Asteroid’s Unusual Light and Dark Crater

[/caption]

Light and dark material spreads outward from a 5-km-wide crater on Vesta in this image from NASA’s Dawn spacecraft, acquired on October 22, 2011. While craters with differently-toned materials have been previously seen on the asteroid, it is unusual to find one with such a large amount of ejecta of different albedos.

This is a crop of a larger version which was released today on the Dawn website.

This brightness image was taken through the clear filter of Dawn’s framing camera. The distance to the surface of Vesta is 700 kilometers (435 miles) and the image has a resolution of about 70 meters (230 feet) per pixel.

Orbit map: Where is Dawn now?

Vesta resides in the main asteroid belt between the orbits of Mars and Jupiter and is thought to be the source of many of the meteorites that fall to Earth. The Dawn spacecraft successfully entered orbit around Vesta on July 16, 2011.

After its investigation of Vesta, Dawn will leave orbit and move on to Ceres. It will become the first spacecraft to orbit two different worlds.

Image Credit: NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA

More “Hollowed Ground” on Mercury

[/caption]

The latest featured image from NASA’s MESSENGER spacecraft, soon to complete its first year in orbit around Mercury, shows the central peak of the 78-mile (138-km) – wide crater Eminescu surrounded by more of those brightly-colored surface features dubbed “hollows”. Actually tinted a light blue color, hollows may be signs of an erosion process unique to Mercury because of its composition and close proximity to the Sun.

First noted in September of last year, hollows have now been identified in many areas across Mercury. They showed up in previous images as only bright spots, but once MESSENGER established orbit in March of 2011 and began high-resolution imaging of Mercury’s surface it became clear that these features were something totally new.

The lack of craters within hollows seems to indicate that they are relatively young features. In fact, they may be part of a process that continues even now.

“Analysis of the images and estimates of the rate at which the hollows may be growing led to the conclusion that they could be actively forming today,” said David Blewett of the Johns Hopkins University Applied Physics Laboratory (APL).

One hypothesis is that the hollows are formed by the sublimation of subsurface material exposed during the creation of craters, around which they are most commonly seen. Being so close to the Sun (29 million miles/46 million km at closest) and lacking a protective atmosphere like Earth’s, Mercury is constantly being scoured by the powerful solar wind. This relentless stream of charged particles may literally be “sandblasting” exposed volatile materials off the planet’s surface!

The image above shows an area approximately 41 miles (66 km) across. It has been rotated to enhance perspective; see the original image and caption here.

Image: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

What Lies Beneath

[/caption]

What would make a great home for a giant Martian ant lion? I’d have to say this pit, imaged by the HiRISE camera aboard the Mars Reconnaissance Orbiter!

Earlier this year a crater was spotted with a dark spot at its center. When the team took a closer look with the high-resolution camera they saw that the spot is actually a 35-meter (115-foot) -wide skylight that opens into an underground cavern. The cavern is most likely a section of an empty lava tube, leftovers from ancient Martian volcanic activity.

Detail of the skylight

Based on the shadows it’s estimated that the pit is about 20 meters (65 feet) deep. But, how much of that is material piled up on the floor of the cavern from the surrounding crater itself? And what caused the crater to form in the first place? These are questions that remain to be answered.

The HiRISE image itself is false-color, the hues denoting the texture and composition of the surface material and not the actual color as would be seen in visible light.

As far as a giant Martian ant lion… well, unless there are some giant Martian ants around for it to snack on, I’m going to assume there’s nobody home!

Image credit: NASA / JPL / University of Arizona.

Messages from Mercury

[/caption]

It’s been just over two months since the MESSENGER spacecraft successfully entered orbit around Mercury, back on March 18, and it’s been enthusiastically returning image after image of our solar system’s innermost planet at a unprecedented rate. Which, of course, is just fine with us!

The image above shows Mercury’s southern hemisphere and the bright rays of the 50-km-wide crater Han Kan. It was acquired on May 17, 2011.

Below are more recent images from MESSENGER… some of which show regions and features that have never previously been mapped – or even named!

Unnamed double peak-ring basin. Acquired May 13.
Detail of the mountains that make up the rim of Caloris Basin. Acquired May 5.
Narrow-angle camera view of the 100-km-wide Atget crater. Acquired May 10.
Color map of Mercury's surface. The bright crater is Snorri (21km wide). Acquired April 15.

Click on the images to see more detail on the MESSENGER mission site.

MESSENGER’s orbit about Mercury is highly elliptical, taking it 200 kilometers (124 miles) above its northern surface at the closest pass and 15,193 kilometers (9,420 miles) away from the south pole at furthest. Check out this video showing an animation of how a typical MESSENGER orbit would be executed.

Image credits: Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington.

The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft’s seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System’s innermost planet. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER’s science goals.

More Evidence of Liquid Erosion on Mars?

 

[/caption]

Terby Crater, a 170-km-wide (100-mile-wide) crater located on the northern edge of the vast Hellas Planitia basin in Mars’ southern hemisphere, is edged by variable-toned layers of sedimentary rock – possibly laid down over millennia of submersion beneath standing water. This image (false-color) from the HiRISE camera aboard the Mars Reconnaissance Orbiter shows a portion of Terby’s northern wall with what clearly looks like liquid-formed gullies slicing through the rock layers, branching from the upper levels into a main channel that flows downward, depositing a fan of material at the wall’s base.

