Hubble Spots Unique Object in the Main Asteroid Belt

In 1990, the NASA/ESA Hubble Space Telescope was deployed into Low Earth Orbit (LEO). As one of NASA’s Great Observatories – along with the Compton Gamma Ray Observatory, the Chandra X-ray Observatory, and the Spitzer Space Telescope – this instrument remains one of NASA’s larger and more versatile missions. Even after twenty-seven years of service, Hubble continues to make intriguing discoveries, both within our Solar System and beyond.

The latest discovery was made by a team of international astronomers led by the Max Planck Institute for Solar System Research. Using Hubble, they spotted a unique object in the Main Asteroid Belt – a binary asteroid known as 288P – which also behaves like a comet. According to the team’s study, this binary asteroid experiences sublimation as it nears the Sun, which causes comet-like tails to form.

The study, titled “A Binary Main-Belt Comet“, recently appeared in the scientific journal Nature. The team was led by Jessica Agarwal of the Max Planck Institute for Solar System Research, and included members from the Space Telescope Science Institute, the Lunar and Planetary Laboratory at the University of Arizona, the Johns Hopkins University Applied Physics Laboratory (JHUAPL), and the University of California at Los Angeles.

Using the Hubble telescope, the team first observed 288P in September 2016, when it was making its closest approach to Earth. The images they took revealed that this object was not a single asteroid, but two asteroids of similar size and mass that orbit each other at a distance of about 100 km. Beyond that, the team also noted some ongoing activity in the binary system that was unexpected.

As Jessica Agarwal explained in a Hubble press statement, this makes 288P the first known binary asteroid that is also classified as a main-belt comet. “We detected strong indications of the sublimation of water ice due to the increased solar heating – similar to how the tail of a comet is created,” she said. In addition to being a pleasant surprise, these findings are also highly significant when it comes to the study of the Solar System.

Since only a few objects of this type are known, 288P is an extremely important target for future asteroid studies. The various features of 288P also make it unique among the few known wide asteroid binaries in the Solar System. Basically, other binary asteroids that have been observed orbited closer together, were different in size and mass, had less eccentric orbits, and did not form comet-like tails.

The observed activity of 288P also revealed a great deal about the binary asteroids past. From their observations, the team concluded that 288P has existed as a binary system for the past 5000 years and must have accumulated ice since the earliest periods of the Solar System. As Agarwal explained:

“Surface ice cannot survive in the asteroid belt for the age of the Solar System but can be protected for billions of years by a refractory dust mantle, only a few meters thick… The most probable formation scenario of 288P is a breakup due to fast rotation. After that, the two fragments may have been moved further apart by sublimation torques.”

Image depicting the two areas where most of the asteroids in the Solar System are found: the Main Asteroid Belt and the Trojans. Credit: ESA/Hubble, M. Kornmesser

Naturally, there are many unresolved questions about 288P, most of which stem from its unique behavior. Given that it is so different from other binary asteroids, scientists are forced to wonder if it merely coincidental that it presents such unique properties. And given that it was found largely by chance, it is unlikely that any other binaries that have similar properties will be found anytime soon.

“We need more theoretical and observational work, as well as more objects similar to 288P, to find an answer to this question,” said Agarwal. In the meantime, this unique binary asteroid is sure to provide astronomers with many interesting opportunities to study the origin and evolution of asteroids orbiting between Mars and Jupiter.

In particular, the study of those asteroids that show comet-like activity (aka. main-belt comets) is crucial to our understanding of how the Solar System formed and evolved. According to contrasting theories of its formation, the Asteroid Belt is either populated by planetesimals that failed to become a planet, or began empty and gradually filled with planetesimals over time.

In either case, studying its current population can tell us much about how the planets formed billions of years ago, and how water was distributed throughout the Solar System afterwards. This, in turn, is crucial to determining how and where life began to emerge on Earth, and perhaps elsewhere!

Be sure to check out this animation of the 288P binary asteroid too, courtesy of the ESA and Hubble:

 

Further Reading: Hubble, Nature

See Mercury At Dusk, New Comet Lovejoy At Dawn

Mercury requests the company of your gaze now through the beginning of April, when it shines near Mars low in the west after sunset. Created with Stellarium

March has been a busy month for planet and comet watchers. Lots of action. Venus, the planet that’s captured our attention at dusk in the west for months, is in inferior conjunction with the Sun today. Watch for it to rise before the Sun in the eastern sky at dawn in about a week.

Mercury like Venus and the Moon shows phases when viewed through a telescope. Right now, the planet is in waning gibbous phase. Stellarium

As Venus flees the evening scene, steadfast Mars and a new planet, Mercury keep things lively. For northern hemisphere skywatchers, this is Mercury’s best dusk apparition of the year. If you’d like to make its acquaintance, this week and next are best. And it’s so easy! Just find a spot with a wide open view of the western horizon, bring a pair of binoculars for backup and wait for a clear evening.

Plan to watch starting about 40 minutes after sundown. From most locations, Mercury will appear about 10° or one fist held at arm’s length above the horizon a little bit north of due west. Shining around magnitude +0, it will be the only “star” in that part of the sky. Mars is nearby but much fainter at magnitude +1.5. You’ll have to wait at least an hour after sunset to spot it.

Have a telescope? Check out the planet using a magnification around 50x or higher. You’ll see that it looks like a Mini-Me version of the Moon. Mercury is brightest when closest to full. Over the next few weeks, it will wane to a crescent while increasing in apparent size.

If you have any difficulty finding brilliant Jupiter and its current pal, Spica, just start with the Big Dipper, now high in the northeastern sky at nightfall. Use the Dipper’s handle to “arc to Arcturus” and then “jump to Jupiter.” Credit: Bob King

If you like planets, don’t forget the combo of Jupiter and Spica at the opposite end of the sky. Jupiter climbs out of bed and over the southeastern horizon about 9 p.m. local time in late March, but to see it and Spica, Virgo’s brightest star, give it an hour and look again at 10 p.m. or later. Quite the duo!

You’re not afraid of getting up with the first robins are you? If you set your alarm to a half hour or so before the first hint of dawn’s light and find a location with an open view of the southeastern horizon, you might be first in your neighborhood to spot Terry Lovejoy’s brand new comet. His sixth, the Australian amateur discovered C/2017 E4 Lovejoy on the morning of March 10th in the constellation Sagittarius at about 12th magnitude.

C/2017 E4 Lovejoy glows blue-green this morning March 26. Structure around the nucleus including a small jet is visible. The comet is currently in Aquarius and quickly moving north and will reach perihelion on April 23. Credit: Terry Lovejoy

The comet has rapidly brightened since then and is now a small, moderately condensed fuzzball of magnitude +9, bright enough to spot in a 6-inch or larger telescope. Some observers have even picked it up in large binoculars. Lovejoy’s comet should brighten by at least another magnitude in the coming weeks, putting it within 10 x 50 binocular range.

This map shows the sky tomorrow morning before dawn from the central U.S. (latitude about 41° north). Created with Stellarium

Good news. E4 Lovejoy is moving north rapidly and is now visible about a dozen degrees high in Aquarius just before the start of dawn. I’ll be out the next clear morning, eyepiece to eye, to welcome this new fuzzball from beyond Neptune to my front yard. The map above shows the eastern sky near dawn and a general location of the comet. Use the more detailed map below to pinpoint it in your binoculars and telescope.

This chart shows the comet’s position nightly (5:30 a.m. CDT) through April 9. On the morning of April 1 it passes just a few degrees below the bright globular cluster M15. Click to enlarge, save and then print out for use at the telescope. Map: Bob King, Source: Chris Marriott’s SkyMap

Spring brings with it a new spirit and the opportunity to get out at night free of the bite of mosquitos or cold. Clear skies!

Why Does Siberia Get All the Cool Meteors?


Children ice skating in Khakassia, Russia react to the fall of a bright fireball two nights ago on Dec.6

In 1908 it was Tunguska event, a meteorite exploded in mid-air, flattening 770 square miles of forest. 39 years later in 1947, 70 tons of iron meteorites pummeled the Sikhote-Alin Mountains, leaving more than 30 craters. Then a day before Valentine’s Day in 2013, hundreds of dashcams recorded the fiery and explosive entry of the Chelyabinsk meteoroid, which created a shock wave strong enough to blow out thousands of glass windows and litter the snowy fields and lakes with countless fusion-crusted space rocks.


