipped with a powerful 75 kilogram (165 pounds) array of 10 state-of-the-art science instruments weighing 15 times as much as its predecessor’s science payloads.

Curiosity measures 3 meters (10 ft) in length and weighs 900 kg (2000 pounds), nearly twice the size and five times as heavy as NASA’s prior set of twin robogirls – Spirit and Opportunity.

The science team selected Gale crater as the landing site because it exhibits exposures of clays and hydrated sulfate minerals that formed in the presence of liquid water billions of years ago, indicating a wet history on ancient Mars that could potentially support the genesis of microbial life forms. Water is an essential prerequisite for life as we know it.

Gale Crater is 154 km (96 mi) in diameter and dominated by a layered mountain rising some 5 km (3 mi) above the crater floor.

Oblique View of Gale Crater, Mars, with Vertical Exaggeration
Gale Crater, where the rover Curiosity of NASA's Mars Science Laboratory mission will land in August 2012, contains a mountain rising from the crater floor. This oblique view of Gale Crater, looking toward the southeast, is an artist's impression using two-fold vertical exaggeration to emphasize the area's topography. Curiosity's landing site is on the crater floor northeast of the mountain. The crater's diameter is 96 miles (154 kilometers). The image combines elevation data from the High Resolution Stereo Camera on the European Space Agency's Mars Express orbiter, image data from the Context Camera on NASA's Mars Reconnaissance Orbiter, and color information from Viking Orbiter imagery.
Credit: NASA/JPL-Caltech/ESA/DLR/FU Berlin/MSSS

The car sized rover is being targeted with a first of its kind precision rocket powered descent system to touchdown inside a landing ellipse some 20 by 25 kilometers (12.4 miles by 15.5 miles) wide and astride the towering mountain at a location in the northern region of Gale.

Curiosity’s goal is to search the crater floor and nearby mountain – half the height of Mt. Everest – for the ingredients of life, including water and the organic molecules that we are all composed of.

The robot will deploy its 7 foot long arm to collect soil and rock samples to assess their composition and determine if any organic materials are present – organics have not previously been detected on Mars.

Curiosity will also vaporize rocks with a laser to determine which elements are present, look for subsurface water in the form of hydrogen, and assess the weather and radiation environments

“After the rocket powered descent, the Sky-Crane maneuver deploys the rover and we land on the mobility system, said Pete Theisinger, MSL project manager from the Jet Propulsion Laboratory in Pasadena, Calif., at the briefing.

The rover will rover about 20 kilometers in the first year. Curiosity has no life limiting constraints. The longevity depends on the health of the rovers components and instruments.

“We’ve had our normal challenges and hiccups that we have in these kinds of major operations, but things have gone extremely smoothly and we’re fully prepared to go on Saturday morning. We hope that the weather cooperates, said Theisinger

Missions to Mars are exceedingly difficult and have been a death trap for many orbiters and landers.

“Mars really is the Bermuda Triangle of the solar system,” said Hartman. “It’s the ‘death planet,’ and the United States of America is the only nation in the world that has ever landed and driven robotic explorers on the surface of Mars. And now we’re set to do it again.”

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone
Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

How Will MSL Navigate to Mars? Very Precisely

Getting the Mars Science Laboratory to the Red Planet isn’t as easy as just strapping the rover on an Atlas V rocket and blasting it in the general direction of Mars. Spacecraft navigation is a very precise and constant science, and in simplest terms, it entails determining where the spacecraft is at all times and keeping it on course to the desired destination.

And, says MSL navigation team chief Tomas Martin-Mur, the only way to accurately get the Curiosity rover to Mars is for the spacecraft to constantly be looking in the rearview mirror at Earth.

“What we do is ‘drive’ the spacecraft using data from the Deep Space Network,” Martin–Mur told Universe Today. “If you think about it, we never see Mars. We don’t have an optical navigation camera or any other instruments to be able to see or sense Mars. We are heading to Mars, all the while looking back to Earth, and with measurements from the Earth we are able to get to Mars with a very high accuracy.”

This high accuracy is very important because MSL is using a new entry, descent and landing guidance system which will allow the spacecraft to land more precisely than any previous landers or rovers.

