Former Space Shuttle Manager Mike Moses Joins Virgin Galactic

Shuttle Program Integration Manager Mike Moses. Image: Nancy Atkinson

[/caption]

One of the most respected members of NASA’s space shuttle program has joined Virgin Galactic as the commercial space company’s Vice President of Operations. Mike Moses, NASA’s former Space Shuttle Launch Integration Manager, will oversee the planning and execution of all operations at Virgin Galactic’s headquarters at Spaceport America in New Mexico. In a press release, the company said Moses will develop and lead the team responsible for Virgin Galactic spaceship operations and logistics, flight crew operations, customer training, and spaceport ground operations, with overall operational safety and risk management as the primary focus.

“I am extremely excited to be joining Virgin Galactic at this time,” Moses said, “helping to forge the foundations that will enable routine commercial suborbital spaceflights. Virgin Galactic will expand the legacy of human spaceflight beyond traditional government programs into the world’s first privately funded commercial spaceline.”

Moses talked with Irene Klotz at Reuters and said he thinks the direction NASA is taking is good, but he wants to be where the action is.

“I’m more than onboard with NASA’s plan,” Moses told Reuters. “It’s just that the operations of that system were still eight to 10 years away. I couldn’t just push paper around and write requirements for the next 10 years so I’m going to take another shot at it here in the commercial sector.”

Moses served as the Launch Integration Manager from 2008 until the landing of the final Shuttle mission in July 2011. He was responsible for supervising all Space Shuttle processing activities from landing through launch, and for reviewing major milestones including final readiness for flight.

Moses was part of the team that made regular appearances at launch briefings at Kennedy Space Center and was a media favorite for his no-nonsense, but congenial and sometimes humorous answers to questions. Along with Shuttle Launch Director Mike Leinbach, “The Two Mikes” were responsible for providing ultimate launch decision authority during the final years of the space shuttle program.

Moses also served as chair of the Mission Management Team, making decisions for the final 12 space shuttle flights, and directly overseeing the safe and successful flights of 75 astronauts.

“Bringing Mike in to lead the team represents a significant investment in our commitment to operational safety and success as we prepare to launch commercial operations,” said Virgin Galactic President and CEO George Whitesides. “His experience and track record in all facets of spaceflight operations are truly unique. His forward-thinking perspective to bring the hard-won lessons of human spaceflight into our operations will benefit us tremendously.”

Prior to his most recent NASA role, Moses served as a Flight Director at the NASA Johnson Space Center where he led teams of flight controllers in the planning, training and execution of all aspects of space shuttle missions. Before being selected as a Flight Director in 2005, Moses had over 10 years experience as a flight controller in the Shuttle Propulsion and Electrical Systems Groups.

Sources: Virgin Galactic, Reuters

SpaceX Pushes for Mission to Space Station on Next Flight

A concept drawing of the Dragon spacecraft approaching the ISS. Credit: SpaceX

[/caption]

NASA and SpaceX have “technically” agreed to allow the Dragon capsule to dock with the International Space Station this fall, according to SpaceX’s Twitter feed. The Dragon capsule is currently – and tentatively — scheduled to launch aboard a Falcon 9 rocket on November 30, and berth with the ISS 9 days later. Originally, the Dragon was scheduled to just rendezvous and station-keep with the space station on this second flight for Dragon and then dock on a subsequent flight. But after the successful test flight for the first Dragon capsule in Dec. 2010, SpaceX asked NASA to combine the two missions.


“We technically have agreed with SpaceX that we want to combine those flights,” said William Gerstenmaier, NASA’s associate administrator for space operations, speaking at the post-launch press conference for the STS-135 final shuttle mission. “We are doing all the planning to go ahead and have those missions combined, but we haven’t given them formal approval yet.

With today’s Twitter post from SpaceX, it appears things are moving in the direction of making the move official.

SpaceX’s flights are part of NASA’s COTS (Commercial Orbital Transfer Service) program, and by allowing SpaceX to dock with the ISS sooner rather than later would combine COTS II and III flights.

Will Dragon be doing any official cargo transfer? A NASA experiment called Materials International Space Station Experiments (MISSE) #8 has a reservation with SpaceX to fly back to Earth on a Dragon capsule.
MISSE is a brief-case sized experiment that tests all sorts of materials like polymers and other composites and coatings, along with hardware such as switches, sensors and mirrors, exposing them to the vacuum of space. The experiment is attached to the outside of the ISS and opened to expose the materials.