Documentary footage from 1947 of the Sikhote-Alin fall and how a team of scientists trekked into the wilderness to find the craters and meteorite fragments

Now on Dec. 6, another fireball blazed across Siberian skies, briefly illuminated the land like a sunny day before breaking apart with a boom over the town of Sayanogorsk. Given its brilliance and the explosions heard, there’s a fair chance that meteorites may have landed on the ground. Hopefully, a team will attempt a search soon. As long as it doesn’t snow too soon after a fall, black stones and the holes they make in snow are relatively easy to spot.

This photo shows trees felled from a powerful aerial meteorite explosion. It was taken during Leonid Kulik's 1929 expedition to the Tunguska impact event in Siberia in 1908. Credit: Kulik Expedition
This photo shows trees felled from a powerful aerial meteorite explosion. It was taken during Leonid Kulik’s 1929 expedition to the Tunguska impact event in Siberia in 1908. Credit: Kulik Expedition

OK, maybe Siberia doesn’t get ALL the cool fireballs and meteorites, but it’s done well in the past century or so. Given the dimensions of the region — it covers 10% of the Earth’s surface and 57% of Russia — I suppose it’s inevitable that over so vast an area, regular fireball sightings and occasional monster meteorite falls would be the norm. For comparison, the United States covers only 1.9% of the Earth. So there’s at least a partial answer. Siberia’s just big.

A naturally sculpted iron-nickel meteorite recovered from the Sikhote-Alin meteorite fall in February 1947. The dimpling or "thumb-printing" occurs when softer minerals are melted and sloughed away as the meteorite is heated by the atmosphere while plunging to Earth. Credit: Svend Buhl
A naturally sculpted iron-nickel meteorite recovered from the Sikhote-Alin meteorite fall in February 1947. The dimpling or “thumb-printing” occurs when softer minerals are melted and sloughed away as the meteorite is heated by the atmosphere while plunging to Earth. Credit: Svend Buhl

Every day about 100 tons of meteoroids, which are fragments of dust and gravel from comets and asteroids, enter the Earth’s atmosphere. Much of it gets singed into fine dust, but the tougher stuff — mostly rocky, asteroid material — occasionally makes it to the ground as meteorites. Every day then our planet gains about a blue whale’s weight in cosmic debris. We’re practically swimming in the stuff!

Meteors are pieces of comet and asteroid debris that strike the atmosphere and burn up in a flash. Credit: Jimmy Westlake A brilliant Perseid meteor streaks along the Summer Milky Way as seen from Cinder Hills Overlook at Sunset Crater National Monument—12 August 2016 2:40 AM (0940 UT). It left a glowing ion trail that lasted about 30 seconds. The camera caught a twisting smoke trail that drifted southward over the course of several minutes.
Meteors are pieces of comet and asteroid debris that strike the atmosphere and burn up in a flash. Here, a brilliant Perseid meteor streaks along the Summer Milky Way this past August.  Credit: Jeremy Perez

Most of this mass is in the form of dust but a study done in 1996 and published in the Monthly Notices of the Royal Astronomical Society further broke down that number. In the 10 gram (weight of a paperclip or stick of gum) to 1 kilogram (2.2 lbs) size range, 6,400 to 16,000 lbs. (2900-7300 kilograms) of meteorites strike the Earth each year. Yet because the Earth is so vast and largely uninhabited, appearances to the contrary, only about 10 are witnessed falls later recovered by enterprising hunters.


A couple more videos of the Dec. 6, 2016 fireball over Khakassia and Sayanogorsk, Russia

Meteorites fall in a pattern from smallest first to biggest last to form what astronomers call a strewnfield, an elongated stretch of ground several miles long shaped something like an almond. If you can identify the meteor’s ground track, the land over which it streaked, that’s where to start your search for potential meteorites.

Meteorites indeed fall everywhere and have for as long as Earth’s been rolling around the sun. So why couldn’t just one fall in my neighborhood or on the way to work? Maybe if I moved to Siberia …

Colonizing the Outer Solar System

Colonizing The Outer Solar System


Okay, so this article is Colonizing the Outer Solar System, and is actually part 2 of our team up with Fraser Cain of Universe Today, who looked at colonizing the inner solar system. You might want jump over there now and watch that part first, if you are coming in from having seen part 1, welcome, it is great having you here.

Without further ado let us get started. There is no official demarcation between the inner and outer solar system but for today we will be beginning the outer solar system at the Asteroid Belt.

Artist concept of the asteroid belt. Credit: NASA
Artist concept of the asteroid belt. Credit: NASA

The Asteroid Belt is always of interest to us for colonization. We have talked about mining them before if you want the details on that but for today I’ll just remind everyone that there are very rich in metals, including precious metals like gold and platinum, and that provides all the motivation we need to colonize them. We have a lot of places to cover so we won’t repeat the details on that today.

You cannot terraform asteroids the way you could Venus or Mars so that you could walk around on them like Earth, but in every respect they have a lot going for them as a candidate. They’ve got plenty for rock and metal for construction, they have lots of the basic organic elements, and they even have some water. They also get a decent amount of sunlight, less than Mars let alone Earth, but still enough for use as a power source and to grow plants.

But they don’t have much gravity, which – pardon the pun – has its ups and downs. There just isn’t much mass in the Belt. The entire thing has only a small fraction of the mass of our moon, and over half of that is in the four biggest asteroids, essentially dwarf planets in their own right. The remainder is scattered over millions of asteroids. Even the biggest, Ceres, is only about 1% of 1% of Earth’s mass, has a surface gravity of 3% Earth-normal, and an escape velocity low enough most model rockets could get into orbit. And again, it is the biggest, most you could get away from by jumping hard and if you dropped an object on one it might take a few minutes to land.

Don't blink... an artist's conception of an asteroid blocking out a distant star. Image credit: NASA.
Don’t blink… an artist’s conception of an asteroid blocking out a distant star. Image credit: NASA.

You can still terraform one though, by definition too. The gentleman who coined the term, science fiction author Jack Williamson, who also coined the term genetic engineering, used it for a smaller asteroid just a few kilometers across, so any definition of terraforming has to include tiny asteroids too.

Of course in that story it’s like a small planet because they had artificial gravity, we don’t, if we want to fake gravity without having mass we need to spin stuff around. So if we want to terraform an asteroid we need to hollow it out and fill it with air and spin it around.

Of course you do not actually hollow out the asteroid and spin it, asteroids are loose balls of gravel and most would fly apart given any noticeable spin. Instead you would hollow it out and set a cylinder spinning inside it. Sort of like how a good thermos has an outside container and inside one with a layer of vacuum in between, we would spin the inner cylinder.

You wouldn’t have to work hard to hollow out an asteroid either, most aren’t big enough to have sufficient gravity and pressure to crush an empty beer can even at their center. So you can pull matter out from them very easily and shore up the sides with very thin metal walls or even ice. Or just have your cylinder set inside a second non-spinning outer skin or superstructure, like your washer or dryer.

You can then conduct your mining from the inside, shielded from space. You could ever pressurize that hollowed out area if your spinning living area was inside its own superstructure. No gravity, but warmth and air, and you could get away with just a little spin without tearing it apart, maybe enough for plants to grow to normally.

It should be noted that you can potentially colonize even the gas giants themselves, even though our focus today is mostly on their moons. That requires a lot more effort and technology then the sorts of colonies we are discussing today, Fraser and I decided to keep things near-future and fairly low tech, though he actually did an article on colonizing Jupiter itself last year that was my main source material back before got to talking and decided to do a video together.

Jupiter with Io and Ganymede taken by amateur astronomer Damian Peach. Credit: NASA / Damian Peach
Jupiter with Io and Ganymede taken by amateur astronomer Damian Peach. Credit: NASA / Damian Peach

Hydrogen is plentiful on Jupiter itself and floating refineries or ships that fly down to scoop it up might be quite useful, but again today we are more interested in its moons. The biggest problem with colonizing the moons of Jupiter is all the radiation the planet gives off.

Europa is best known as a place where the surface is covered with ice but beneath it is thought to be a vast subsurface ocean. It is the sixth largest moon coming right behind our own at number five and is one of the original four moons Galileo discovered back in 1610, almost two centuries before we even discovered Uranus, so it has always been a source of interest. However as we have discovered more planets and moons we have come to believe quite a few of them might also have subsurface oceans too.

Now what is neat about them is that water, liquid water, always leaves the door open to the possibility of life already existing there. We still know so little about how life originally evolved and what conditions permit that to occur that we cannot rule out places like Europa already having their own plants and animals swimming around under that ice.