“It is very challenging, and even though it is something similar to what we have done before with the Mars Exploration Rover (MER) mission, this time it will be done at an even higher level of precision,” Martin-Mur said. “That allows us to get to a very exciting place, Gale Crater.”

The Goldstone Antenna, part of the Deep Space Network. Image Credit: JPL

On Earth, we constantly can find exactly where we are with GPS – which is on our cell phones and navigation equipment. But there is no GPS at Mars, so the only way the rover will be able to head to –and through — a precise point in the Red Planet’s atmosphere is for the navigation team to know exactly where the spacecraft is and for them to keep telling the spacecraft exactly where it is. They use the Deep Space Network (DSN) for those determinations from launch, all the way to Mars.

The Deep Space Network consists of a network of extremely sensitive deep space communications antennas at three locations: Goldstone, California; Madrid, Spain; and Canberra, Australia. The strategic placement approximately 120 degrees apart on Earth’s surface allows constant observation of spacecraft as the Earth rotates.

But of course, it’s not as easy as just getting the rocket from Point A to Point B since Earth and Mars are not fixed positions in space. Navigators must meet the challenges of calculating the exact speeds and orientations of a rotating Earth, a rotating Mars, as well as a moving, spinning spacecraft, while all are simultaneously traveling in their own orbits around the Sun.

There are other factors like solar radiation pressure and thruster firings that all have to be precisely calculated.

This artist's concept depicts the rover Curiosity, of NASA's Mars Science Laboratory mission, as it uses its Chemistry and Camera (ChemCam) instrument to investigate the composition of a rock surface. Credit: NASA/JPL

Martin-Mur said even though MSL is a much bigger rover with a bigger spacecraft and backshell than the MER mission, the navigation tools and calculations aren’t much different. And in some ways, navigating MSL might be easier.

“The Atlas V vehicle provides a much more precise launching and can put us in a more precise path than the MER, which used a Delta II,’ Martin-Mur said. “This allows us to use less propellant, proportionally per pound, to get to Mars than the MER rovers did.”

The MER rovers and spacecraft weighed about 1 ton, while MSL weighs almost 4 tons. MSL is allotted 70 kg of propellant for the cruise stage, while the MER rovers each used about 42 kg of propellant.

Interestingly, for the MSL spacecraft to descend through Mars’ atmosphere and land, the spacecraft will use about 400 kg of propellant.

Additionally, Martin-Mur said more precise planetary ephemeris and Very Long Baseline Interferometry measurements are available, enabling the navigation to be able to deliver the spacecraft to the right place in the atmospheric entry interface, so the vehicle finds itself in the range of parameters that it has been designed to operate.

Navigation at Launch

It all starts with years of preparations and calculations by the navigation team, which must calculate all the possible trajectories to Mars depending on exactly when the Atlas V rocket launches with MSL aboard.

In some cases there are literally thousands of launch opportunities and all the possible trajectories must be calculated precisely. The Juno mission, for example, had two-hour daily launch windows with 3,300 possible launch opportunities. For MSL the daily launch windows contain liftoff opportunities in 5 minutes increments. Across the 24 day launch period the team has calculated 489 different trajectories for all the possible launch opportunities.

But ultimately, they will end up using only one.

“This is not something you do on the fly – you prepare all this well in advance so you have time to sit back and assess it and check it,” said another member of the MSL navigation team, Neil Mottinger, who has worked at the Jet Propulsion Laboratory since 1967. He’s worked on navigation for many missions like Mariner, Voyager, the MER, and several international missions.

“The initial function of navigation at launch is to determine the actual spacecraft trajectory well enough so the spacecraft signal will be well within the beam-width of the DSN antennae,” Mottinger told Universe Today.

The Mars Science Laboratory will separate from the rocket that boosted it toward Mars at about 44 minutes after launch, with the navigator’s tracking the spacecraft’s every move.

Mottinger added that without the DSN’s communication capabilities, there are no planetary missions. “The Navigation team does whatever it can to make sure there aren’t any gaps in communication,” he said. “It’s crunch time during the first 6-8 hours after launch to be able to determine the exact position of the spacecraft.”

From the recent problems with the Phobos-Grunt mission, it is evident how difficult it is to track and communicate with a just-launched spacecraft.

