NASA Explains: The Difference Between CMEs and Solar Flares

This is a question we are often asked: what is the difference between a coronal mass ejection (CME) and a solar flare? We discussed it in a recent astrophoto post, but today NASA put out a video with amazing graphics that explains it — and visualizes it — extremely well.

“CMEs and solar flares are both explosions that occur on the Sun,” the folks at NASA’s Goddard Spaceflight Center’s Scientific Visualization Studio explain. “Sometimes they occur together, but they are not the same thing.”

CMEs are giant clouds of particles from the Sun hurled out into space, while flares are flashes of light — occurring in various wavelengths — on the Sun.

You can find even more details from NASA here.

Blast! Sun Pops Off A Moderate Solar Flare. Could Others Follow Soon?

With a watchful NASA spacecraft capturing its moves, the Sun sent off a “mid-level” solar flare on Tuesday (July 8) that you can watch (over and over again) in the video above. The Solar Dynamics Observatory caught the explosion around 12:20 p.m. EDT (4:20 p.m. UTC), which led into a coronal mass ejection that sent a surge of solar material into space.

Solar flares can be disruptive to Earth communications and also cause auroras in the atmosphere. In this case, the M6 solar flare created “short-lived impacts to high frequency radio communications on the sunlit side of Earth … as a result,” wrote the National Oceanic and Atmospheric Administration in a forecast July 8.

In this case, however, the coronal mass ejection (seen by the Solar Dynamics Observatory) is not expected to hit Earth. But with the Sun around its maximum of solar activity in the 11-year cycle, other eruptions could head into space in the coming days. M is considered a moderate flare and X the strongest kind.

“Solar activity is low, but the quiet is unlikely to persist,” wrote SpaceWeather.com in an update published today (July 10). “There are three sunspots with unstable magnetic fields capable of strong eruptions: AR2108, AR2109, AR2113. NOAA forecasters estimate a 75% chance of M-flares and 15% chance of X-flares on July 10th.”

This flare caused a surge in shortwave activity that you can hear in this audio file, recorded by New Mexico amateur astronomer Thomas Ashcraft. “Radio bursts such as these are sparked by shock waves moving through the sun’s atmosphere,” SpaceWeather added. “Set in motion by flares, these shock waves excite plasma instabilitties that emit static-y radio waves.”

Aurora Alert: Powerful Solar Flare This Weekend Could Spark Show Tomorrow

If you sit at a fairly high latitude, you may want to keep an eye out your window Tuesday (April 1) and Wednesday. A powerful X-1 class flare erupted from the sun on Saturday (March 29), sparking an active space weather forecast from the National Oceanic and Atmospheric Administration.

The solar flare erupted from sunspot AR2017 and happened to be aimed at the right direction to bring material to Earth. The associated coronal mass ejections (CMEs) will send streams of particles towards our planet, which could get pulled towards the poles and cause light shows as they interact with molecules in the upper atmosphere.

“NOAA forecasters estimate a 35 percent to 60 percent chance of polar geomagnetic storms on April 1-2 when at least three CMEs are expected to deliver glancing blows to Earth’s magnetic field,” SpaceWeather.com wrote. “The best-guess forecast calls for minor G1-class storms. High-latitude sky watchers should be alert for auroras.”

Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.
Aurora seen near Fairbanks, Alaska on March 21, 2014. Credit and copyright: John Chumack.

At the top of this story, you can view a video of the flare from the Solar Dynamics Observatory, a NASA satellite launched in 2010 to observe the sun’s activity. This not only has applications for aurora watchers, but also for those people concerned about the effect CMEs have on Earth’s satellites, power lines and other sensitive infrastructure.

Below is an older picture from the Solar and Heliospheric Observatory, a joint NASA and European Space Agency mission that also keeps an eye on solar activity. The sun has an 11-year cycle of solar activity, and you can see peak year 2001 at the front of the image along with quieter years 1996 and 2006 near the back. The year 2014 is just off the peak for this solar cycle.

If you catch a light show, be sure to post it on the Universe Today Flickr pool, and we may include it in a future story!

A solar cycle in X-rays. The peak in 2001 is visible at the front, with quietest years 1996 and 2006 near the back. The sun's 11-year-solar cycle sees an increase in sunspots and solar activity at its peak. The year 2014 is close to the peak year for activity, but the cycle has been more muted than the 2001 cycle. Credit: Steele Hill, SOHO, NASA/ESA
A solar cycle in X-rays. The peak in 2001 is visible at the front, with quietest years 1996 and 2006 near the back. The sun’s 11-year-solar cycle sees an increase in sunspots and solar activity at its peak. The year 2014 is close to the peak year for activity, but the cycle has been more muted than the 2001 cycle. Credit: Steele Hill, SOHO, NASA/ESA

Overnight Aurora Sets Sky On Fire, More Possible Tonight

I’m writing this at 1:30 a.m. running on what’s powering the sky over northern Minnesota right now – auroral energy. Even at this hour, rays are still sprouting in the southern sky and the entire north is milky blue-white with aurora borealis. Frankly, it’s almost impossible to resist going out again for another look.