They probably do not and obviously we wouldn’t want to colonize them, beyond research bases, if they did, but if they do not they become excellent places to colonize. You could have submarine cities in such places floating around in the sea or those buried in the surface ice layer, well shielded from radiation and debris. The water also geysers up to the surface in some places so you can start off near those, you don’t have to drill down through kilometers of ice on day one.

Water, and hydrogen, are also quite uncommon in the inner solar system so having access to a place like Europa where the escape velocity is only about a fifth of our own is quite handy for export. Now as we move on to talk about moons a lot it is important to note that when I say something has a fifth of the escape velocity of Earth that doesn’t mean it is fives time easier to get off of. Energy rises with the square of velocity so if you need to go five times faster you need to spend 5-squared or 25 times more energy, and even more if that place has tons of air creating friction and drag, atmospheres are hard to claw your way up through though they make landing easier too. But even ignoring air friction you can move 25 liters of water off of Europa for every liter you could export from Earth and even it is a very high in gravity compared to most moons and comets. Plus we probably don’t want to export lots of water, or anything else, off of Earth anyway.

Artist's concept of Trojan asteroids, small bodies that dominate our solar system. Credit: NASA
Artist’s concept of Trojan asteroids, small bodies that dominate our solar system. Credit: NASA

We should start by noting two things. First, the Asteroid Belt is not the only place you find asteroids, Jupiter’s Trojan Asteroids are nearly as numerous, and every planet, including Earth, has an equivalent to Jupiter’s Trojan Asteroids at its own Lagrange Points with the Sun. Though just as Jupiter dwarfs all the other planets so to does its collection of Lagrangian objects. They can quite big too, the largest 624 Hektor, is 400 km across, and has a size and shape similar to Pennsylvania.

And as these asteroids are at stable Lagrange Points, they orbit with Jupiter but always ahead and behind it, making transit to and from Jupiter much easier and making good waypoints.

Before we go out any further in the solar system we should probably address how you get the energy to stay alive. Mars is already quite cold compared to Earth, and the Asteroids and Jupiter even more so, but with thick insulation and some mirrors to bounce light in you can do fairly decently. Indeed, sunlight out by Jupiter is already down to just 4% of what Earth gets, meaning at Jovian distances it is about 50 W/m²

That might not sound like much but it is actually almost a third of what average illumination is on Earth, when you factor in atmospheric reflection, cloudy days, nighttime, and higher, colder latitudes. It is also a good deal brighter than the inside of most well-lit buildings, and is enough for decently robust photosynthesis to grow food. Especially with supplemental light from mirrors or LED growth lamps.

But once you get out to Saturn and further that becomes increasingly impractical and a serious issue, because while food growth does not show up on your electric bill it is what we use virtually all our energy for. Closer in to the sun we can use solar panels for power and we do not need any power to grow food. As we get further out we cannot use solar and we need to heat or cold habitats and supply lighting for food, so we need a lot more power even as our main source dries up.

So what are our options? Well the first is simple, build bigger mirrors. A mirror can be quite large and paper thin after all. Alternatively we can build those mirrors far away, closer to the sun, and and either focus them on the place we want illuminated or send an energy beam, microwaves perhaps or lasers, out to the destination to supply energy.

We also have the option of using fission, if we can find enough Uranium or Thorium. There is not a lot of either in the solar system, in the area of about one part per billion, but that does amount to hundreds of trillions of tons, and it should only take a few thousand tons a year to supply Earth’s entire electric grid. So we would be looking at millions of years worth of energy supply.

Of course fusion is even better, particularly since hydrogen becomes much more abundant as you get further from the Sun. We do not have fusion yet, but it is a technology we can plan around probably having inside our lifetimes, and while uranium and thorium might be counted in parts per billion, hydrogen is more plentiful than every other element combines, especially once you get far from the Sun and Inner Solar System.

So it is much better power source, an effectively unlimited one except on time scales of billions and trillion of years. Still, if we do not have it, we still have other options. Bigger mirrors, beaming energy outwards from closer to the Sun, and classic fission of Uranium and Thorium. Access to fusion is not absolutely necessary but if you have it you can unlock the outer solar system because you have your energy supply, a cheap and abundant fuel supply, and much faster and cheaper spaceships.

Of course hydrogen, plain old vanilla hydrogen with one proton, like the sun uses for fusion, is harder to fuse than deuterium and may be a lot longer developing, we also have fusion using Helium-3 which has some advantages over hydrogen, so that is worth keeping in mind as well as we proceed outward.

Since NASA's Cassini spacecraft arrived at Saturn, the planet's appearance has changed greatly. This view shows Saturn's northern hemisphere in 2016, as that part of the planet nears its northern hemisphere summer solstice in May 2017. Image credit: NASA/JPL-Caltech/Space Science Institute.
Since NASA’s Cassini spacecraft arrived at Saturn, the planet’s appearance has changed greatly. This view shows Saturn’s northern hemisphere in 2016, as that part of the planet nears its northern hemisphere summer solstice in May 2017. Image credit: NASA/JPL-Caltech/Space Science Institute.

Okay, let’s move on to Saturn, and again our focus is on its moons more than the planet itself. The biggest of those an the most interesting for colonization is Titan.

Titan is aptly named, this titanic moon contains more mass than than all of Saturn’s sixty or so other moons and by an entire order of magnitude at that. It is massive enough to hold an atmosphere, and one where the surface pressure is 45% higher than here on Earth. Even though Titan is much smaller than Earth, its atmosphere is about 20% more massive than our own. It’s almost all nitrogen too, even more than our own atmosphere, so while you would need a breather mask to supply oxygen and it is also super-cold, so you’d need a thick insulated suit, it doesn’t have to be a pressure suit like it would on Mars or almost anyplace else.

There’s no oxygen in the atmosphere, what little isn’t nitrogen is mostly methane and hydrogen, but there is plenty of oxygen in the ice on Titan which is quite abundant. So it has everything we need for life except energy and gravity. At 14% of earth normal it is probably too low for people to comfortably and safely adapt to, but we’ve already discussed ways of dealing with that. It is low enough that you could probably flap your arms and fly, if you had wing attached.

On the left is TALISE (Titan Lake In-situ Sampling Propelled Explorer), the ESA proposal. This would have it's own propulsion, in the form of paddlewheels. Credit: bisbos.com
On the left is TALISE (Titan Lake In-situ Sampling Propelled Explorer), the ESA proposal. This would have it’s own propulsion, in the form of paddlewheels. Credit: bisbos.com

It needs some source of energy though, and we discussed that. Obviously if you’ve got fusion you have all the hydrogen you need, but Titan is one of those places we would probably want to colonize early on if we could, it is something you need a lot of to terraform other places, and is also rich in a lot of the others things we want. So we often think of it as a low-tech colony since it is one we would want early on.

In an scenario like that it is very easy to imagine a lot of local transit between Titan and its smaller neighboring moons, which are more rocky and might be easier to dig fissile materials like Uranium and Thorium out of. You might have a dozen or so small outposts on neighboring moons mining fissile materials and other metals and a big central hub on Titan they delivered that too which also exported Nitrogen to other colonies in the solar system.

Moving back and forth between moons is pretty easy, especially since things landing on Titan can aerobrake quite easily, whereas Titan itself has a pretty strong gravity well and thick atmosphere to climb out of but is a good candidate for a space elevator, since it requires nothing more sophisticated than a Lunar Elevator on our own moon and has an abundant supply of the materials needed to make Zylon for instance, a material strong enough to make an elevator there and which we can mass manufacture right now.

Titan might be the largest and most useful of Saturn’s moons, but again it isn’t the only one and not all of the other are just rocks for mining. At last count it has over sixty and many of them quite large. One of those, Enceladus, Saturn’s sixth largest moon, is a lot like Jupiter’s Moon Europa, in that we believe it has a large and thick subsurface ocean. So just like Europa it is an interesting candidate for Colonization. So Titan might be the hub for Saturn but it wouldn’t be the only significant place to colonize.

Clouds tower into a twilight sky on Saturn. The planet’s glowing rings seem to bend at the horizon because of the dense air. (painting ©Michael Carroll)
Clouds tower into a twilight sky on Saturn. The planet’s glowing rings seem to bend at the horizon because of the dense air. (painting ©Michael Carroll)

While Saturn is best known for its amazing rings, they tend to be overlooked in colonization. Now those rings are almost all ice and in total mass about a quarter as much as Enceladus, which again is Saturn’s Sixth largest moon, which is itself not even a thousandth of the Mass of Titan.