The MSL Entry, Descent and Landing Instrument (the black box in the middle left of the photo) is scheduled to launch as part of the Mars Science Laboratory mission. Credit: NASA

Mid-course Corrections

Again, the navigation team has modeled and calculated all the maneuvers and thruster burns for the mission. Once MSL is on its way to Mars, the navigation team will revisit all their models and design the maneuvers to take the spacecraft to the right entry interface at Mars.

“We’ll keep doing orbit determination and re-designing the maneuvers for the spacecraft,” said Martin-Mur. “MSL has 1 lb thrusters – the same size as the MER spacecraft — but our spacecraft is almost four times heavier so the maneuvers we do take a long time – some will take hours.”

For interplanetary navigation, the engineers use distant quasars as landmarks in space for reference of where the spacecraft is. Quasars are incredibly bright, but are at such colossal distances that they don’t move in the sky like nearer background stars do. Martin-Mur provided a list of nearly 100 different quasars that could be used for this purpose, depending on where the spacecraft is.

“It is interesting,” Martin-Mur mused, “with quasars we are using something that is billions of light years away from us, from the very early universe, which are so old that they might not even be there anymore. It is really cool that we are using an object that currently may not exist anymore, but using them for very precise navigation.”

The navigation team also needs to model the solar radiation pressure – the effect the Sun’s radiation has on the spacecraft.

“We know very well, thanks to our friends from the Solar Systems Dynamics group, where Mars is going to be and where the Earth and Sun are,” said Martin-Mur. “But since this spacecraft has not been in space before, what is not known precisely is how solar radiation pressure will affect the surface properties of the spacecraft, and how it will perturb the spacecraft. If we don’t have a good model for that, we could be hundreds of kilometers off as the spacecraft goes from Earth to Mars.”

Powered Descent, Sky Crane & Flyaway for MSL. Credit: NASA/JPL

Arriving at Mars

As the spacecraft approaches Mars, it is very important to know precisely where the spacecraft is. “We need to target the spacecraft to the right entry point,” said Martin-Mur, “and tell the spacecraft where it will enter, so it will be able to find its way to the landing site.”

The MSL Entry Descent and Landing Instrumentation, or MEDLI, will stream information back to Earth as the probe enters the atmosphere, letting the navigators — and the science team – know precisely where the rover has landed.

Only then will the navigation team be able — maybe — to breathe a sigh of relief.

Science Rich Gale Crater and NASA’s Curiosity Mars Rover in Glorious 3-D – Touchdown in a Habitable Zone

Gale Crater in 3 D - Curiosity Mars Rover Landing site. NASA's most advanced mobile robotic laboratory, the Mars Science Laboratory carrying the Curiosity rover, is set to launch atop an Atlas V rocket on Nov. 26 at 10:02 a.m. EST on a mission to examine Gale Crater on Mars that shows geologic evidence of minerals that formed in flowing liquid water. Credit: NASA

[/caption]

Curiosity, NASA’s next Mars rover is on target to launch this Saturday, Nov 26 from the Florida Space Coast in less than four days at 10:02 a.m. NASA is utilizing a first-of- its- kind pinpoint landing system for targeting Curiosity to touchdown inside Gale Crater – one of the most scientifically interesting locations on the Red Planet because it exhibits exposures of clay minerals that formed in the presence of neutral liquid water that could be conducive to the genesis of life.

For a dramatic glimpse of the ragged and richly varied terrain of the 154 kilometer (96 mile) wide Gale Crater check out the glorious 3 D stereo image above. Another 3 D image, below, shows Curiosity being tested at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena. Calif., earlier this year.

“From NASA’s prior missions we’ve learned that Mars is a dynamic planet,” said Michael Meyer, lead scientist for NASA’s Mars exploration program, at a pre-launch briefing for reporters at the Kennedy Space Center.

“We’ve learned that it has a history where it was warm and wet at the same time that life started here on Earth. And we know it’s undergone a massive transition from that more benign time to what it is today.”

“Mars is worth exploring because of the potential for its having been habitable, at least in its past,” said Meyer.

Gale crater is dominated by a layered mountain rising some 5 km (3 mi) above the crater floor, readily apparent in the images above and below.