To dock with the ISS, the Dragon capsule would need to be equipped with solar arrays and other equipment on board the spacecraft would need to be upgraded from the configuration Dragon had for the Dec. 2010 test flight.

Sources: SpaceX Twitter, AL.com

Copenhagen Suborbitals Upcoming Launch Attempt in June

Kristian Von Bengtson checks the cockpit before the launch dummy is loaded. Photo credit: Bo Tornvig, Copenhagen Suborbitals.

[/caption]

Copenhagen Suborbitals hopes to launch the world’s first amateur-built rocket for human space travel and have announced an upcoming launch window for their Tycho Brahe capsule. The window extends from June 1-14, 2011 and they are currently shooting for Thursday, June 2 for an unmanned suborbital test flight, according the their website. The group is headed by Kristian von Bengtson and Peter Madsen, and their HEAT 1-X rocket is being prepared for launch from a steel catamaran in the Baltic Sea off the coast of Denmark.

If all goes well with this test flight, Madsen hopes to be inside the capsule himself for a manned flight in the near future.

The company, which is funded by donations, is working towards launching tourists on suborbital flights in the single-seat capsule to altitudes above 100 kilometers (62.5 miles).

And talk about a wild ride : the Tycho Brahe capsule will provide a single passenger capsule with a full view through a polymer plexiglas-dome so that the person can see and experience the entire ballistic ride. It has a pressurized volume providing support for one upright standing/half-sitting person. It will also have additional pressurized space, around and behind the astronaut, available for several other systems necessary for the flight procedure, and to support additional scientific and commercial project.

The flight trajectory for the HEAT rocket. Credit: Copenhagen Suborbitals.

No specific launch time has been announced, so check their website for more updated information. There will also be live coverage and launch parties in Denmark.

Check these links for possible online coverage:

Live internet coverage: www.ing.dk/live
and http://maylaunch.dotsquare.dk/

Copenhagen Suborbitals were hoping to launch their first test flight last summer, but ran into problems with their rocket.

UK and European Space Agencies Give a Go For Skylon Spaceplane

An artist's conception of Reaction Engines' Skylon spacecraft. Credit: Reaction Engines

After 30 years of development, the UK and European space agencies have given a go for the Skylon Spaceplane.

The Skylon, which is being developed at the Oxfordshire-based Reaction Engines in the UK, is an unpiloted and reusable spacecraft that can launch into Low Earth Orbit after taking off from a conventional runway.

Looking like something out of Star Wars, Skylon is a self contained, single stage, all in one reusable space vehicle. There are no expensive booster rockets, external fuel tanks or huge launch facilities needed.

The vehicle’s hybrid SABRE engines use liquid hydrogen combined with oxygen from the atmosphere at altitudes up to 26km and speeds of up to Mach 5, before switching over to on-board fuel for the final rocket powered stage of ascent into low Earth orbit.

The Skylon is intended to cut the costs involved with commercial activity in space, delivering payloads of up to 15 tons including satellites, equipment and even people into orbit at costs much lower than those that use expensive conventional rockets.

Once the spacecraft has completed its mission, it will re-enter Earth’s atmosphere and return to base, landing like an airplane on the same runway, making it a totally re-usable spaceplane, with a fast mission turn around.

Skylon has received approval from a European Space Authority panel tasked with evaluating the design. “No impediments or critical items have been identified for either the Skylon vehicle or the SABRE engine that are a block to further development,” the panel’s report concludes.

“The consensus for the way forward is to proceed with the innovative development of the engine which in turn will enable the overall vehicle development.”

The UK Space Agency says that Reaction Engines will carry out an important demonstration of the SABRE engine’s key pre-cooler technology later this summer.

Source: Reaction Engines Ltd.

Watch SpaceShipTwo’s First Feathered Flight

On May 4, 2011 Virgin Galactic’s SpaceShipTwo achieved a major milestone by flying for the first time using its “feathered” configuration, and the company has now released a close-up video of the flight. Feathering is designed to create drag and slow the ship down after it reenters the atmosphere from eventual suborbital flights taking tourists into space. This flight confirmed the feathering design should work.