Now updated with additional images.

An erupting filament and sharp, southward turn in the interplanetary magnetic field (IMF) was responsible for last night's northern lights show. This image was taken with the Solar and Heliospheric Observatory sun-blocking coronagraph in progress on Sept. 30. Credit: NASA/ESA
An erupting filament and sharp, southward dip in the interplanetary magnetic field (IMF) was responsible for last night’s northern lights show. This image was taken with the Solar and Heliospheric Observatory’s sun-blocking coronagraph on Sept. 30. Credit: NASA/ESA

The arrival of a powerful solar wind in excess of 375 miles per second (600 km/second) from a coronal mass ejection shocked the Earth’s magnetic sheath last night beginning around 9 p.m. CDT. The sun’s magnetic field, embedded in the wind, pointed sharply southward, allowing eager electrons and protons to worm their way past our magnetic defenses and excite the atoms in the upper atmosphere to glow. Voila! Northern lights.

A classic quiet start to Tuesday night's northern lights - a low green arc below the Big Dipper topped by a very faint red border. Credit: Bob King
A classic quiet start to Tuesday night’s northern lights – a low green arc below the Big Dipper topped by a very faint red border. Credit: Bob King

Sure, it started innocently enough. A little glow low in the northern sky. But within half an hour the aurora had intensified into a dense bar of light so and green and bright it cast shadows. This bar or swath grew and grew like some atomic amoeba until it swelled beyond the zenith into the southern sky. Meanwhile, an isolated patch of aurora glowed like an green ember beneath the Pleiades in the northeastern sky. The camera captured its eerie appearance as well as spectacular curtains of red aurora dancing above the dipper-shaped cluster.

A single patch of aurora glows beneath the Pleiades star cluster at center. Beautiful red rays as seen in the time exposure were only faintly visible with the naked eye. Credit: Bob King
A single patch of aurora glows beneath the Pleiades star cluster at center. Beautiful red rays as seen in the time exposure were only faintly visible with the naked eye. Credit: Bob King

Soft patches, oval glows and multiple arcs lit up the north, east and west, but in the first two hours of the display I never saw a ray or feature with any definition. The camera recorded a few but all was diffuse and pillowy to the eye. Rays finally made their appearance later – after midnight and later – when they massed and surged to the zenith and beyond.

A thick wall of green aurora surges upward in the northern sky headed for the zenith. Credit: Bob King
Looks a little scary. A thick wall of green aurora surges upward in the northern sky headed for the zenith. Credit: Bob King

Then came the flickering, flame-like patches and snaky shapes writhing lifelike across the constellation Pegasus during the phase called the coronal aurora. That’s when all the curtains and rays gather around the local magnetic zenith. As they flicker and flame, their shapes transform into eagle wings and snakes wriggling across the stars.

A large comet-like auroral form topped with red rays took up residence in the southeastern sky in Cetus around 10:30 p.m. last night. Credit: Bob King
A large comet-like auroral form accented with red rays took up residence in the southeastern sky in Cetus from about 10:15 until 11 p.m. last night. around 10:30 p.m. Credit: Bob King

Funny, the space weather forecast called for quiet conditions last night and for the next two nights. But the eruption of a large filament, a tubelike region of dense hydrogen gas held aloft in the sun’s atmosphere by magnetic fields, sent a bundle of subatomic joy in Earth’s direction a bit earlier than expected. More auroras are possible tonight and tomorrow night as the effect of the shock wave continues. Despite the U.S. government shutdown, the Space Weather Prediction Center remains open.

There are so many ways to appreciate the aurora but my favorite is simply to stand there dumbfounded and try to take it all in. Few phenomena in nature are more deeply moving.