In spite of that the rings are not a bad place to set up shop. Being mostly water, they are abundant in hydrogen for fusion fuel and have little mass individually makes them as easy to approach or leave as an asteroid. Just big icebergs in space really, and there are many moonlets in the rings that can be as large as half a kilometer across. So you can burrow down inside one for protection from radiation and impacts and possibly mine smaller ones for their ice to be brought to places where water is not abundant.

In total those rings, which are all frozen water, only mass about 2% of Earth’s oceans, and about as much as the entire Antarctic sheet. So it is a lot of fresh water that is very easy to access and move elsewhere, and ice mines in the rings of Saturn might be quite useful and make good homes. Living inside an iceball might not sound appealing but it is better than it sounds like and we will discuss that more when we reach the Kupier Belt.

Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons
Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

But first we still have two more planets to look at, Uranus and Neptune.

Uranus, and Neptune, are sometimes known as Ice Giants instead of Gas Giants because it has a lot more water. It also has more ammonia and methane and all three get called ices in this context because they make up most of the solid matter when you get this far out in the solar system.

While Jupiter is over a thousand times the mass of Earth, Uranus weighs in at about 15 times the Earth and has only about double the escape velocity of Earth itself, the least of any of the gas giants, and it’s strange rotation, and its strange tilt contributes to it having much less wind than other giants. Additionally the gravity is just a little less than Earth’s in the atmosphere so we have the option for floating habitats again, though it would be a lot more like a submarine than a hot air balloon.

Like Venus, Uranus has very long days, at least in terms of places receiving continual sunlight, the poles get 42 years of perpetual sunlight then 42 of darkness. Sunlight being a relative term, the light is quite minimal especially inside the atmosphere. The low wind in many places makes it a good spot for gas extraction, such as Helium-3, and it’s a good planet to try to scoop gas from or even have permanent installations.

Now Uranus has a large collection of moons as well, useful and colonizable like the other moons we have looked at, but otherwise unremarkable beyond being named for characters from Shakespeare, rather than the more common mythological names. None have atmospheres though there is a possibility Oberon or Titania might have subsurface oceans.

Neptune makes for a brief entry, it is very similar to Uranus except it has the characteristically high winds of gas giants that Uranus’s skewed poles mitigate, meaning it has no advantages over Uranus and the disadvantages of high wind speeds everywhere and being even further from the Sun. It too has moons and one of them, Triton, is thought to have subsurface oceans as well. Triton also presumably has a good amount of nitrogen inside it since it often erupts geysers of nitrogen from its surface.

Neptune's largest moon Triton photographed on August 25, 1989 by Voyager 2. Credit: NASA
Neptune’s largest moon Triton photographed on August 25, 1989 by Voyager 2. Credit: NASA

Triton is one of the largest moons in the solar system, coming in seventh just after our Moon, number 5, and Europa at number 6. Meaning that were it not a moon it would probably qualify as a Dwarf Planet and it is often thought Pluto might be an escaped moon Neptune. So Triton might be one that didn’t escape, or didn’t avoid getting captured. In fact there are an awful lot of bodies in this general size range and composition wandering about in the outer regions of our solar system as we get out into the Kuiper Belt.

Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA
Pluto and its cohorts in the icy-asteroid-rich Kuiper Belt beyond the orbit of Neptune. Credit: NASA

The Kuiper Belt is one of those things that has a claim on the somewhat arbitrary and hazy boundary marking the edge of the Solar System. It extends from out past Neptune to beyond Pluto and contains a good deal more mass than the asteroid Belt. It is where a lot of our comets come from and while there is plenty of rocks out there they tend to be covered in ice. In other words it is like our asteroid belt only there’s more of it and the one thing the belt is not very abundant in, water and hydrogen in general, is quite abundant out there. So if you have a power source life fusion they can be easily terraformed and are just as attractive as a source of minerals as the various asteroids and moons closer in.

Discovered in 2005, Makemake, a Kuiper Belt Object (KBO) has . Credit: NASA
Discovered in 2005, Makemake, a Kuiper Belt Object (KBO) has . Credit: NASA

We mentioned the idea of living inside hollowed out asteroids earlier and you can use the same trick for comets. Indeed you could shape them to be much bigger if you like, since they would be hollow and ice isn’t hard to move and shape especially in zero gravity. Same trick as before, you place a spinning cylinder inside it. Not all the objects entirely ice and indeed your average comet is more a frozen ball of mud then ice with rocky cores. We think a lot of near Earth Asteroids are just leftover comets. So they are probably pretty good homes if you have fusion, lots of fuel and raw materials for both life and construction.

This is probably your cheapest interstellar spacecraft too, in terms of effort anyway. People often talk about re-directing comets to Mars to bring it air and water, but you can just as easily re-direct it out of the solar system entirely. Comets tend to have highly eccentric orbits, so if you capture one when it is near the Sun you can accelerate it then, actually benefiting from the Oberth Effect, and drive it out of the solar system into deep space. If you have a fusion power source to live inside one then you also have an interstellar spaceship drive, so you just carve yourself a small colony inside the comet and head out into deep space.

You’ve got supplies that will last you many centuries at least, even if it were home to tens of thousand of people, and while we think of smaller asteroids and comets as tiny, that’s just in comparison to planets. These things tend to be the size of mountain so there is plenty of living space and a kilometer of dirty ice between you and space makes a great shield against even the kinds of radiation and collisions you can experience at relativistic speeds.

Artists' impression of the Kuiper belt and Oort cloud, showing both the origin and path of Halley's Comet. Image credit: NASA/JPL.
Artists’ impression of the Kuiper belt and Oort cloud. Credit: NASA/JPL

Now the Oort Cloud is much like the Kupier Belt but begins even further out and extends out probably an entire light year or more. We don’t have a firm idea of its exact dimensions or mass, but the current notion is that it has at least several Earth’s worth of mass, mostly in various icy bodies. These will be quite numerous, estimates usually assumes at least trillion icy bodies a kilometer across or bigger, and even more smaller ones. However the volume of space is so large that those kilometer wide bodies might each be a around a billion kilometers distant from neighbors, or about a light hour. So it is spread out quite thinly, and even the inner edge is about 10 light days away.

That means that from a practical standpoint there is no source of power out there, the sun is simply too diffuse for even massive collections of mirrors and solar panels to be of use. It also means light-speed messages home or to neighbors are quite delayed. So in terms of communication it is a lot more like pre-modern times in sparsely settled lands where talking with your nearest neighbors might require an hour long walk over to their farm, and any news from the big cities might take months to percolate out to you.

There’s probably uranium and thorium out there to be found, maybe a decent amount of it, so fission as a power source is not ruled out. If you have fusion instead though each of these kilometer wide icy bodies is like a giant tank of gasoline, and as with the Kupier Belt, ice makes a nice shield against impacts and radiation.

And while there might be trillions of kilometer wide chunks of ice out there, and many more smaller bodies, you would have quite a few larger ones too. There are almost certainly tons of planets in the Pluto size-range out these, and maybe even larger ones. Even after the Oort cloud you would still have a lot of these deep space rogue planets which could bridge the gap to another solar system’s Oort Cloud. So if you have fusion you have no shortage of energy, and could colonize trillions of these bodies. There probably is a decent amount of rock and metal out there too, but that could be your major import/export option shipping home ice and shipping out metals.

That’s the edge of the Solar System so that’s the end of this article. If you haven’t already read the other half, colonizing the inner Solar System, head on over now.

Astronomers Think They Know Where Rosetta’s Comet Came From

In the distant past, the orbit of 67P/Churyumov-Gerasimenko extended far beyond Neptune into the refrigerated Kuiper Belt. Interactions with the gravitational giant Jupiter altered the comet's orbit over time, dragging it into the inner Solar System. Credit: Western University, Canada
In the distant past, the orbit of 67P/Churyumov-Gerasimenko extended far beyond Neptune into the refrigerated Kuiper Belt. Interactions with the gravitational giant Jupiter altered the comet’s orbit over time, dragging it into the inner Solar System. Credit: Western University, Canada

Rosetta’s Comet hails from a cold, dark place. Using statistical analysis and scientific computing, astronomers at Western University in Canada have charted a path that most likely pinpoints comet 67P/Churyumov-Gerasimenko’s long-ago home in the far reaches of the Kuiper Belt, a vast region beyond Neptune home to icy asteroids and comets.