“Now we now have an entry vehicle – now we can come back from space,” said Matt Stiemetze, Program Manager at Scaled Composites
Continue reading “Watch SpaceShipTwo’s First Feathered Flight”

Elon Musk: “Why the US Can Beat China”

Elon Musk. Credit: SpaceX

[/caption]

“Whenever someone proposes to do something that has never been done before, there will always be skeptics,” says SpaceX founder and CEO Elon Musk. He distributed an email today, setting the record straight on SpaceX’s actual launch costs and prices, and he also outlines why he believes American innovation will trump countries like China in space –even though that country has the fastest growing economy in the world and lower labor rates than the US. Read Musk’s article below:

Whenever someone proposes to do something that has never been done before, there will always be skeptics. So when I started SpaceX, it was not surprising when people said we wouldn’t succeed. But now that we’ve successfully proven Falcon 1, Falcon 9 and Dragon, there’s been a steady stream of misinformation and doubt expressed about SpaceX’s actual launch costs and prices.
As noted last month by a Chinese government official, SpaceX currently has the best launch prices in the world and they don’t believe they can beat them. This is a clear case of American innovation trumping lower overseas labor rates.

I recognize that our prices shatter the historical cost models of government-led developments, but these prices are not arbitrary, premised on capturing a dominant share of the market, or “teaser” rates meant to lure in an eager market only to be increased later. These prices are based on known costs and a demonstrated track record, and they exemplify the potential of America’s commercial space industry.

Here are the facts:

The price of a standard flight on a Falcon 9 rocket is $54 million. We are the only launch company that publicly posts this information on our website (www.spacex.com). We have signed many legally binding contracts with both government and commercial customers for this price (or less). Because SpaceX is so vertically integrated, we know and can control the overwhelming majority of our costs. This is why I am so confident that our performance will increase and our prices will decline over time, as is the case with every other technology.

The average price of a full-up NASA Dragon cargo mission to the International Space Station is $133 million including inflation, or roughly $115m in today’s dollars, and we have a firm, fixed price contract with NASA for 12 missions. This price includes the costs of the Falcon 9 launch, the Dragon spacecraft, all operations, maintenance and overhead, and all of the work required to integrate with the Space Station. If there are cost overruns, SpaceX will cover the difference. (This concept may be foreign to some traditional government space contractors that seem to believe that cost overruns should be the responsibility of the taxpayer.)

The total company expenditures since being founded in 2002 through the 2010 fiscal year were less than $800 million, which includes all the development costs for the Falcon 1, Falcon 9 and Dragon. Included in this $800 million are the costs of building launch sites at Vandenberg, Cape Canaveral and Kwajalein, as well as the corporate manufacturing facility that can support up to 12 Falcon 9 and Dragon missions per year. This total also includes the cost of five flights of Falcon 1, two flights of Falcon 9, and one up and back flight of Dragon.

The Falcon 9 launch vehicle was developed from a blank sheet to first launch in four and half years for just over $300 million. The Falcon 9 is an EELV class vehicle that generates roughly one million pounds of thrust (four times the maximum thrust of a Boeing 747) and carries more payload to orbit than a Delta IV Medium.

The Dragon spacecraft was developed from a blank sheet to the first demonstration flight in just over four years for about $300 million. Last year, SpaceX became the first private company, in partnership with NASA, to successfully orbit and recover a spacecraft. The spacecraft and the Falcon 9 rocket that carried it were designed, manufactured and launched by American workers for an American company. The Falcon 9/Dragon system, with the addition of a launch escape system, seats and upgraded life support, can carry seven astronauts to orbit, more than double the capacity of the Russian Soyuz, but at less than a third of the price per seat.

SpaceX has been profitable every year since 2007, despite dramatic employee growth and major infrastructure and operations investments. We have over 40 flights on manifest representing over $3 billion in revenues.

These are the objective facts, confirmed by external auditors. Moreover, SpaceX intends to make far more dramatic reductions in price in the long term when full launch vehicle reusability is achieved. We will not be satisfied with our progress until we have achieved this long sought goal of the space industry.

For the first time in more than three decades, America last year began taking back international market-share in commercial satellite launch. This remarkable turn-around was sparked by a small investment NASA made in SpaceX in 2006 as part of the Commercial Orbital Transportation Services (COTS) program. A unique public-private partnership, COTS has proven that under the right conditions, a properly incentivized contractor—even an all-American one—can develop extremely complex systems on rapid timelines and a fixed-price basis, significantly beating historical industry-standard costs.

China has the fastest growing economy in the world. But the American free enterprise system, which allows anyone with a better mouse-trap to compete, is what will ensure that the United States remains the world’s greatest superpower of innovation.
–Elon–

For more information see the SpaceX website.

Dream Job Posting: Spaceship Pilots Wanted

Virgin Galactic's WhiteKnightTwo and SpaceShipTwo. Think you could fly them? Credit: Virgin Galactic.