Opposite Cetus in the Aquila Milky Way, a huge ghostly patch resembling breath on a mirror lingered for some 20 minutes before fading away. Credit: Bob King
Opposite Cetus in the Aquila Milky Way, a huge ghostly patch resembling breath on a mirror lingered for some 20 minutes before fading away. Credit: Bob King
This comet-like wisp next to Alpha Andromeda east of the Square of Pegasus appeared to flutter in the wind as it constantly dimmed, brightened and shape-shifted. Credit: Bob King
This comet-like wisp next to Alpha Andromeda east of the Square of Pegasus appeared to flutter in the wind as it constantly dimmed, brightened and shape-shifted. Click photo to learn more about when to expect the next auroral display. Credit: Bob King
Finally - a mighty show of rays around 3 a.m. this morning. What you don't see in the photo  are the rhythmic pulsations fluttering through the entire display, a phenomenon known as "flaming". Credit: Bob King
Finally – a mighty show of rays around 3 a.m. this morning. What you don’t see in the photo are the rhythmic pulsations fluttering through the entire display, a phenomenon known as “flaming”. Credit: Bob King

 

Magnetic and auroral activity indicators shot up to high levels last night and this morning. Left image from the POES satellite shows the extent of the auroral oval shortly after midnight CDT. At right, the Kp index shot up to 6 - a G2 or moderate geomagnetic storm - by the early morning. Click to see the current oval. Credit: NOAA
Magnetic and auroral activity indicators shot up to high levels last night and this morning. Left image from the POES satellite shows the extent of the auroral oval shortly after midnight CDT. At right, the Kp index shot up to 6 – a G2 or moderate geomagnetic storm – by the early morning. Click to see the current oval. Credit: NOAA

UPDATE: Other astrophotographers in the US also were able to capture some aurora images. John Chumack, whose images we frequently feature here on UT got this shot early on the morning of October 2:

Aurora Borealis, 'The Northern Lights, as seen near Dayton, Ohio on October 2, 2013. Credit and copyright: John Chumack/Galactic Images.
Aurora Borealis, ‘The Northern Lights, as seen near Dayton, Ohio on October 2, 2013. Credit and copyright: John Chumack/Galactic Images.

And Alan Dyer in Canada got this amazing “fiery” shot:

A red and green aurora, from southern Alberta, Canada on Oct 1, 2013. Credit and copyright: Alan Dyer/Amazing Sky Photography.
A red and green aurora, from southern Alberta, Canada on Oct 1, 2013. Credit and copyright: Alan Dyer/Amazing Sky Photography.

This timelapse from Arthur, Ontario was shot on Oct. 2 as well:

These Are Really, Really Big Sunspots Facing Earth Right Now

Do you feel like you’re in the firing gallery? These sunspots are practically square-on to Earth right now. Although they haven’t shown much sign of erupting, if they did our planet would be right in the line of fire if a flare or stream of solar particles erupted.

These groups (known as 1785 and 1787) are so big that they are easily visible in amateur telescopes. 1785 alone is more than 11 Earth-diameters across, according to SpaceWeather.com! Just make sure you have the proper solar filters in place before you gaze at these dark smudges.

A black-and-white view of the string of sunspots facing Earth right now. Credit: Paul M. Hutchinson
A black-and-white view of the string of sunspots facing Earth right now. Credit: Paul M. Hutchinson

“Sunspots” — so called because they appear as dark smudges on the face of the sun — are areas of intense magnetic activity on the sun (thousands of times stronger than that of Earth’s magnetic field.)

At times, these regions can get so intense that the energy builds up and releases in the form of a flare and/or a coronal mass ejection — a burst of gas and magnetism that hurls solar material away from the sun.

If these flares hit the area of the Earth, a bunch of things can happen. Particles can flow along Earth’s magnetic lines and lead to the creation of aurora, or Northern/Southern lights. (Here’s an aurora that happened in June.) More severe storms can short out satellites or disable power lines.

“Could it be the calm before the storm?” SpaceWeather.com asked on its homepage, before giving forecasts of strong types of flares: “NOAA forecasters estimate a 55% chance of M-flares and a 10% chance of X-flares on July 8.”

The question has more pertinence given that 2013 is supposed to be the peak of the current 11-year sunspot cycle, but so far it’s been quieter than astronomers expected. Scientists are still trying to figure out how the cycle works.

We’ll keep our eyes peeled and let you know if something interesting happens. In the meantime, these pictures came from Universe Today readers, and we’d love to see your images, too! Feel free to add your snapshots to our Flickr page.

Update, 2:39 EDT: Among the pictures in our Flickr pool is this new stunner below from Ron Cottrell of Oro Valley, Arizona. “These sunspots are so magnificent that I get striking detail with my small 40mm Hydrogen-alpha telescope,” he wrote us.

A large sunspot group taken in July 2013 with a 40mm Hydrogen-alpha telescope. Credit: Ron Cottrell
A large sunspot group taken in July 2013 with a 40mm Hydrogen-alpha telescope. Credit: Ron Cottrell

Update, 2:50 p.m. EDT: On Twitter, Daniel Fischer pointed out that the sunspot group is even visible using a simple camera and eclipse glasses.