According to the new research, Rosetta’s Comet is relative newcomer to the inner parts of our Solar System, having only arrived about 10,000 years ago. Prior to that, it spent the last 4.5 billion years in cold storage in a rough-and-tumble region of the Kuiper Belt called the scattered disk.

The Kuiper Belt was named in honor of Dutch-American astronomer Gerard Kuiper, who postulated a reservoir of icy bodies beyond Neptune. The first Kuiper Belt object was discovered in 1992. We now know of more than a thousand objects there, and it's estimated it's home to more than 100,000 asteroids and comets there over 62 miles (100 km) across. Credit: JHUAPL
The Kuiper Belt was named in honor of Dutch-American astronomer Gerard Kuiper, who postulated a reservoir of icy bodies beyond Neptune. The first Kuiper Belt object was discovered in 1992. We now know of more than a thousand objects there, and it’s estimated it’s home to more than 100,000 asteroids and comets there over 62 miles (100 km) across. Credit: JHUAPL

In the Solar System’s youth, asteroids that strayed too close to Neptune were scattered by the encounter into the wild blue yonder of the disk. Their orbits still bear the scars of those long-ago encounters: they’re often highly-elongated (shaped like a cigar) and tilted willy-nilly from the ecliptic plane up to 40°. Because their orbits can take them hundreds of Earth-Sun distances into the deeps of space, scattered disk objects are among the coldest places in the Solar System with surface temperatures around 50° above absolute zero. Ices that glommed together to form 67P at its birth are little changed today. Primordial stuff.


Watch how Rosetta’s Comet’s orbit has evolved since the comet’s formation

There are two basic comet groups. Most comets reside in the cavernous Oort Cloud, a roughly spherical-shaped region of space between 10,000 and 100,000 AU (astronomical unit = one Earth-Sun distance) from the Sun. The other major group, the Jupiter-family comets, owes its allegiance to the powerful gravity of the giant planet Jupiter. These comets race around the Sun with periods of less than 20 years. It’s thought they originate from collisions betwixt rocky-icy asteroids in the Kuiper Belt.

Fragments flung from the collisions are perturbed by Neptune into long, cigar-shaped orbits that bring them near Jupiter, which ropes them like calves with its insatiable gravity and re-settles them into short-period orbits.

Comet 67P/Churyumov-Gerasimenko is a Jupiter-family comet. Its 6.5 year journey around the Sun takes it from just beyond the orbit of Jupiter at its most distant, to between the orbits of Earth and Mars at its closest. Credit: ESA with labels by the author
Comet 67P/Churyumov-Gerasimenko is a Jupiter-family comet. Its 6.5 year journey around the Sun takes it from just beyond the orbit of Jupiter at its most distant to between the orbits of Earth and Mars at its closest. Credit: ESA with labels by the author

Mattia Galiazzo and solar system expert Paul Wiegert, both at Western University, showed that in transit, Rosetta’s Comet likely spent millions of years in the scattered disk at about twice the distance of Neptune. The fact that it’s now a Jupiter family comet hints of a possible long-ago collision followed by gravitational interactions with Neptune and Jupiter before finally becoming an inner Solar System homebody going around the Sun every 6.45 years.

By such long paths do we arrive at our present circumstances.

Rosetta Wows With Amazing Closeups of Comet 67P Before Final ‘Crunchdown’

Landscape on Comet 67P taken from just 10 miles (16 km) up late Thursday evening during Rosetta's free fall . The image measures 2,014 feet (614 meters) across or just under a half-mile. At typical walking speed, you could walk from one end to the other in 10 minutes. Credit: ESA/Rosetta
Craggy hills meet dust-covered plains in this landscape on Comet 67P taken from 10 miles (16 km) up late Thursday evening during Rosetta’s free fall . The image measures 2,014 feet (614 meters) across or just under a half-mile. At typical walking speed, you could walk from one side to the other in 10 minutes. This and all the photos below are copyright ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta fell silent moments after 6:19 a.m. Eastern Time (12:19 UT) this morning, when it gently crashed into 67P/C-G 446 million miles (718 million km) from Earth. As the probe descended to the comet’s bouldery surface of the comet in free fall, it snapped a series of ever-more-detailed photographs while gathering the last bits data on the density and composition of cometary gases, surface temperature and gravity field before the final curtain was drawn.

Let’s take the trip down, shall we?

Rosetta's last navigation camera image was taken just after the collision maneuver sequence Thursday evening (CDT) when the probe was 9.56 miles (15.4 km) above the comet's surface. Credit: ESA/Rosetta
Rosetta’s last navigation camera image was taken just after the collision maneuver sequence Thursday evening (CDT) when the probe was 9.56 miles (15.4 km) above the comet’s surface. As in the photo above, much of the landscape is coated in a thick layer of dust that smoothes the comet’s contours.
As Rosetta continues its descent onto the Ma'at region on the small lobe of Comet 67P/Churyumov-Gerasimenko, the OSIRIS narrow-angle camera captured this image at 08:18 GMT from an altitude of about 5.8 km. The image shows dust-covered terrains, exposed walls and a few boulders on Ma'at, not far from the target impact region (not visible in this view - located below the lower edge).Copyright ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
As Rosetta continued its descent onto the Ma’at region on the small lobe of Comet 67P/Churyumov-Gerasimenko, the OSIRIS narrow-angle camera captured this photo from 3.6 miles (5.8 km) up. We see dust-covered terrains, exposed walls and a few boulders on Ma’at, not far from the target impact region, which is located just below the lower edge. The image measures 738 feet (225 meters) across.
Comet from 5.7 km. Rosetta’s OSIRIS narrow-angle camera captured this image of Comet 67P/Churyumov-Gerasimenko at 08:21 GMT during the spacecraft’s final descent on September 30, 2016. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Just a little bit lower now. This photo showing dramatic shadows was taken from 3.5 miles (5.7 km) above the surface of the comet at 4:21 a.m. EDT Friday morning September 30.
It looks like the probe's headed for the abyss! This photo was made at 6:14 a.m. just minutes before impact from 3/4 mile (1.2 km) high. The scene measures just 33 meters across.
Headed for the abyss? This photo was made at 6:14 a.m. from 3/4 mile (1.2 km) high just a few minutes before impact. The scene measures just 108 feet (33 meters) wide.
This is Rosetta's last image of Comet 67P/Churyumov-Gerasimenko, taken shortly before impact, an estimated 51 m above the surface.
This is Rosetta’s final image of Comet 67P/Churyumov-Gerasimenko, taken shortly before impact, an estimated 66 feet (~20 meters) above the surface. The view is similar to looking down from atop a three-story building. Side to side, the photo depicts an area only 7.8 feet (2.4 meters) across. The image is soft because Rosetta’s cameras weren’t designed to photograph the comet from this close.
Sad to see its signal fade. Going... going... gone! A sequence of screenshots showing the signal from Rosetta seen at ESA's ESOC mission control centre via NASA's 70m tracking station at Madrid during comet landing on 30 September 2016. The peak of the spectrum analyser is strong at 12:19 CEST, and a few moments later, it's gone. Credit: ESA
Sad to see its signal fade. A sequence of screenshots taken at ESA’s ESOC mission control show the signal from Rosetta fading moments before impact. The peak of the spectrum analyser is strong at 6:19 EDT, and a few moments later, it’s gone. At impact, Rosetta’s was shut down and no further communication will or can be made with the spacecraft. It will continue to rest on the comet for well-nigh eternity until 67P vaporizes and crumbles apart. Credit: ESA

Bye, Bye Rosetta — We’ll Miss You!

Activity increases substantially at Comet 67P/Churyumov-Gerasimenko between Jan. 31 and March 25, 2015, when this series of pictures was taken by the Rosetta spacecraft. Credit: NAVCAM_CC-BY_SA-IGO-3.0
This montage of photos of Comet 67P/Churyumov-Gerasimenko was taken by ESA’s Rosetta spacecraft between Jan. 31 and March 25, 2015 and shows increasing activity as the comet approached perihelion. Credit: NAVCAM /CC-BY-SA-IGO-3.0

Rosetta awoke from a decade of deep-space hibernation in January 2014 and immediately got to work photographing, measuring and sampling comet 67P/C-G. On September 30 it will sleep again but this time for eternity. Mission controllers will direct the probe to impact the comet’s dusty-icy nucleus within 20 minutes of 10:40 Greenwich Time (6:40 a.m. EDT) that Friday morning. The high-resolution OSIRIS camera will be snapping pictures on the way down, but once impact occurs, it’s game over, lights out. Rosetta will power down and go silent.