Topography of Gale Crater
Color coding in this image of Gale Crater on Mars represents differences in elevation. The vertical difference from a low point inside the landing ellipse for NASA's Curiosity Mars Science Laboratory (yellow dot) to a high point on the mountain inside the crater (red dot) is about 3 miles (5 kilometers). Credit: NASA

“Liquid water was not short term in the past on ancient Mars. It has a role in carving out channels and depositing sediments in the past within craters that were carried by the water,” said Bethany Ehlmann of NASA’s Jet Propulsion Laboratory in Pasadena, Calif, at the briefing.

“Clays and carbonates are minerals that form in the presence of liquid water. The presence of clays in particular indicate the long-term presence of water interacting with the rocks and causing alteration of minerals. Clays also have water in their chemical structure as hydrates.”

NASA is targeting a landing ellipse – 20 by 25 kilometers (12.4 miles by 15.5 miles) – located in the northern portion of Gale and visible in the foreground.

The landing site was selected from some 60 candidates by the science team and NASA because it features an alluvial fan likely formed by water-carried sediments containing the clay minerals and is highlighted in another image below.

The lower layers of the nearby mountain — within driving distance for Curiosity — contain clay minerals and sulfates indicating a wet history on ancient Mars.

“Gale Crater is about as big as the Los Angeles basin,” said MSL project scientist John Grotzinger of JPL and Caltech, at the briefing. The mountain in the middle is as high as Mt Whitney, the tallest mountain in the lower 48 US states.”

“Over the course of the mission me might be about to go to the top of the nearby mound. At the base of the mound we see strata that are composed of clays.

“In one location, we can drive the rover through all these successive different environments and sample these different periods in Martian history,” explained Grotzinger.

All systems are “GO” at this time and the weather outlook currently looks favorable for an on time liftoff of Curiosity atop an Atlas V rocket from Space Launch Complex 41.

Mars Science Laboratory Mission's Curiosity Rover (Stereo)
This stereoscopic anaglyph image was created from a left and right stereo pair of images of the Mars Science Laboratory mission's rover, Curiosity. The scene appears three dimensional when viewed through red-blue glasses with the red lens on the left. The image was taken May 26, 2011, in Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory in Pasadena, Calif. The mission is scheduled to launch during the period Nov. 26 to Dec. 18, 2011, and land the rover Curiosity on Mars in August 2012. Credit: NASA/JPL-Caltech

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning
NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

Curiosity Powered Up for Martian Voyage on Nov. 26 – Exclusive Message from Chief Engineer Rob Manning

Last View of Curiosity Mars Science Laboratory Rover before folding up for Martian Journey. The author visited with Curiosity inside the clean room at the Kennedy Space Center in the last day before she was folded up for the final time prior to encapsulation in the aeroshell for the long interplanetary journey to Mars. Credit: Ken Kremer. Meet Chief Engineer Rob Manning and other members of the Curiosity Mars Rover Engineering Team at NASA’s Jet Propulsion Laboratory in the video below titled - The Challenges of Getting to Mars. Read Rob Manning’s special greeting about Curiosity to readers of Universe Today - below

[/caption]

“We are ready and so is Curiosity !”

    • Says Rob Manning, Curiosity Chief Engineer at NASA’s Jet Propulsion Laboratory in Pasadena, Calif – in an exclusive interview with Universe Today for all fans of Curiosity and the unprecedented voyage of Science and Discovery about to take flight to Mars on November 26. Manning was also the Chief Engineer for the Entry, Descent and Landing (EDL) of NASA’s phenomenally successful Spirit, Opportunity and Phoenix Mars robotic explorers.

Read Rob Manning’s special greeting about Curiosity to readers of Universe Today below.

Meet Rob and other JPL Mars engineers in the cool Video describing the ‘Challanges of Getting to Mars’ – below


Curiosity is NASA’s next Mars rover and her MMRTG nuclear power source has been installed at the launch pad through special access panels in the Atlas booster payload fairing and protective aeroshell on Nov. 17.

The huge 1-ton robot is now due to blastoff for the Red Planet on Saturday, November 26 at 10: 02 a.m. EST from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida. The launch window is open for one hour and 43 minutes.

Liftoff was postponed by one day to replace a battery in the on board flight termination system required in case the rocket were to veer off course.