The sunspot group visible using a simple camera and eclipse glasses. Credit: Daniel Fischer
The July 2013 sunspot group visible using a simple camera and eclipse glasses. Credit: Daniel Fischer

Solar Storm Blasting to Mars Shuts Down Curiosity – 1st Rocky Sample Results on tap

Due to a fast approaching solar storm, NASA has temporarily shut down surface operations of the Curiosity Mars Science Lab (MSL) rover.

NASA took the precautionary measure because ‘a big coronal mass ejection’ was predicted to hit Mars over the next few days starting March 7, or Martian Sol 207 of the mission, researchers said.

The rover team wants to avoid a repeat of the computer memory glitch that afflicted Curiosity last week, and caused the rover to enter a protective ‘safe mode’.

“The rover was commanded to go to sleep,” says science team member Ken Herkenhoff of the US Geological Survey (USGS).

“Space weather can by nasty!”

This is the 2nd shutdown of the 1 ton robot in a week. Curiosity had just been returned to active status over the weekend.

A full resumption of science operations had been anticipated for next week, but is now on hold pending the outcome of effects from the solar storm explosions.

“We are making good progress in the recovery,” said Mars Science Laboratory Project Manager Richard Cook, of NASA’s Jet Propulsion Laboratory, prior to the new solar flare.

“Storm’s a-comin’! There’s a solar storm heading for Mars. I’m going back to sleep to weather it out,” tweeted Curiosity.

Solar flares cause intense bursts of radiation that can damage spacecraft and also harm space faring astronauts, and require the installation of radiation shielding and hardening on space based assets.

Since Mars lacks a magnetic field, the surface is virtually unprotected from constant bombardment by radiation.

NASA’s other spacecraft exploring Mars were unaffected by the solar eruptions – including the long lived Opportunity rover and the orbiters; Mars Odyssey & Mars Reconnaissance Orbiter.

Curiosity has been in the midst of analyzing the historic 1st samples of gray rocky powder ever cored from the interior of a Martian rock about a month ago.

Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSS Read more: http://www.universetoday.com/99911/historic-mars-rock-drilling-sample-set-for-analysis-by-curiosity-robot-in-search-of-organics/#ixzz2Mu1y6Fpr
Curiosity’s First Sample Drilling hole is shown at the center of this image in a rock called “John Klein” on Feb. 8, 2013, or Sol 182 operations. The image was obtained by Curiosity’s Mars Hand Lens Imager (MAHLI). The sample-collection hole is 0.63 inch (1.6 centimeters) in diameter and 2.5 inches (6.4 centimeters) deep. The “mini drill” test hole near it is the same diameter, with a depth of 0.8 inch (2 centimeters). Credit: NASA/JPL-Caltech/MSSSCuriosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo Curiosity accomplished Historic 1st drilling into Martian rock at John Klein outcrop on Feb 8, 2013 (Sol 182), shown in this context mosaic view of the Yellowknife Bay basin taken on Jan. 26 (Sol 169) where the robot is currently working. The robotic arm is pressing down on the surface at John Klein outcrop of veined hydrated minerals – dramatically back dropped with her ultimate destination; Mount Sharp. Credit: NASA/JPL-Caltech/Ken Kremer/Marco Di Lorenzo

Eventually, the six-wheeled mega rover will set off on a nearly year long trek to her main destination – the sedimentary layers of the lower reaches of the 3 mile (5 km) high mountain named Mount Sharp – some 6 miles (10 km) away.

So far Curiosity has snapped over 48,000 images and traveled nearly 0.5 miles.

Curiosity’s goal is to assess whether the Gale Crater area on Mars ever offered a habitable zone conducive for Martian microbial life, past or present.

Ken Kremer

Amateur Captures Coronal Mass Ejection

Full DisK H-Alpha Solar Image on October 13, 2011 - Credit: Joe Brimacombe

While you can’t exactly call Joe Brimacombe an amateur astrophotographer, he’s managed to capture an elusive solar event on film… a coronal mass ejection!

A huge, conical-shaped magnetic prominence had been lingering for days and calling attention to itself. On the morning of October 13, 2011 – it delivered.

According to SpaceWeather, much of the prominence fell back to the solar surface, but some of the structure did fly into space, producing a coronal mass ejection. SOHO coronagraphs of the CME show that it is propagating up and out of the plane of the solar system and chances are good that no planet will be hit by the expanding cloud.

But that’s professional instruments! Imagine the excitement between 0200 and 0345 UT at Coral Towers Observatory when Joe was using either a Takahashi Sky 90 or Astrophysics 130 telescope to capture the action! Both telescopes operate at a focal ratio of F/5 and he was using a Coronado Solar Filter and various Skynyx cameras.

Doing what space telescopes do!

Many thanks to Joe Brimacombe for sharing his work – and passion – with us!