A simplified overview of Rosetta’s last week of manoeuvres at Comet 67P/Churyumov–Gerasimenko (comet rotation is not considered). After 24 September the spacecraft will leave the flyover orbits and transfer towards an initial point of a 16 x 23 km orbit that will be used to prepare for the final descent. The collision course manoeuvre will take place in the evening of 29 September, initiating the descent from an altitude of about 20 km. The impact is expected to occur at 10:40 GMT (±20 minutes) at the comet, which taking into account the 40 minute signal travel time between Rosetta and Earth on 30 September, means the confirmation would be expected at mission control at 11:20 GMT / 13:20 CEST (±20 minutes).
A simplified overview of Rosetta’s last week of maneuvers at Comet 67P/Churyumov–Gerasimenko. Starting today (Sept. 24) the spacecraft will leave the flyover orbits and transfer towards a 16 x 23 km orbit that will be used to prepare for the final descent. The collision course maneuver will take place in the evening Sept. 29 with impact expected to occur at 10:40 GMT (6:40 a.m. EDT), which taking into account the 40 minute signal travel time between Rosetta and Earth on Sept. 30, means the confirmation would be expected at mission control at 11:20 GMT (7:20 a.m. EDT). Copyright: ESA

Nearly three years have passed since Rosetta opened its eyes on 67P, this curious, bi-lobed rubber duck of a comet just 2.5 miles (4 km) across with landscapes ranging from dust dunes to craggy peaks to enigmatic ‘goosebumps’. The mission was the first to orbit a comet and dispatch a probe, Philae, to its surface. I think it’s safe to say we learned more about what makes comets tick during Rosetta’s sojourn than in any previous mission.

So why end it? One of the big reasons is power. As Rosetta races farther and farther from the Sun, less sunlight falls on its pair of 16-meter-long solar arrays. At mid-month, the probe was over 348 million miles (560 million km) from the Sun and 433 million miles (697 million km) from Earth or nearly as far as Jupiter. With Sun-to-Rosetta mileage increasing nearly 620,000 miles (1 million km) a day, weakening sunlight can’t provide the power needed to keep the instruments running.


Rosetta’s last orbits around the comet

Rosetta’s also showing signs of age after having been in the harsh environment of interplanetary space for more than 12 years, two of them next door to a dust-spitting comet. Both factors contributed to the decision to end the mission rather than put the probe back into an even longer hibernation until the comet’s next perihelion many years away.

Since August 9, Rosetta has been swinging past the comet in a series of ever-tightening loops, providing excellent opportunities for close-up science observations. On September 5, Rosetta swooped within 1.2 miles (1.9 km) of 67P/C-G’s surface. It was hoped the spacecraft would descend as low as a kilometer during one of the later orbits as scientists worked to glean as much as possible before the show ends.

Rosetta will land somewhere within this planned impact ellipse in the Ma'at region on the comet's smaller lobe. Copyright: ESA
Rosetta is targeted to land at the site within this planned impact ellipse in the Ma’at region on the comet’s smaller lobe. See below for a closer view. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

The final of 15 close flyovers will be completed today (Sept. 24) after which Rosetta will be maneuvered from its current elliptical orbit onto a trajectory that will eventually take it down to the comet’s surface on Sept. 30.

The beginning of the end unfolds on the evening of the 29th when Rosetta spends 14 hours free-falling slowly towards the comet from an altitude of 12.4 miles (20 km) — about 4 miles higher than a typical commercial jet — all the while collecting measurements and photos that will be returned to Earth before impact. The last eye-popping images will be taken from a distance of just tens to a hundred meters away.

The landing will be a soft one, with the spacecraft touching down at walking speed. Like Philae before it, it will probably bounce around before settling into place. Mission control expects parts of the probe to break upon impact.

Taking into account the additional 40 minute signal travel time between Rosetta and Earth on the 30th, confirmation of impact is expected at ESA’s mission control in Darmstadt, Germany, within 20 minutes of 11:20 GMT (7:20 a.m. EDT). The times will be updated as the trajectory is refined. You can watch live coverage of Rosetta’s final hours on ESA TV .


ESAHangout: Preparing for Rosetta’s grand finale

“It’s hard to believe that Rosetta’s incredible 12.5 year odyssey is almost over, and we’re planning the final set of science operations, but we are certainly looking forward to focusing on analyzing the reams of data for many decades to come,” said Matt Taylor, ESA’s Rosetta project scientist.

The spacecraft will aim at a point just right of the image centre, next to Deir el-Medina, the large pit located slightly below and to the right of centre in this view. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
The spacecraft landing site is shown in red and located next to Deir el-Medina, a large pit (arrowed). Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Plans call for the spacecraft to impact the comet somewhere within an ellipse about 1,300 x 2,000 feet (600 x 400 meters) long on 67P’s smaller lobe in the region known as Ma’at. It’s home to several active pits more than 328 feet (100 meters) in diameter and 160-200 feet (50-60 meters) deep, where a number of the comet’s dust jets originate. The walls of the pits are lined with fascinating meter-sized lumpy structures called ‘goosebumps’, which scientists believe could be early ‘cometesimals’, the icy snowballs that stuck together to create the comet in the early days of our Solar System’s formation.

Close-up of a curious surface texture nicknamed ‘goosebumps’. The characteristic scale of all the bumps seen on Comet 67P/Churyumov–Gerasimenko by the OSIRIS narrow-angle camera is approximately 3 m, extending over regions greater than 100 m. They are seen on very steep slopes and on exposed cliff faces, but their formation mechanism is yet to be explained. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Close-up of a curious surface texture nicknamed ‘goosebumps’. The bumps are about 9 feet (3 meters) across and seen on very steep slopes and exposed cliff faces. They may represent the original balls of icy dust that glommed together to form comets 4.5 billion years ago. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

During free-fall, the spacecraft will target a point adjacent to a 425-foot (130 m) wide, well-defined pit that the mission team has informally named Deir el-Medina, after a structure with a similar appearance in an ancient Egyptian town of the same name. High resolution images should give us a spectacular view of these enigmatic bumps.

While we hate to see Rosetta’s mission end, it’s been a blast going for a 2-year-plus comet ride-along.

Hubble Captures The Sharpest Image Of A Disintegrating Comet Ever

This NASA Hubble Space Telescope image reveals the ancient Comet 332P/Ikeya-Murakami disintegrating as it approaches the sun. The observations represent one of the sharpest views of an icy comet breaking apart. The comet debris consists of a cluster of building-size chunks near the center of the image. They form a 3,000-mile-long trail, larger than the width of the continental U.S. The fragments are drifting away from the comet at a leisurely pace, roughly the walking speed of an adult. The main nucleus of Comet 332P is the bright object at lower left. It measures 1,600 feet across, about the length of five football fields. Credit: NASA, ESA, and D. Jewitt (UCLA)
This Hubble Space Telescope image reveals the ancient Comet 332P/Ikeya-Murakami disintegrating as it approaches the sun. The comet debris consists of a cluster of building-size chunks near the center of the image. They form a trail larger than the width of the continental U.S. The fragments are drifting away from the comet at a leisurely pace of just a few miles an hour. The main nucleus of Comet 332P is the bright object at lower left. It measures 1,600 feet across, about the length of five football fields. Credit: NASA, ESA, and D. Jewitt (UCLA)

Breaking up isn’t hard to do if you’re a comet. They’re fragile creatures subject to splitting, cracking and vaporizing when heated by the Sun and yanked on by its powerful gravitational pull.

Recently, the Hubble Space Telescope captured one of the sharpest, most detailed observations of a comet breaking apart, which occurred 67 million miles from Earth. In a series of images taken over a three-day span in January 2016, Hubble revealed 25 building-size blocks made of a mixture of ice and dust that are drifting away from the main nucleus of the periodic comet 332P/Ikeya-Murakami at a leisurely pace, about the walking speed of an adult.