Here is the very latest Curiosty update status from JPL’s Rob Manning as of Sunday evening – Nov. 20

“All seems well here at JPL in Pasadena,” Manning told me.

“We are having our last rehearsal at 1:30 a.m. on Monday, Nov 21.

“Weird ! As of a few hours ago the last human hands (in gloves) closed out the hatch door on the entry aeroshell and the two large doors in the rocket fairing have been closed. What is weird about it is that finally finally she is powered up and alone.”

“She has never been this alone before. Ironically all eyes are still upon her. Our team is monitoring her vitals 24-7,” Manning explained.


“The Challenges of Getting to Mars’ – Video caption: Meet Curiosity Chief Engineer Rob Manning and more members of the Curiosity Mars Rover Engineering Team at NASA’s Jet Propulsion Laboratory explain the final assembly of Curiosity at the Kennedy Space Center and how Curiosity will land use the rocket assisted Sky Crane.

“By this time next week, Curiosity will be heading for the home she was meant for.”

“Soon she will feel the cold walls of deep space on her radiators. The x-band transmitter and receiver will have an broken view of the sky (with Earth but a shiny blue dot off to her left). The penetrating rays of the sun will push electrons out of the solar panels and keep her battery charged. (And perhaps a few solar flares will pass by, just to keep things interesting.)”

“Earth can be a rough place for a rover not designed for our planet. Worse are those of us who have poked and prodded, tested beyond spec and pushed in ways that can only be done on Earth.”

“Sometimes we over-do it and push near the breaking point. We are not perfect after all but we need to know that she will do what needs to be done for her very own survival. Well she seems to have survived us.”

“Of course Curiosity will never really be alone. We are right there with her every step of the way. She is us.”

Curiosity Mars Science Laboratory (MSL)- all elements assembled into flight configuration in the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center in Florida. The top portion is the cruise stage attached to the aeroshell (containing the compact car-sized rover) with the heat shield on the bottom. MMRTG power source was installed through hatch door at right.
Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 26 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: NASA/Glenn Benson

Atlas V rocket at Space Launch Complex 41 at Cape Canaveral, Florida. An Atlas V rocket similar to this one utilized in August 2011 for NASAS’s Juno Jupiter Orbiter will blast Curiosity to Mars on Nov. 26, 2011 from Florida. Credit: Ken Kremer

“I will be at JPL during launch,” said Manning.

The JPL team is also working day and night to insure that the do or die Mars Insertion burn fires as planned.

“Once the Deep Space Network acquires the signal, I want to be there to make sure that we did not fail her and that the transition from being the Atlas’s payload to interplanetary cruise is as painless as possible.”

“It will be a bit of a surprise if we did not have a bit of a surprise – but we are ready and so is Curiosity”

Curiosity and the Atlas V booster that will propel her to Mars will roll out to Launch Pad 41 at the Florida Space Coast on Friday morning, Nov. 24, the day after the Thanksgiving holiday.

NASA TV will carry the MSL launch live

After a 10 month interplanetary journey to Mars, Curiosity will plummet through the atmosphere and fire up the rocket powered descent stage and ‘Sky Crane’ to safely touchdown astride a layered mountain at the Gale Crater landing site in August 2012.

Curiosity has 10 science instruments to search for evidence about whether Mars has had environments favorable for microbial life, including the chemical ingredients for life. The unique rover will use a laser to look inside rocks and release the gasses so that its spectrometer can analyze and send the data back to Earth.

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 26 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

NASA’s Curiosity Set to Search for Signs of Martian Life
Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth

NASA’s Curiosity Set to Search for Signs of Martian Life

Curiosity at work firing a laser on Mars. This artist's concept depicts the rover Curiosity, of NASA's Mars Science Laboratory mission, as it uses its Chemistry and Camera (ChemCam) instrument to investigate the composition of a rock surface. ChemCam fires laser pulses at a target and views the resulting spark with a telescope and spectrometers to identify chemical elements. The laser is actually in an invisible infrared wavelength, but is shown here as visible red light for purposes of illustration. Credit: NASA

[/caption]

Nov 19 Update: MSL launch delayed 24 h to Nov. 26 – details later

In just 7 days, Earth’s most advanced robotic roving emissary will liftoff from Florida on a fantastic journey to the Red Planet and the search for extraterrestrial life will take a quantum leap forward. Scientists are thrilled that the noble endeavor of the rover Curiosity is finally at hand after seven years of painstaking work.