But, looks can be deceiving…

 

Terby Crater. Credit: NASA/JPL/University of Arizona

Dry processes – especially on Mars, where large regions have been bone-dry for many millions of years – can often create the same effects on the landscape as those caused by running water. Windblown Martian sand and repetitive dry landslides can etch rock in much the same way as liquid water, given enough time. But the feature seen above in Terby seem to planetary scientists to be most likely the result of liquid erosion… especially considering that the sedimentary layers themselves seem to contain clay materials, which only form in the presence of liquid water. Is it possible that some water existed beneath Mars’ surface long after the planet’s surface dried out? Or that it’s still there? Only future exploration will tell for sure.

“While formation by liquid water is one of the proposed mechanisms for gully formation on Mars, there are others, such as gravity-driven mass-wasting (like a landslide) that don’t require the presence of liquid water. This is still an open question that scientists are actively pursuing.”

– Nicole Baugh, HiRISE Targeting Specialist

Terby Crater was once on the short list of potential landing sites for the new Mars Science Laboratory (aka Curiosity) rover but has since been removed from consideration. Still, it may one day be visited by a future robotic mission and have its gullies further explored from ground level.

Click here to see the original image on the HiRISE site.

Image credit: NASA / JPL / University of Arizona

Look Inside a Lunar Crater

[/caption]

The crater shown above is located in the lunar highlands and is filled with and surrounded by boulders of all sizes and shapes. It is approximately 550 meters (1800 feet) wide yet is still considered a small crater, and could have been caused by either a direct impact by a meteorite or by an ejected bit of material from another impact. Scientists studying the Moon attempt to figure out how small craters like this were formed by their shapes and the material seen around them…although sometimes the same results can be achieved by different events.

For example, when an object from space strikes the Moon, it is typically traveling around 20 km per second (12 miles/sec). If the impact site happens to have a very hard subsurface, it can make a crater with scattered bouldery chunks composed of the hard material around it. But, if a large piece of ejected material from another impact were to strike the lunar surface at a much slower speed, as ejecta typically do (since they travel slower than incoming space debris and the Moon’s escape velocity is fairly low, meaning any ejecta that does fall back to the surface must be traveling slower than 2.38 km/s,) then the ejected chunk could break apart on impact and scatter boulders of itself around the crater…regardless of subsurface composition.

Really the only way to tell for sure which scenario has taken place around a given crater – such as the one above – is to collect and return samples from the site so they can be tested. (Of course that’s much easier said than done!)

You can read more about this image on Arizona State University’s Lunar Reconnaissance Orbiter Camera site here.

And as an added treat, take a look deep into the shadows of the crater’s interior below…I tweaked the image curves in Photoshop to wrestle some of the details out of there!

 

Brightening the shadowed area reveals details of the crater floor...and even more boulders!

Image credit: NASA/GSFC/Arizona State University. (Edited by J. Major.)

P.S.: Want to see both image versions combined? Click here. (Thanks to Mike C. for the suggestion!)

After Loss of Lunar Orbiter, India Looks to Mars Mission

India Moon Mission

[/caption]
After giving up on re-establishing contact with the Chandrayaan-1 lunar orbiter, Indian Space Research Organization (ISRO) Chairman G. Madhavan Nair announced the space agency hopes to launch its first mission to Mars sometime between 2013 and 2015. Nair said the termination of Chandrayaan-1, although sad, is not a setback and India will move ahead with its plans for the Chandrayaan-2 mission to land an unmanned rover on the moon’s surface to prospect for chemicals, and in four to six years launch a robotic mission to Mars.


“We have given a call for proposal to different scientific communities,” Nair told reporters. “Depending on the type of experiments they propose, we will be able to plan the mission. The mission is at conceptual stage and will be taken up after Chandrayaan-2.”

On the decision to quickly pull the plug on Chandrayaan-1, Nair said, “There was no possibility of retrieving it. (But) it was a great success. We could collect a large volume of data, including more than 70,000 images of the moon. In that sense, 95 percent of the objective was completed.”

Contact with Chandrayaan-1 may have been lost because its antenna rotated out of direct contact with Earth, ISRO officials said. Earlier this year, the spacecraft lost both its primary and back-up star sensors, which use the positions of stars to orient the spacecraft.

The loss of Chandrayaan-1 comes less than a week after the spacecraft’s orbit was adjusted to team up with NASA’s Lunar Reconnaissance Orbiter for a Bi-static radar experiment. During the maneuver, Chandrayaan-1 fired its radar beam into Erlanger Crater on the moon’s north pole. Both spacecraft listened for echoes that might indicate the presence of water ice – a precious resource for future lunar explorers. The results of that experiment have not yet been released.

Chandrayaan-1 craft was designed to orbit the moon for two years, but lasted 315 days. It will take about 1,000 days until it crashes to the lunar surface and is being tracked by the U.S. and Russia, ISRO said.

The Chandrayaan I had 11 payloads, including a terrain-mapping camera designed to create a three-dimensional atlas of the moon. It is also carrying mapping instruments for the European Space Agency, radiation-measuring equipment for the Bulgarian Academy of Sciences and two devices for NASA, including the radar instrument to assess mineral composition and look for ice deposits. India launched its first rocket in 1963 and first satellite in 1975. The country’s satellite program is one of the largest communication systems in the world.

Sources: New Scientist, Xinhuanet