332P on UT 2016 January 26, 27 and 28, showing fragments measured in this work. The images are displayed consecutively as an animated gif in order to show the motion of the fragments relative to the parent nucleus (visible as the bright object to the lower left). The actual motions are very slow, of order 1 m/s, and show a fan-like divergence from the parent. Notice that some of the fragments also change in brightness and even shape from day to day. We think this is due to continuing outgassing, rotation and breakup of the fragments.
This animation shows the movement of individual comet fragments relative to the parent nucleus, the bright object at lower left, on January 26, 27 and 28 UT. The true motions are very slow, on the order of several miles an hour, and show a fan-like divergence from the parent. Look closely and you’ll see that some of the fragments change in brightness and even shape from day to day. Researcher David Jewitt thinks this is due to continuing outgassing, rotation and breakup of the fragments. Credit: NASA, ESA, and D. Jewitt (UCLA)

The observations suggest that the comet may be spinning so fast that material is ejected from its surface. The resulting debris is now scattered along a 3,000-mile-long trail, larger than the width of the continental U.S. Much the same happens with small asteroids, when sunlight absorbed unequally across an asteroid’s surface spins up its rotation rate, either causing it to fall apart or fling hunks of itself into space.

Being made of loosely bound frothy ice, comets may be even more volatile compared to the dense rocky composition of many asteroids. The research team suggests that sunlight heated up the comet, causing jets of gas and dust to erupt from its surface. We see this all the time in comets in dramatic images taken by the Rosetta spacecraft of Comet 67P/Churyumov-Gerasimenko. Because the nucleus is so small, these jets act like rocket engines, spinning up the comet’s rotation. The faster spin rate loosened chunks of material, which are drifting off into space.

Comet 168P-Hergenrother was imaged by the Gemini telescope on Nov. 2, 2012 at about 6 a.m. UTC. Image Credit: NASA/JPL-Caltech/Gemini
Comet 168P/Hergenrother was photographed by the Gemini telescope on Nov. 2, 2012 and shows three fragments that broke away from the nucleus streaming from the coma down the tail. Credit: NASA/JPL-Caltech/Gemini

“We know that comets sometimes disintegrate, but we don’t know much about why or how they come apart,” explained lead researcher David Jewitt of the University of California at Los Angeles. “The trouble is that it happens quickly and without warning, and so we don’t have much chance to get useful data. With Hubble’s fantastic resolution, not only do we see really tiny, faint bits of the comet, but we can watch them change from day to day. And that has allowed us to make the best measurements ever obtained on such an object.”

In the animation you can see the comet splinters brighten and fade as icy patches on their surfaces rotate in and out of sunlight. Their shapes even change! Being made of ice and crumbly as a peanut butter cookie, they continue to break apart to spawn a host of smaller cometary bits. The icy relics comprise about 4% of the parent comet and range in size from roughly 65 feet wide to 200 feet wide (20-60 meters). They are moving away from each other at a few miles per hour.

Crack on 67P - a sign of a coming breakup?
The European Space Agency’s Rosetta probe photographed this big crack in the neck region of the double-lobed comer 67P. It’s several feet wide and about 700 feet long. Could it be an indicator that the comet will break into two in the future? Credit: ESA/Rosetta

Comet 332P was slightly beyond the orbit of Mars when Hubble spotted the breakup. The surviving bright nucleus completes a rotation every 2-4 hours, about four times as fast as Comet 67P/Churyumov-Gerasimenko (a.k.a. “Rosetta’s Comet”). Standing on its surface you’d see the sun rise and set in about an hour, akin to how frequently astronauts aboard the International Space Station see sunsets and sunrises orbiting at over 17,000 mph.

Don’t jump for joy though. Since the comet’s just 1,600 feet (488 meters) across, its gravitational powers are too meek to allow visitors the freedom of hopping about lest they find themselves hovering helplessly in space above the icy nucleus.

This illustration shows one possible explanation for the disintegration of asteroid P/2013 R3. It is likely that over the past 4.5 billion years the asteroid was fractured by collisions with other asteroids. The effects of sunlight will have caused the asteroid to slowly increase its rotation rate until the loosely bound fragments drifted apart due to centrifugal forces. Dust drifting off the pieces makes the comet-looking tails. This process may be common for small bodies in the asteroid belt.
This illustration shows one possible explanation for the disintegration of asteroids and comets. The effects of sunlight can cause an asteroid to slowly increase its rotation rate until the loosely bound fragments drift apart due to centrifugal forces. In the case of comets, jets of vaporizing ice have a rocket-like effect that can spin up a nucleus to speeds fast enough for the comet to eject pieces of itself. Credit: NASA, ESA, D. Jewitt (UCLA), and A. Feild (STScI)

Comet 332P was discovered in November 2010, after it surged in brightness and was spotted by two Japanese amateur astronomers, Kaoru Ikeya and Shigeki Murakami. Based on the Hubble data, the team calculated that the comet probably began shedding material between October and December 2015. From the rapid changes seen in the shards over the three days captured in the animation, they probably won’t be around for long.


Spectacular breakup of Comet 73P in 2006

More changes may be in the works. Hubble’s sharp vision also spied a chunk of material close to the comet, which may be the first salvo of another outburst. The remnant from still another flare-up, which may have occurred in 2012, is also visible. The fragment may be as large as Comet 332P, suggesting the comet split in two.

“In the past, astronomers thought that comets die when they are warmed by sunlight, causing their ices to simply vaporize away,” Jewitt said. “Either nothing would be left over or there would be a dead hulk of material where an active comet used to be. But it’s starting to look like fragmentation may be more important. In Comet 332P we may be seeing a comet fragmenting itself into oblivion.”


During its closest approach to the Sun on November 28, 2013, Comet ISON’s nucleus broke apart and soon vaporized away, leaving little more than a ghostly head and fading tail.

Astronomers using the Hubble and other telescopes have seen breakups before, most notably in April 2006 when 73P/Schwassmann-Wachmann 3, which crumbled into more than 60 pieces.  Unlike 332P, the comet wasn’t observed long enough to track the evolution of the fragments, but the images are spectacular!

The researchers estimate that Comet 332P contains enough mass to endure another 25 outbursts. “If the comet has an episode every six years, the equivalent of one orbit around the sun, then it will be gone in 150 years,” Jewitt said. “It’s the blink of an eye, astronomically speaking. The trip to the inner Solar System has doomed it.”

332P on UT 2016 January 26, 27 and 28, showing fragments measured in this work. The images are displayed consecutively as an animated gif in order to show the motion of the fragments relative to the parent nucleus (visible as the bright object to the lower left). The actual motions are very slow, of order 1 m/s, and show a fan-like divergence from the parent. Notice that some of the fragments also change in brightness and even shape from day to day. We think this is due to continuing outgassing, rotation and breakup of the fragments.NASA, ESA, and D. Jewitt (UCLA)
This annotated image shows the fragments measured by Jewitt and team and their direction of movement. Credit: NASA, ESA, and D. Jewitt (UCLA)

332P/Ikeya-Murakami hails from the Kuiper Belt, a vast swarm of icy asteroids and comets beyond Neptune. Leftover building blocks from early Solar System and stuck in a deep freeze in the Kuiper Belt, you’d think they’d be left alone to live their solitary, chilly lives but no. After nearly 4.5 billion years in this icy deep freeze, chaotic gravitational perturbations from Neptune kicked Comet 332P out of the Kuiper Belt.

As the comet traveled across the solar system, it was deflected by the planets, like a ball bouncing around in a pinball machine, until Jupiter’s gravity set its current orbit. Jewitt estimates that a comet from the Kuiper Belt gets tossed into the inner solar system every 40 to 100 years.

I wish I could tell you to grab your scope for a look, but 332P is currently fainter than 15th magnitude and located in Libra low in the southwestern sky at nightfall. Hopefully, we’ll see more images in the coming weeks and months as Jewitt and the team continue to follow the evolution of its icy scraps.

Rock Around the Comet Clock with Hubble

These photos, taken on April 4, 2016 over the span of 4 1/2 hours, reveal a narrow, well-defined jet of dust ejected by the comet's icy nucleus. With a diameter of only about a mile, the nucleus is too small for Hubble to see. The jet is illuminated by sunlight and changes direction like the hour hand on a clock as the comet spins on its axis. Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)
These photos, taken on April 4, 2016 over the span of 4 1/2 hours, reveal a narrow, well-defined jet of dust ejected by the comet’s icy nucleus. With a diameter of only about a mile, the nucleus is too small for Hubble to see. The jet is illuminated by sunlight and changes direction like the hour hand on a clock as the comet spins on its axis. Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)

Remember 252P/LINEAR? This comet appeared low in the morning sky last month and for a short time grew bright enough to see with the naked eye from a dark site. 252P swept closest to Earth on March 21, passing just 3.3 million miles away or about 14 times the distance between our planet and the moon. Since then, it’s been gradually pulling away and fading though it remains bright enough to see in small telescope during late evening hours.