[/caption]

Some might do a double take at this job posting, but it is legit. Virgin Galactic announced today they are looking for pilot-astronauts and are now accepting applications…from qualified candidates. High scores on Aces of the Galaxy or Space Flight Simulator probably doesn’t meet the criteria, so just what does constitute Virgin Galactic’s idea of qualified?

Virgin’s press release says qualified candidates are full course graduates of a recognized test pilot school who are broadly experienced with both high-performance fast-jet type airplanes and large multi-engine types. Prior spaceflight experience is desirable. You’ll also have to be able to create a safe and enjoyable commercial suborbital space flight experience for your passengers.

Those selected will have the responsibilities of knowing the WhiteKnightTwo and SpaceShipTwo spaceflight system test program in and out (and in accordance with government regulations and company policies in Mojave, California where test flights take place and Virgin Galactic’s commercial operations at Spaceport America in New Mexico.)

For more information and to apply click here

Source: Virgin Galactic

When Will We Return to the Moon and Who Will it Be?

At the end of the movie “Apollo 13,” when the character of Jim Lovell says “I look up at the Moon and wonder, when will we be going back, and who will that be?” he probably didn’t have anything like the Google Lunar X PRIZE in mind. Similarly, when the GLXP was announced back in 2007, the founders had no idea that nearly 30 teams would be vying for the $30 million in incentive prizes to return to the Moon’s surface with a robotic craft.

Will Pomerantz, the former Senior Director of Space Prizes from the X PRIZE Foundation recalled an advisory committee meeting several years ago before the prize was announced. “We went around the room and asked everyone to estimate how many teams are going to compete in this,” Pomerantz said. “The answers ranged from zero on the low end to maybe a dozen or fifteen at the absolute max and that probably came either for myself or from Peter Diamandis, our founder. The fact that we have almost thirty blows us away, and we couldn’t be more thrilled.”

The X PRIZE Foundation recently announced the official roster of 29 teams that will attempt to send a robot to the Moon that travels at least 500 meters and transmit video, images, and data back to the Earth. The organization says this signifies a “new era of exploration’s diverse and participatory nature.”

The teams are headquartered all over the world — seventeen different headquarter nations — and most of the teams are actually multinationals, so team members are working in almost seventy different countries on every continent except for Antarctica.

“This is going to be the first time anything has been on the lunar surface since the final Soviet robotic mission in 1976,” Pomerantz said and those of us in the states really haven’t seen any data directly from the lunar surface since 1972, so we think that there’s at a ton to be learned scientifically, but also there’s a huge inspirational factor there for people to be able to see those images again.”

Of course, the robotic missions being designed are much less complicated and expensive than a human mission to the Moon.

Synergy Moon's spherical rover. Credit: GLXP

The concepts range from snake-like robots that slither along the surface to ball-shaped vehicles that can shift their mass internally move along the lunar surface to small robotic vehicles – “not too much bigger than the cell phone you’ve got your pocket,” Pomeranzt said – to rovers that look very much NASA- or ESA-designed vehicles. Others won’t rove at all, but reignite their engines to take off and fly to another location. This may allow them to explore totally different types of terrain that is totally inaccessible to a rover.

The landing sites that the various teams are shooting for differ as well. “Essentially everyone is going on the near side for obvious communication reasons,” Pomerantz said. “Almost everyone is going in a fairly low latitude and going in the equatorial zones.”

There are bonus prizes of several million additional dollars for teams that can go to particular sites, such the South Pole, where they could possibly confirm the findings at the LCROSS impact site, or if they go back to visit one of the Apollo landing sites or one of the sites of a non-human mission.

“I know that causes some concern for some people,” Pomerantz said. “People very rightly want to make sure that we are being respectful of those treasured historical sites. But I think it is important to recognize that no one values those sites more than the men and women around the world who are dedicating their careers to getting back to the surface of the Moon. They absolutely understand that those are our valuable treasures that need to be respected but they also understand that there’s an enormous amount to be gained from going back and respectfully revisiting the. There is some very interesting science that we can do by going back and seeing how the site and how those materials have changed over the past forty years.”

Why offer a prize to return to the Moon?

“We want to open the space frontier in the way similar to what we did it for the first X PRZE, the Ansari X PRIZE,” Pomerantz said. “We want to make space exploration and lunar exploration in particular radically cheaper. We think when you create a much lower price point, when you bring the price of missions down to a tenth to what it historically has been or even a hundredth of what it historically has been, you’re opening it up to a huge variety of new customers, new science communities, new industries that just can’t exist at the current price points.”