NASA’s Curiosity Mars Science Laboratory (MSL) rover is vastly more capable than any other roving vehicle ever sent to the surface of another celestial body. Mars is the most Earth-like planet in our Solar System and a prime target to investigate for the genesis of life beyond our home planet.

Curiosity is all buttoned up inside an aeroshell at a seaside launch pad atop an Atlas V rocket and final preparations are underway at the Florida Space Coast leading to a morning liftoff at 10:25 a.m. EST on Nov. 25, the day after the Thanksgiving holiday.

MSL is ready to go,” said Doug McCuistion, director of the Mars Exploration Program at NASA Headquarters in Washington, at a media briefing. “It’s a momentous occasion. We’re just thrilled that we’re at this point.”

“Curiosity is ‘Seeking the Signs of Life’, but is not a life detection mission. It is equipped with state-of-the-art science instruments.”

This oblique view of Gale Crater shows the landing site and the mound of layered rocks that NASA's Mars Science Laboratory will investigate. The landing site is in the smooth area in front of the mound. Image credit: NASA/JPL-Caltech/ASU/UA

“It’s not your father’s rover. It’s a 2000 pound machine that’s over 6 feet tall – truly a wonder of engineering,” McCuistion stated.

“Curiosity is the best of US imagination and US innovation. And we have partners from France, Canada, Germany, Russia and Spain.”

“Curiosity sits squarely in the middle of our two decade long strategic plan of Mars exploration and will bridge the gap scientifically and technically from the past decade to the next decade.”

Mars Science Laboratory builds upon the improved understanding about Mars gained from current and recent missions,” said McCuistion. “This mission advances technologies and science that will move us toward missions to return samples from and eventually send humans to Mars.”

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC. Credit: Ken Kremer

The car sized rover is due to arrive at Mars in August 2012 and land inside Gale Crater near the base of a towering and layered Martian mountain, some 5 kilometers (3 miles) high. Gale Crater is 154 km (96 mi) in diameter.

The landing site was chosen because it offers multiple locations with different types of geologic environments that are potentially habitable and may have preserved evidence about the development of microbial life, if it ever formed.

Gale Crater is believed to contain clays and hydrated minerals that formed in liquid water eons ago and over billions of years in time. Water is an essential prerequisite for the genesis of life as we know it.

NASA's most advanced mobile robotic laboratory, the Mars Science Laboratory carrying the Curiosity rover, is set to launch atop an Atlas V rocket at 10:25 a.m. EST on Nov. 25 on a mission to examine one of the most intriguing areas on Mars at Gale crater. Credit: NASA

The one ton robot is a behemoth, measuring 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as NASA’s prior set of twin rovers – Spirit and Opportunity.

Curiosity is equipped with a powerful array of 10 science instruments weighing 15 times as much as its predecessor’s science payloads. The rover can search for the ingredients of life including water and the organic molecules that we are all made of.

Curiosity will embark on a minimum two year expedition across the craters highly varied terrain, collecting and analyzing rock and soil samples in a way that’s never been done before beyond Earth.

Eventually our emissary will approach the foothills and climb the Martian mountain in search of hitherto untouched minerals and habitable environments that could potentially have supported life’s genesis.

With each science mission, NASA seeks to take a leap forward in capability and technology to vastly enhance the science return – not just to repeat past missions. MSL is no exception.

Watch a dramatic action packed animation of the landing and exploration here:

Curiosity was designed at the start to be vastly more capable than any prior surface robotic explorer, said Ashwin Vasavada, Curiosity’s Deputy Project Scientist at NASA’s Jet Propulsion Laboratory in Pasadena, Calif

“This is a Mars scientist’s dream machine.”

Therefore this mission uses new technologies to enable the landing of a heavier science payload and is inherently risky. The one ton weight is far too heavy to employ the air-bag cushioned touchdown system used for Spirit and Opportunity and will use a new landing method instead.

Curiosity will pioneer an unprecedented new precision landing technique as it dives through the Martian atmosphere named the “sky-crane”. In the final stages of touchdown, a rocket-powered descent stage will fire thusters to slow the descent and then lower the rover on a tether like a kind of sky-crane and then safely set Curiosity down onto the ground.