252P LINEAR looks like a big fuzzy ball in this photo taken on April 30. The comet is located in Ophiuchus and rises in the eastern sky at nightfall. At this scale, the jet shown in the Hubble photos is too tiny to see. See map below to find the comet yourself. Credit: Rolando Ligustri
252P LINEAR looks like a big fuzzy ball in this photo taken on April 30. The comet is located in Ophiuchus and rises in the eastern sky at nightfall. At this scale, the jet shown in the Hubble photos is too tiny to see. See map below to find the comet yourself. Credit: Rolando Ligustri

While amateurs set their clocks to catch the comet before dawn, astronomers using NASA’s Hubble Space Telescope captured close-up photos of it two weeks after closest approach. The images reveal a narrow, well-defined jet of dust ejected by the comet’s fragile, icy nucleus spinning like a water jet from a rotating lawn sprinkler. These observations also represent the closest celestial object Hubble has observed other than the moon.

Want to get a good look at a comet's tiny nucleus and its jets of vapor and dust? Get up close in the spaceship. This photo was taken by the European Space Agency's Rosetta probe which has been orbiting Comet 67P/Churyumov-Gerasimenko since the fall of 2014. Credit: ESA
Want to get a good look at a comet’s tiny nucleus and its jets of vapor and dust? Get up close in the spaceship. This photo was taken by the European Space Agency’s Rosetta probe which has been orbiting Comet 67P/Churyumov-Gerasimenko since the fall of 2014. Credit: ESA

Sunlight warms a comet’s nucleus, vaporizing ices below the surface. In a confined space, the pressure of the vapor builds and builds until it finds a crack or weakness in the comet’s crust and blasts into space like water from a whale’s blowhole. Dust and other gases go along for the ride. Some of the dust drifts back down to coat the surface, some into space to be shaped by the pressure of sunlight into a dust tail.

This map shows the path -- marked off every five nights -- of 252P/LINEAR along the border of Ophiuchus and Hercules through the end of June. Bright stars are labeled by Greek letter or number. Stars shown to magnitude 8.5. Diagram: Bob King, source: Chris Marriott's SkyMap
This map shows the path — marked off every five nights at 11:30 p.m. CDT (4:30 UT) — of 252P/LINEAR along the border of Ophiuchus and Hercules through the end of June. Bright stars are labeled by Greek letter or number. Stars shown to magnitude 8.5. Click to enlarge. Diagram: Bob King, source: Chris Marriott’s SkyMap

You can still see 252P/LINEAR if you have a 4-inch or larger telescope. Right now it’s a little brighter than magnitude +9 as it slowly arcs along the border of Ophiuchus and Hercules. With the moon getting brighter and brighter as it fills toward full, tonight and tomorrow night will be best for viewing the comet. After that you’re best to wait till after the May 21st full moon when darkness returns to the evening sky. 252P will spend much of the next couple weeks near the 3rd magnitude star Kappa Ophiuchi, a convenient guidepost for aiming your telescope in the comet’s direction.

Orient yourself on the comet's location by using this map, which shows the sky facing southeast around 11-11:30 p.m. local daylight time in mid-May. Mars and Saturn are excellent guides to help you find Kappa Oph, located very near the comet. Diagram: Bob King , source: Stellarium
Get oriented on where to look for the comet by first using this map, which shows the sky facing southeast around 11-11:30 p.m. local daylight time in mid-May. Mars and Saturn make excellent guides to help you find Kappa Oph, located very near the comet. Diagram: Bob King , source: Stellarium

While you probably won’t see any jets in amateur telescopes, they’re there all the same and helped created this comet’s distinctive and large, fuzzy coma. Happy hunting!

The full sequence of images of the spinning jet in 252P/LINEAR seen by Hubble. Credit: NASA, ESA, and Z. Levay (STScI)
The full sequence of images of the spinning jet in 252P/LINEAR seen by Hubble. Credit: NASA, ESA, and Z. Levay (STScI)

 

2016 Eta Aquarid Meteor Shower Peaks May 5-6

The Eta Aquarid meteor shower peaks shortly before dawn on Friday and Saturday mornings. The radiant lies in Aquarius near the star Eta. Diagram: Bob King, source: Stellarium
The Eta Aquarid meteor shower peaks shortly before dawn on Thursday and Friday mornings. The radiant lies in Aquarius near the star Eta. Diagram: Bob King, source: Stellarium

Itching to watch a meteor shower and don’t mind getting up at an early hour? Good because this should be a great year for the annual Eta Aquarid (AY-tuh ah-QWAR-ids) shower which peaks on Thursday and Friday mornings May 5-6. While the shower is best viewed from tropical and southern latitudes, where a single observer might see between 25-40 meteors an hour, northern views won’t be too shabby. Expect to see between 10-15 per hour in the hours before dawn.

Most showers trace their parentage to a particular comet. The Perseids of August originate from dust strewn along the orbit of comet 109P/Swift-Tuttle, which drops by the inner solar system every 133 years after “wintering” for decades just beyond the orbit of Pluto.

Photo of Haley's Comet crossing the Milky Way, taken by the Kuiper Airborne Observatory in New Zealand on April 8th/9th, 1986. Credit: NASA
Halley’s Comet crossing the Milky Way, taken by the Kuiper Airborne Observatory in New Zealand on April 8-9, 1986. Credit: NASA

The upcoming Eta Aquarids  have the best known and arguably most famous parent of all: Halley’s Comet. Twice each year, Earth’s orbital path intersects dust and minute rock particles strewn by Halley during its cyclic 76-year journey from just beyond Uranus to within the orbit of Venus.

Our first pass through Halley’s remains happens this week, the second in late October during the Orionid meteor shower. Like bugs hitting a windshield, the grains meet their demise when they smash into the atmosphere at 147,000 mph (237,000 km/hr) and fire up for a brief moment as meteors. Most comet grains are only crumb-sized and don’t have a chance of reaching the ground as meteorites. To date, not a single meteorite has ever been positively associated with a particular shower.

A bright, earthgrazer Eta Aquarids streaks across Perseus May 6, 2013. Because the radiant is low for northern hemisphere observers, earthgrazers - long, bright meteors that come up from near the horizon and have long-lasting trails. Credit: Bob King
A bright, earthgrazing Eta Aquarid streaks across Perseus and through the aurora on May 6, 2013. Because the radiant is low for northern hemisphere observers, earthgrazers – long, bright meteors that come up from near the horizon and have long-lasting trails. Credit: Bob King

The farther south you live, the higher the shower radiant will appear in the sky and the more meteors you’ll spot.  A low radiant means less sky where meteors might be seen. But it also means visits from “earthgrazers”. These are meteors that skim or graze the atmosphere at a shallow angle and take many seconds to cross the sky. Several years back, I saw a couple Eta Aquarid earthgrazers during a very active shower. One other plus this year — no moon to trouble the view, making for ideal conditions especially if you can observe from a dark sky.

From mid-northern latitudes the radiant or point in the sky from which the meteors will appear to originate is low in the southeast before dawn. At latitude 50° north the viewing window lasts about 1 1/2 hours before the light of dawn encroaches; at 40° north, it’s a little more than 2 hours. If you live in the southern U.S. you’ll have nearly 3 hours of viewing time with the radiant 35° high.

At some personal peril, I grabbed a photo of snow in the headlights while driving home in a recent storm. Meteors in a meteor shower appear to radiate from a point in the distance in identical fashion. Photo: Bob King
Meteors in a meteor shower appear to radiate from a point in the distance in identical fashion to the way snow or rain radiates from a point in front of your car when you’re driving. Credit: Bob King

Grab a reclining chair, face east and kick back for an hour or so between 3 and 4:30 a.m. An added bonus this spring season will be hearing the first birdsong as the sky brightens toward the end of your viewing session. And don’t forget the sights above: a spectacular Milky Way arching across the southern sky and the planets of Mars and Saturn paired up in the southwestern sky.

Meteor shower members can appear in any part of the sky, but if you trace their paths in reverse, they’ll all point back to the radiant. Other random meteors you might see are called sporadics and not related to the Eta Aquarids. Meteor showers take on the name of the constellation from which they originate.

Aquarius is home to at least two showers. This one’s called the Eta Aquarids because it emanates from near the star Eta Aquarii. An unrelated shower, the Delta Aquarids, is active in July and early August. Don’t sweat it if weather doesn’t cooperate the next couple mornings. The shower will be active throughout the weekend, too.

Happy viewing and clear skies!