All the teams have to come up with their own funding.

“This is really a cash on delivery kind of model,” Pomerantz said. “But we don’t want to pay people to try. There are enough other people out there that are funding people to try new things. We want to reward people upon success. That means that no matter how crazy an idea might seem today, if it happens to be the best one, then we’ll reward it.”

Right now, the prize money is set to expire by the end of 2015, but the GLXP organizers are quite confident that at least one of the 29 teams will successfully reach the Moon before then. And obviously, NASA is confident, as well, as the space agency is offering a program called the Innovative Lunar Demonstration and Data Program, which is essentially $30 million dollars worth of data purchases from commercial efforts that reach the Moon.

“This is NASA saying for first time ever we are able to buy data about conducting lunar missions and about the Moon itself, rather than having to go out and pay for the acquisition of that data directly on the hopes that it will work,” Pomerantz said. “This is a great buy for NASA and I think they are getting a tremendous value and is a great way for teams to show their investors and supporters that, hey we’ve got a willing customer here. And NASA is not afraid of us; this isn’t an ‘us versus them competition.’ This is an area where our success is their success and vice versa.

Pomerantz is leaving the X PRIZE Foundation to begin work with Virgin Galactic. “I’ve loved every minute of being with the X PRIZE, but this was an opportunity just too good to pass up and I’m extremely excited about it even though I’m sad to be leaving X PRIZE.”

For more information about GLXP, see their website. See the complete roster of competing teams here.

Listen to an interview with Pomerantz on the 365 Days of Astronomy website.

Scientists to go Suborbital for Research

Virgin Galactic's SpaceShipTwo during a test flight. Suborbital science experiments fly aboard this craft, as well as Blue Origin's New Shepard, and other suborbital flights, providing scientists, students, and others with valuable microgravity access. Credit: Virgin Galactic

[/caption]

Think again if you believe the suborbital space market is exclusively for well-heeled tourists. The Southwest Research Institute has just inked deals with Virgin Galactic and XCOR Aerospace to fly up to 17 scientific research flights. Three scientists, including Dr. Alan Stern, former head of the Science Mission Directorate at NASA and current New Horizons Principal Investigator, will become some of the first scientists to fly on a commercial spacecraft to conduct scientific research. They will fly on board Virgin’s SpaceShipTwo and XCOR’s Lynx.

“We’re another step closer to the era of routine ‘field work’ in space research,” said Dr. Dan Durda, another SwRI scientist who is scheduled to fly. “More and more researchers will soon fly with their own experiments in space, and do it regularly enough to allow the important advances that come with iterative investigations. I’m looking forward to that future and helping it become a reality.”


“We at SwRI are very strong believers in the transformational power of commercial, next-generation suborbital vehicles to advance many kinds of research,” said Stern. “We also believe that by putting scientists in space with their experiments, researchers can achieve better results at lower costs and a higher probability of success than with many old-style automated experiments.”

Alan Stern is ready to go to space. Credit: SwRI

The spacecraft will fly on short suborbital flights to altitudes greater than 107,000 meters (350,000 feet) above the internationally recognized boundary of space.

At least two SwRI researchers will fly on SpaceShipTwo, which can carry two pilots and up to six researchers, and later, there will be a dedicated six-seat research mission SS2. SpaceShipTwo’s large cabin enables researchers to work together in an “out-of-seat” micro gravity environment.

XCOR's Lynx suborbital vehicle. Credit: XCOR

SwRI researchers will also fly at least six high altitude missions aboard XCOR Corporation’s Lynx Mark I high-altitude rocket plane, which carries a pilot and a single researcher at altitudes up to 200,000 feet. Lynx I is currently in development, with test flights expected to begin in 2012.

The types of research planned includes biomedical, microgravity and astronomical imaging experiments.
Besides Stern andDurda, Dr. Cathy Olkin is also scheduled to fly on the research flights. All three scientists selected have trained for suborbital spaceflight aboard zero-G aircraft, in NASTAR centrifuges and aboard Starfighter F-104 jet fighters in the last year.

“This is a historic moment for spaceflight,” said Commercial Spaceflight Federation Executive Director John Gedmark. “A scientific research institution is spending its own money to send its scientists to space. I expect that these scientists will be the first of many to fly to space commercially. As the scientific community realizes that they can put payloads and people into space at unprecedented low costs, the floodgates will open even wider.”

Sources: SwRI, Commercial Spaceflight Federation