NASA has about three weeks to get Curiosity off the ground from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida before the planetary alignments change and the launch window to Mars closes for another 26 months.

“Preparations are on track for launching at our first opportunity,” said Pete Theisinger, MSL project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, Calif. “If weather or other factors prevent launching then, we have more opportunities through Dec. 18.”

Mars Science Laboratory Briefing. Doug McCuistion, Mars program director, left, Ashwin Vasavada, MSL deputy project scientist, and Pete Theisinger, MSL project manager, share a laugh during a news briefing, Nov. 10, 2011, at NASA Headquarters in Washington. Curiosity, NASA's most advanced mobile robotic laboratory, will examine one of the most intriguing areas on Mars. The Mars Science Laboratory (MSL) mission is set for launch from Florida's Space Coast on Nov. 25 and is scheduled to land on the Red Planet in August 2012 where it will examine the Gale Crater during a nearly two-year prime mission. Credit: NASA/Paul E. Alers

Complete Coverage of Curiosity – NASA’s Next Mars Rover launching 25 Nov. 2011

Read continuing features about Curiosity by Ken Kremer starting here:

Curiosity Rover Bolted to Atlas Rocket – In Search of Martian Microbial Habitats
Closing the Clamshell on a Martian Curiosity
Curiosity Buttoned Up for Martian Voyage in Search of Life’s Ingredients
Assembling Curiosity’s Rocket to Mars
Encapsulating Curiosity for Martian Flight Test
Dramatic New NASA Animation Depicts Next Mars Rover in Action

Awesome Action Animation Depicts Russia’s Bold Robot Retriever to Mars moon Phobos

Artist concept of Russia’s Phobos-Grunt spacecraft. Credit Roscosmos.

[/caption]

In less than 48 hours, Russia’s bold Phobos-Grunt mechanized probe will embark on a historic flight to haul humanities first ever soil samples back from the tiny Martian moon Phobos. Liftoff from the Baikonur Cosmodrome remains on target for November 9 (Nov 8 US 3:16 p.m. EDT).

For an exquisite view of every step of this first-of-its-kind robot retriever, watch this spectacular action packed animation (below) outlining the entire 3 year round trip voyage. The simulation was produced by Roscosmos, Russia’s Federal Space Agency and the famous IKI Space Research Institute. It’s set to cool music – so don’t’ worry, you don’t need to understand Russian.

Another video below shows the arrival and uncrating of the actual Phobos-Grunt spacecraft at Baikonur in October 2011.

The highly detailed animation begins with the blastoff of the Zenit booster rocket and swiftly progresses through Earth orbit departure, Phobos-Grunt Mars orbit insertion, deployment of the piggybacked Yinghuo-1 (YH-1) mini satellite from China, Phobos-Grunt scientific reconnaissance of Phobos and search for a safe landing site, radar guided propulsive landing, robotic arm manipulation and soil sample collection and analysis, sample transfer to the Earth return capsule and departure, plummeting through Earth’s atmosphere and Russian helicopter retrieval of the precious cargo carrier.


Video Caption: Every step of Russia’s Phobos-Grunt soil retrieval mission. Credit: Roscosmos/IKI


Video Caption: On October 21, the Phobos-Grunt spacecraft arrived at the Baikonur Cosmodrome and was uncrated and moved to assembly building 31 for fueling, final preflight processing and encapsulation in the nose cone. Credit: Roscosmos

Labeled Schematic of Phobos-Grunt and Yinghou-1 (YH-1) orbiter. Credit: Roskosmos

Read Ken’s continuing features about Phobos-Grunt upcoming Nov. 9 launch here:
Phobos-Grunt and Yinghuo-1 Encapsulated for Voyage to Mars and Phobos
Phobos and Jupiter Conjunction in 3 D and Amazing Animation – Blastoff to Martian Moon near
Russia Fuels Phobos-Grunt and sets Mars Launch for November 9
Phobos-Grunt and Yinghou-1 Arrive at Baikonur Launch Site to tight Mars Deadline
Phobos-Grunt: The Mission Poster
Daring Russian Sample Return mission to Martian Moon Phobos aims for November Liftoff